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ical Expressions for  Group Delay in the Far 
from a n  ptical Fiber Having an  

PER L. DANIELSEN 

Abstract-A general  and efficient model  for  optical  fibers  with  a few 
modes and  arbitrary index profiles is established. The model yields a 
soiution of the  vectorial  wave  equation  and  analytical  expressions  for 
the group  delay  and  the far field. Convergence tests have  shown  that 
the dispersion  can  be  calculated  with an accuracy  better than 0.2 
ps/(km . nm). 

I 
I.  INTRODUCTION 

N  a single-mode fiber only  one mode can propagate the 
LPol  mode.  The reason for including more LP modes in 

the investigation is that  the investigation then includes an 
alternative to the single-mode fiber-the dual-mode fiber 
[ l ] .  In  a dual-mode fiber,  the  LPol and LPll modes can 
propagate.  Furthermore, measurement of the pulse response 
in the  two LP-mode regions and measurement of the far field 
in  the single-mode region can be used to determine the index 
profile 121. 

When investigating the fiber at wavelengths near the  cutoff 
of the first higher order mode, care has to  be  taken  in the cal- 
culation of the group delay of  the higher order  mode. This 
means that the vectorial wave equation has to be used instead of 
the scalar wave equation.  The result of using the vectorial wave 
equation  is  that  the LP, mode separates into  the HE2 and 
EHol modes, which have different group delay close to  cutoff 

In  this paper, we shall discuss the calculation  of the propaga- 
tion  constant,  the group delay, the dispersion, and the far 
field.  The calculations will be based on the vectorial wave 
equation  and the formulas will be valid for every mode that 
can propagate. Because the  index profile is sampled in  a  finite 
number of points,  it is not possible to rapidly investigate 
varying profiles without  the use of a great number of  points. 

The  method used  is an  approximation of the index profile 
by a multilayer structure where each layer has a  constant re- 
fractive index. It is faster than some earlier methods of solving 
the vectorial wave equation by use of a multilayer structure 
[J], [ 5 ]  because it only deals with 2 X 2 matrices. Contrary 
to  another multilayer method [4] dealing with 2 X 2 matrices, 
the present method can also be used on  a w-profile because it 
includes a check of  the  field, Le., if it really is evanescent far 
from the core. In  the earlier method, it was assumed that  the 
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field was evanescent far from the core, which introduces non- 
physical modes in a w-profile. The electromagnetic field of 
these nonphysical modes is only zero at  the  boundary  be- 
tween the cladding and the  outermost layer with  a high re- 
fractive index,  but increases rapidly in the cladding. As 
mentioned earlier, we need a very accurate calculation of  the 
group delay close to  cutoff, and it can be obtained  by  an 
analytical integration  of  the field. This is discussed in Sec- 
tions I11 and IV. In Section V, a formula is  derived giving 
the far field from an arbitrary  mode. 

11. THE CHARACTERISTIC EQUATION 
The electromagnetic field E in any circular waveguide sym- 

metric  about  the z-axis can be expressed as a superposition of 
three  orthogonal vector fields: 

E=E+tE-tE, * z .  

+ and E - represent two vectors rotating  counter  and  clock- 
wise about  the z-axis. E, is the  z-component of the field and 
2 is a  unity vector along the z-axis. E+ and E- can be decom- 
posed in  the following manner: 

n 
(1) 

E*(r, 6,z)  = E t ( r ,  T j ? )  ei (wt -pz)  (2) 

where r and $ are  the polar coordinates, x  ̂ and y^ are unity 
vectors, ~3 is the angular frequency, t is the  time, and P is the 
propagation constant.  The magnetic field obeys a similar 
superposition.  Furthermore, it is convenient to consider the 
following linear combinations of the axial components: 

@: = jE, ?Z ZHz (3) 

where Z is the characteristic impedance [4]. 

angular part 
The electrical field can be separated into a radial and  an 

E'(r, $) =E'@) eim9 (4) 

where m is a  nonzero integer. Insertion of (1) and (2) in the 
vectorial wave equation shows that  the  r-dependent part of 
E' satisfies the Bessel differential equation if the refractive 
index is constant [4]. 

We thus divide the index  distribution  into  a multilayer 
structure  with N layers of constant refractive indexes ni; see 
Fig. I .  Layer N extends from radius equal to  u ~ - ~  to in- 
finity.  Note  that  it is not necessary to require that  the layers 
have the same thickness. 

In [4] it is shown that are related to E' through  the 
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Fig. 1. The refractive index n as function of radius r and the multilayer 
approximation. 

setup  and  the  setdown  operator  for  the Bessel functions. This 
means that  the solutions in layer i are,  in  a  matrix  formulation, 

The  constants A* and BF depend on the layer i, the sign, 
and m. The matr$ zi is  given by 

for P < kni, where k is the free space wavenumber. Jm and 
N ,  are the Bessel and Neumann functions of order m and 

K~ =d(kni)2 - p2 . (7) 

For P > kni, we  have instead 

where K, and Im are the modified Bessel functions  of first 
and second kind  and  order m, and 

yi = dp2 - (kni)2 . (9) 

Matching of the fields at the boundary between individual 
layers can be expressed by using the  t-matrix 

if a  relation  between E+ and E -  is neglected, reducing the 
order  of  the matrices from 4 to 2 [4]. The  t-matrix is then 
given by 

where 

2.50 l' X 
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Fig. 2. The eigenvalue U as function of the number of layers N ,  with 
the sampling parameter x as parameter. The normalized frequency 
P [ 131 is 3 and the index profile is an a-profile [ 21 with a as 2. 

By using the fact that  the field has to be finite at r = 0 ,  we 
have to choose B: = 0 and arbitrarily set A i  = 1. The sys- 
tems  of linear equations [see (lo)] can now be solved succes- 
sively for A:+ and B?+, , starting  with i = 1 .  A character- 
istic equation is obtained by using the fact that  the field also 
has to  be finite  for r = 00, i.e., the characteristic equation is 

A&@) = 0. (1 3) 

The characteristic equation (13) has to be solved numerically 
and the  solutions corresponding to  the minus sign are HE 
modes and to  the plus sign are EH modes [4]. The HE,, 1, . 
modes and the EHm-l,, modes are nearly degenerated, ex- 
cept  for the HE,,. modes which have no  counterparts. Even 
though the  root finding ih (13) needs a lot of evaluations of 
Bessel functions,  the  number  of Bessel functions  in the charac- 
teristic equation (1 3) is not less when the scalar wave equation 
is used [6]. 

One way of decreasing the  computational  work  is to  choose 
the optimal sampling of  the  index profile. We thus  introduce 
the parameter x through 

ni=n(ai_,)tx(ra(aj)-n(ai_,)) ,  O < X < I .  (14) 

Fig. 2 shows the eigenvaiue 

for  a parabolic index  profile  with the x-value as a  parameter, 
as a  function of the number of layers. It is observed that when 
the number of layers increases, U converges to  the same value. 
When x = 0.5, U is almost independent  of N and 10 layers are 
therefore  sufficient. A physical explanation  of  why U is in- 
dependent o f N  is that  the areas under the  true index profile 
and  the staircase profile are nearly equal. 
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111. CONFINEMENT FACTORS 
The power per unit area transmitted in  the z-direction is 

S, = $Re@ X H*)  ẑ  (16) 

where Re represents "the real part of." By  using the relation 
between E' and H' [7], it can be shown that  the power 
transmitted  in the z-direction in each mode is 

where some proportionality  factors, including the 4 integra- 
tion, are omitted.  The confinement factors  are defined as 
the power transmitted in each layer, when the  total power 
is unity, i.e., 

An advantage of solving the characteristic equation (13), in- 
stead of the characteristic equation  in [4], is that we now 
know the  constants Af and B:, and thus have an analytical 
expression for IE' I .  The  integrations  in (18) can be per- 
formed analytically [8] and we  will now use the result to 
Galculate the  group delay and dispersion. 

IV. GROUP DELAY AND DISPERSION 
The  group delay per unit  length T is defined as 

h2 dj.3 
2nc d h  

7=--- 

where c is the vacuum speed of light. A disadvantage of using 
(19) directly is that calculation of T at one wavelength involves 
the solution  of  the characteristic equation  at  two wavelengths. 
The calculation of T can also be performed analytically from 
the knowledge of  the propagation constant  at  only  one wave- 
length h [9] : 

where the group index 

N = -  d(nk) 
dk ' 

For the refractive index  a Sellmeier fit [IO] can be used. 
This means that the  differentiation in (21) can  also  be per- 
formed analytically. 

Insertion  of (18) in (2 1) gives, for  the multilayer structure, 

where Ni is the group index  in layer i. Figures similar to Fig. 2 
are  obtained  for the group delay which is, like the eigenvalue 
U, much  more  dependent  on the sampling parameter x than 
on  the number of layers. 

The dispersion 

dT 
d h  

T =  -- 

can be found directly from numerical differentiation  of (22), 
but here a numerical differentiation is not as critical as in 
(19). By increasing the number of layers in a parabolic profile 
to  20, 40, and 80, the agreement between results is within 0.2 
ps/(km - nm) when x = 0.5. For  other values of x,  figures 
similar to Fig. 2  are again obtained.  Furthermore, the results 
are in excellent agreement with results obtained  in I1 1 1. 

V. FAR FIELD 
The far field may  be  obtained from the Frauenhofer diffrac- 

tion integral [ 121 

- e  
j k r ,  sin 0 cos(@ - @,) 

ro d40 dro 

where (r,  B,4) is the usual spherical coordinates  and Eo(ro , 
Go) is the field at  the fiber end. In the following we  will  use 
the scalar LP modes 1131 because we are not interested in  a 
possible small difference in group delay. We thus set m +_ 1 = Z 
and get 

Eo = [AiJz(KfTo) t BiNl(Kiro)] COS Z@o (25) 

for knj > j3 and 

Eo = [ ~ i ~ ~ ( ~ i ~ o ) + B i K ~ ( ~ i ~ O . , ) l  C O S ~ @ O  (26) 

for kni < j.3. Equations (25) and (26) are only valid for small 
angles 0. For angles greater than  about 10' an  obliquity factor 
has to be  introduced.  The angular integration in (24) is an 
integral representation  of the Bessel function  [14] and the 
remaining integral can  thus  be calculated analytically [15]. 
The result is, if some constants depending only on r have been 
neglected, 

The first summation 

is a  summation of the layers where kni > 0 and the second 
summation 

is a  summation of the layers where kni < 0. 

(29) 

Furthermore, 
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Fig. 3. Intensity of the far field IEfI’ from a single-mode fiber with 
core radius equal to 5 ym and normalized frequency [ 131 equal to 
2.4 versus the angle 0.  The profile parameter a! is shown to be a = 4, 
8, -. 
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Fig. 4. Intensity of the far field IEfI2 from a single-mode fiber with the 
profile parameter a! equal to 8 and the core radius a as parameter 
versus the angle 0. The values of a are shown to be 4.5,  5.0, and 
5.5 ym. The normalized frequency is 2.4 when a is equal 5.0 Nm. 

r ]=ks in8 .  (30) 

In  the special case of  a  step-index  fiber,  there is only  one 
term  in each sum and B1 = A2 = 0. By use of each character- 
istic equation  [13]  with I = 0 to replace the modified Bessel 
functions  with Bessel functions, we obtain  the same result as 
in [16]. 

The  intensity  of  the  far field (Ef[’ is normalized to  be 0 dB, 
when the angle B is zero.  In Fig. 3,  the far field from  an a- 
profile [21 with  the Q! value  as a parameter is shown. It can 
be seen that  the variation of Q mainly causes changes in the 
far field for angles near the first zero. In Fig. 4 is shown the 
far field with  the core radius as a  parameter, and again there 
are mainly changes in the far field for angles near the first 
zero. 

VI. CONCLUSION 
Convergence tests of the multilayer method have shown that 

very precise results are  obtained  with relatively few layers, i.e., 
10 layers.  The accuracy on  the dispersion is better  than 0.2 

order of magnitude in other profiles. Together with the  ad- 
vantage of analytical expressions for group delay and far field, 
a very general and efficient model for fibers with  a few modes 
and arbitrary profiles i s  established. 
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