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Abstract. In this paper, we apply particle filters to the problem of 
on-line classification with possibly overlapping classes. This allows 
us to compute the probabilities of class membership as the classes 
evolve. Although we adopt neural network classifiers, the work 
can be extended to any other parametric classification scheme. We 
demonstrate our methodology on a simple example and on the 
problem of fault detection of dynamical operated marine diesel 
engines. 

INTRODUCTION 

Sequential classification problems arise in a few areas of technology, including 
condition monitoring and real-time decision systems [13, 141. For example, 
when monitoring patients, we might wish to  decide whether they require an 
increase in drug intake at several intervals in time. Here, it is shown that 
particle filters [5] provide an efficient and elegant probabilistic solution to  this 
problem. In particular, it becomes possible to compute the probabilities of 
class membership when the classes overlap and evolve with time. This clas- 
sification framework applies t o  any type of classifier, but for demonstration 
purposes we focus on multi-layer perceptrons (MLPs). 

We demonstrate the methodology on a fault detection problem. This 
application is of great importance as early detection of incipient faults can 
improve safety and efficiency, as well as, help to reduce down-time by au- 
tomating planned maintenance in many industrial and transportation envi- 
ronments. Recently, it has been shown that batch trained neural network 
classifiers can be applied successfully to  this problem [6] .  However, in this 
paper we are considering fault detection of engines in dynamical use. 
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MODEL SPECIFICATION 

We adopt the following Markov, nonlinear, state space representation to  
model the mapping between the inputs and outputs of the classifier 

Transition model: p(Bt(Bt-1) (1) 
(2) Observation model: p ( y t ( x t ,  0,) 

where xt E Rnz denotes the input data at time t ,  yt E { O , l } n y  represents 
the output class labels distributed according to p(y t Ix t ,B t )  and Bt E Rn9 
corresponds to the parameters (weights) of a neural network f(xt, et). (Note 
that the method also applies to other parametric classification schemes such 
as discriminant methods and on-line hidden Markov decision trees [lo].) The 
parameters are assumed to follow a random walk Bt = Bt- l  +ut. The process 
noise could, for instance, be Gaussian ut - N(0,  d:I,,), where I,, denotes 
the identity matrix of size ne x ne. Other noise models for the evolution of 
the parameters are also possible. To complete the specification of the model, 
the initial state is 80 - N(O76$I,,). Note that the approach discussed in 
this paper can be used to model noise in the input x t .  Moreover, it applies 
to time varying transition and observation densities. 

For binary classification, the output data are assumed to be noiseless class 
labels ( 0 ,  l}. We want the network output f ( x t ,  0,) to represent the prob- 
ability of class membership Pr(1lxt) of class (1). The posterior probability 
of class ( 0 )  is then given by 1 - f(xt,Bt). Considering this, the likelihood 
of the observations should be given by the following binomial (Bernoulli) 
distribution 

P ( Y ~ I x ~ , o ~ )  = m , w t  (1 - f ( x t , e t ) ) ' - Y '  (3) 

If one assumes that the outputs of the hidden layer neurons are exponentially 
distributed, then it follows that the output probabilities of class membership 
are logistic functions of the hidden layer outputs [3]. We, therefore, use a 
logistic output basis function to perform binary classification. This classifi- 
cation scheme can be straightforwardly extended to  more output classes by 
adopting softmax basis functions and multinomial likelihood distributions [3]. 

Estimation Objectives 

Our goal will be to approximate the posterior distribution p(&:tIdl,t) and 
one of its marginals, the filtering density p(Btldl , t) ,  where dl:t =  XI:^, y1: t } .  
By computing the filtering density recursively, we do not need to keep track of 
the complete history of the parameters. We can also augment the state space 
to approximate the joint posterior of the parameters and hyper-parameters. 
For example, for Gaussian noise, we might be interested in estimating the 
distribution p(&, &[dl:t). 
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PARTICLE FILTERING 

In recent years, many researchers in the statistical and signal processing com- 
munities have, almost simultaneously, proposed several variations of particle 
filtering algorithms: see [5] for a comprehensive review. Figure 1 illustrates 

Figure 1: Update and prediction stages in a generic sequential Monte Carlo algo- 
rithm with the transition prior p(&lOt- , )  as proposal. At time t - 2 the cloud of 
N = 10 samples provides an inadequate representation of the posterior. In the up- 
date stage, the likelihood p(y t lx t ,  &) of each particle is evaluated. The size of the 
dark circles indicates the likelihood (importance weight tu) of a particular particle. 
The particles are then selected according to their respective likelihoods. In this 
process, the particles with higher likelihood are allowed to have more “children”. 
Subsequently, the algorithm computes the predicted values of the particles by pass- 
ing them through the transition equations. The end result is that the surviving 
particles provide a better weighted description of the posterior distribution. 

the operation of a generic particle filter. Only the fittest particles (samples), 
that is the ones with the highest likelihood in this case, are selected in an 
update stage (when the new data becomes available). These then proceed 
to  be multiplied, according to their likelihood, in a prediction stage. In the 
next section, we shall present a generic particle filter for classification. 
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GENERIC PARTICLE FILTER FOR C L A S S I F I C A T I O N  

Given N particles (samples) i E (1,. . . , N } }  at time t - 1, approx- 
imately distributed according to p(80,t-1 Idl,t-l),  particle filters allow us to 
compute N particles e:!, approximately distributed according to the pos- 
terior p(80,t ldl , t) ,  at time t. This is accomplished by sampling from the 
importance function q ( & p o : t - l ,  d1:t). We shall now present the general al- 
gorithm and, subsequently, discuss its main steps. 

Gener i c  Sequen t ia l  M o n t e  Carlo 

1. Bayesian importance sampling step 

0 For i = 1,. . . , N .  sample: 

and set: 

0 For i = 1,. . . , N ,  evaluate the importance weights up to  a normalis- 
ing constant: 

0 For i = 1,. . . , N ,  normalise the importance weights: 

2. Selection step 

-(a) 
0 Multiply/Suppress samples with high/low importance weights 

-(i) 
approximately Wiz), respectively, t o  obtain N random samples 

distributed according t o  p(80:tldl:t). 4 4  

3. MCMC step 

0 Apply a Markov transition kernel with invariant distribution given by 
the product nEl p(8g)t(dl:t) t o  obtain 
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Bayesian Importance Sampling Step 

If we restrict ourselves to importance functions of the following form 

t 

Q(e0:tldl:t) = 4 ( 0 0 )  dhldl:k,el:k-l)  (4) 
k = l  

we can obtain recursive formulas to evaluate w (00,t) = w (&:t-l)  wt and thus 
W1:t ,  wt being given by 

There are infinitely many possible choices for q ( 80,t I dl:t) , however we must 
make sure that its support includes the one of p ( 80,tl d1:t). For simplicity, 
we use the transition prior p (et1 et-1) as importance distribution for the 
MLPs. In this case, the importance weights are proportional to the likelihood: 
Wt m p ( Y t i x t , e t ) .  

Selection Step 

A selection (resampling) stage may be used to  eliminate samples with low 
importance ratios and multiply samples w,ith high importance ratios. A se- 
lection scheme associates to each particle flti a number of “children’’, say 
N, E NI such that E,”=, N, = N .  Several selection schemes have been pro- 
posed in the literature. These schemes satisfy IE(N,) = NG!’) but their per- 
formance varies in terms of the variance of the particles var(N,).  Examples 
of these selection schemes include multinomial sampling [4] , residual resam- 
pling [9, 121 and systematic sampling [ll]. Their computational complexity 
is 0 ( N ) .  

MCMC Step 

After the selection scheme at time t ,  we obtain N particles distributed mar- 
ginally approximately according to p(80,t Id1.t). Note that the discrete nature 
of the approximation can lead to a skewed importance weights distribution. 
That is, many particles have no children (Ni = 0), whereas others have a 
large number of children, the extreme case being Ni = N for a particular 
value i. In t,his case, there is a severe depletion of samples. A strategy for 
improving the results involves introducing MCMC steps of invariant distri- 
bution p(80,tIdl:t) on each particle [2, 71. The basic idea is that, by applying 
a Markov transition kernel, the total variation of the current distribution 
with respect t o  the invariant distribution can only decrease. Note, however, 
that we do not require this kernel to be ergodic. Convergence results for this 
type of algorithm are presented in [7]. In the case of MLPs, we can use a 
smoothing WIetropolis-Hastings [8] step as follows. 
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Smoothing Metropolis-Hastings step 

0 Sample v N U p l ] .  

0 Sample the proposal candidate O;(Z) N p(O, lO~i ' ,>  

5 

0~ 

( i )  - -(i) * ( i )  - then accept move: OoZt - ( O o : t - l ,  8, ) 
( '  - 4 2 )  

- else reject move: e;i - eo,t 

5 

. I  

0 

. x  

End If. 

A SIMPLE CLASSIFICATION EXAMPLE 

For demonstration purposes, we first consider a synthetic problem, where the 
target classes change with time. Specifically, the data was generated from two 
two-dimensional, overlapping and ,time-varying Gaussian clusters as depicted 
in Figure 2. If we look at all the generated data (bottom right of Figure a), we 
note that non-sequential classification strategies would fail in this problem. 

5 5 

0 0 

-5 
-5 0 5 -5 0 5 
-5 

Data from t=f to t=200 Data from t=200 to t=400 

L- -5' L- 
-5 O 5 -5 0 5 

-5' 

Data from t=400 tp t=600 Data from t=1 to t=600 

Figure 2: Data generated for the classification problem. 

An MLP with 4 hidden logistic functions and an output logistic function was 
applied to classify the data. The network was trained, sequentially, with an 
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Figure 3: The top plot shows the true labels [. . ' 1  and one-step-ahead predicted 
probabilities of class membership [-I. The middle plot shows the predicted labels 
using a threshold of 0.5. The bottom plot shows the cumulative number of mis- 
classification errors. 

Figure 4: Probabilities of class membership for the classification problem. 

SMC algorit,hm by proposing from the transition prior. A smoothing MCMC 
step was used to reduce the resampling variance. The number of particles was 
set to 200, the prior network weights were sampled from N(0,  IOIz), while 
their diffusion parameter was set to 0.2. Figure 3 shows the one-step-ahead 
predicted class probabilities, the output labels obtained by thresholding the 
output at 0.5 and the cumulative mis-classification errors. Figure 4 depicts 
the evolution of the probabilities of class membership. Despite the change in 
the distributions at t = 200 and t = 400, the algorithm recovers quickly. 
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A N  A P P L I C A T I O N  T O  FAULT D E T E C T I O N  

In this section, we apply the proposed on-line classifier to  monitor the exhaust 
valve condition in a marine diesel engine. The ability to detect valve burn- 
through, or leakage, in marine diesel engines is of great practical interest 
as it makes it possible to automate planned maintenance [6]. For instance, 
in the case of a minor leakage, it is possible to get the valve reconditioned 
and re-installed when the leakage is detected early. However, an undetected 
leakage wil1,continue to  aggravate the exhaust value condition (e.g. via hot 
corrosion) and hence affect the performance of the engine by reduction of 
pressure and power. If the leakage proceeds undetected, the damage will be 
too serious to  allow for recondition. Thus, the main goal is to  detect the 
leakage before the engine performance becomes unacceptable or irreversible 
damage occurs. 
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Figure 5 :  Shows the trigger sampled AE measurements projected onto the two first 
principal components. The two classes are approximately linearly separable 

The non-intrusive monitored measurements consisted of vibrations and 
structure-borne stress waves also known as Acoustic Emission (AE) acquired 
during various engine load conditions (25%, 50%, 75% and 100%) and valve 
conditions (normal, small leakage and large leakage). The measurements 
were carried out using a 4 cylinder 500 mm bore marine diesel engine at a 
testbed where the propeller was simulated by a water brake. The RMS AE 
time-series was trigger resampled using a shaft timing signal obtained from 
an angle encoder pulse signal yielding 2048 angle positions per piston cycle. 
Additional dimensionality reduction of the input-space was obtained by using 
principal component analysis. In this paper, we we focused on classifying 
normal engine condition versus large valve leakage. Figure 5 shows the data 
projected onto the two first principal components. This figure suggest that 
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Figure 6: From top to bottom; The top plot shows the true label [. . ' 1  and one-step- 
ahead predicted probabilities of class membership [-I. The next plot shows the 
the predicted classes using a threshold of 0.5.  The next plot shows the cumulative 
number of mis-classification errors. The bottom plot shows the operating condition 
of the engine as a function of time 

the two classes are approximately linearly separable. Due to  the non-dynamic 
data acquisition, a temporal dynamic engine operation was simulated by 
collecting all data acquired with the same engine load and with the load level 
increasing in time (that is, 25%, 50%, 75% and 100%). Finally, for each fixed 
load level, the data was shuffled randomly. 

An MLP with 2 hidden unit and 5 input nodes was used as to  increase the 
modelling flexibility even though Figure 5 suggests that a linear discriminant 
on the data projected onto the two first principal components is sufficient to 
separate the two classes. Figure 6 shows the true label and one-step-ahead 
predicted probabilities of class membership obtained using 500 particles. As 
expected, we noticed that an initial convergence time was required for the 
classifier to  start tracking the changes in the operating condition. 

CONCLUSIONS 

We presented a novel on-line classification scheme and demonstrated it on 
two problems. We believe this strategy has great potential and that it needs 
to  be further tested on other types of parametric classifiers and classification 
domains. Some algorithmic improvements would result if one uses a discrimi- 
nant strategy where the output neurons are linear and the measurement noise 
is Gaussian. In this case, it would become possible to  obtain efficient Rao 
Blackwellised particle filters [l]. 
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