Technical University of Denmark

Putting micropollutants, energy, nutrients and GHG emissions on an equal basis: An LCA approach

Larsen, Henrik Fred

Publication date: 2010

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Larsen, H. F. (2010). Putting micropollutants, energy, nutrients and GHG emissions on an equal basis: An LCA approach [Sound/Visual production (digital)]. 2nd IWA/WEF Wastewater Treatment Modelling Seminar, Mont-Sainte-Anne, Canada, 26/03/2010

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Putting micropollutants, energy, nutrients and GHG emissions on an equal basis A life cycle assessment (LCA) approach

H.F. Larsen

DTU Management Engineering, Technical University of Denmark

2nd IWA/WEF Wastewater Treatment Modelling Seminar Mont-Sainte-Anne QC, Canada, March 28-30, 2010

Problem

Sustainable solution or sub-optimisation?

Putting micropollutants, energy, nutrients and GHG emissions....(Larsen HF)

Characteristics of LCA

- A decision supporting tool
- Focus on services typically represented by a product (the "functional unit", fu). In this case: Treatment of one cubic meter waste water (all impacts related to this unit)
- Comparative (relative statements). In this case: Comparing induced impacts with avoided impacts regarding e.g. ozonation and PAC addition
- Holistic perspective
 - life cycle from cradle to grave
 - all relevant environmental impacts or damages to 'areas of protection'. In this case:

WWTmod

- Global warming
- Nutrient enrichment (eutrofication)
- Acidification
- Ecotoxicity
-
- Aggregation over time and space
 - life cycle is global
 - life cycle may span over decades or even centuries

Life cycle impact assessment (LCIA)

WWTmod

Classification: "What does this emission contribute to?"

- Assignment of emissions to impact categories according to their potential effects
 - Global warming (e.g. CO2, CH4)
 - Acidification (e.g. NO2, SO3)
 - Ecotoxicity (e.g. pharmaceuticals, heavy metals)
 - Human toxicity (e.g. benzene, PAH's)
 -

Characterisation: "How much may it contribute?"

 Quantification of contributions to the different impact categories by estimating impact potentials, IPs (e.g. multiplying the characterisation factors (CFs) for each chemical by the emitted amount (Q) per functional unit (fu):

• Example (GWP):

Substance	Q (g/fu)	CF (g CO ₂ -eq/g)	IP (g CO ₂ -eq/fu)
Carbon dioxid (CO ₂)	250	1	250
Methane (CH ₄)	10	25	250
Total			500

Life cycle impact assessment (LCIA) and interpretation

Goal & scope definition Inventory analysis Impact assessment

WWTmod

Normalisation: "Is that much?"

 Expression of the impact potentials relative to a reference situation (person-equivalence, PE), e.g. normalisation reference (NR) for GWP: 8,700 kg CO2-eq/pers/year. The normalised impact potential (nIP):

nIP = IP/NR

Impact category	NR (CO ₂ -eq/pers/year)	IP/fu (kg CO ₂ -eq/fu)	nIP (mPE/fu)
Global warming (GWP)	8700	0,5	0,057

Valuation: "Is it important?"

Assignment of weights (weighting factors, WFs) to the different impact potentials (EDIP: political reduction targets), e.g. for global warming a targeted 10 years reduction of 20% => WF=1/(1-0.2) = 1.3. The weighted impact potential (wIP):

 $wIP = nIP^*WF$

Impact category	WF	nIP (mPE/fu)	wIP (mPET/fu)
Global warming (GWP)	1,3	0,057	0,074

Interpretation: "Which alternative is better and what determines it?"

• E.g. is ozonation worth it in an environmental sustainability context or should we avoid it?

Normalisation references (NRs) and weighting factors (WFs) for the LCA method EDIP97

Impact category	Unit for impact	Normalisation reference (NR, 1994) <i>1 PE</i>	Region	Weighting factor (WF, 2004) <i>1 PET</i>
Ecotoxicity water	Cubic meter water	352.000 m ³ /capita/year	EU-15	1,18
Ecotoxicity soil	Cubic meter soil	964.000 m ³ /capita/year	EU-15	1
Human toxicity water	Cubic meter water	52.200 m ³ /capita/year	EU-15	1,3
Human toxicity soil	Cubic meter soil	127 m ³ /capita/year	EU-15	1,23
Photochemical oxidation	Kg C ₂ H ₄ -eq	25 kg/capita/year	EU-15	1,33
Nutrient enrichment	Kg NO ₃ ⁻ -eq	119 kg/capita/year	EU-15	1,22
Acidification	Kg SO ₂ -eq	74 kg/capita/year	EU-15	1,27
Global warming	Kg CO ₂ -eq	8.700 kg/capita/year	Global	1,12

WWTmod

Stranddorf et al. 2005

LCA approach used in the EU project Neptune for environmental sustainability assessments of WWTTs

Modelling LCA on ozonation; Main plan

Ozonation (3.2gO3/m3WW)

GaBi4 process plan:Reference quantities The names of the basic processes are shown.

			Infrastructure	
Ozonation p X 🖶	5,5096E-009 pcs.	Electromechanical equipment; Ozonation	1	
		2,7548E-009 pcs.	Buildings and constructions; Ozonation	1
	4,1322E-009 pcs.	Pipes and valves; Ozonation	1	
	[Ancillian		
		0,02528 kg	Oxygen	1
			Energy	
		0,16 MJ	CH: electricity, at cogen 500kWe lean burn, allocation exergy	ķ.

WWTmod

Modelling LCA on ozonation; Sub-plan

(physical inventory)

Buildings and constructions; Ozonation

GaBi4 process plan:Reference quantities The names of the basic processes are shown.

LCA impact profiles

(weighting factor = 1 for all impact categories) (22 micropollutants)

Avoided: 10,7 µPET/m3 Induced: 10,1 µPET/m3

WWTmod

Environmental sustainability profile; ozonation + sand filtration

(22 micropollutants, only significant ones shown) (weighting factor = 1 for all impact categories)

Environmental sustainability profile; ozonation + sand filtration (Including removal of metals in sand filter)

(31 micropollutants (only significant ones shown); weighting factor = 1 for all impact categories)

Environmental sustainability profile; ozonation + sand filtration (including both metal and phosphorus removal)

(31 micropollutants + P (only significant ones shown); weighting factor = 1 for all impact categories)

