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Worst-case  Tolerance  Optimization of Antenna  Systems 

HANS  SCHJAER-JACOBSEN, MEMBER, IEEE 

Abstract-The application of recently  developed  algorithms to antenna 
systems  design is demonstrated by the  worst-case  tolerance  optimization of 
linear broadside arrays, using  both  spacings and excitation  coefficients as 
design  parameters.  The resulting  arrays are optimally  immunized  against 
deviations of the  design parameters  from  their  nominal  values. 

INTRODUCTION 

In  this  communication we shall  be  concerned  with  the 
optimiiation  of  antenna  systems  where  the  optimization pa- 
rameters  are  subject t o  tolerances. To the  author’s  knowl- 
edge no  such  attempts  have  been  made  within  the  antenna  area 
before.  In  the  electical  circuit design area,  however,  a  number 
of papers  may  be  found  dealing  with  tolerance  optimization 
and  related  problems,  a  few of them  being  listed, [ 11-[ 71.  Re- 
cently,  algorithms  developed  by  Madsen  and  Schjaer-Jacobsen 
were  described [ 81 and  the  programs  were  documented [ 91. 
In  the  present  work  these  algorithms  are  applied to  antenna 
systems  design. 

The classical minimax  antenna  synthesis  problem,  which  in 
the  present  context  shall  be  denoted  as  the zero  tolerance 
problem (ZTP)  may  be  formulated  as  follows [ 101.  The de- 
sired  antenna  pattern is a  function of the  field  coordinates $ 

PD $ =($I> $2,  $ 3 l T  (1) 

The n optimization  parameters  are  elements  in  the real vector 
x and  the  calculated  pattern is denoted 

P = P(x, $), x = ( X I ,  .**, X , ) T  ( 2 )  

Given a  set of nz field  coordinates ... , $,,a set of rn non- 
linear  functions is defined  by 

&(X) = wj(P(x9 9i) - PD ( $ j ) X  i = 1 3 ..- I m ,  (3) 

where wj are  weights.  The  ZTP  then  consists of minimizing 
with  respect  to x the  objective  function 

F(x) = max I fi(x) 1. (4) 
l < j < m  

A  solution to  the  ZTP  shall  be  denoted x“, such  that 

F* =F(x*) = min F(x) .  (5 1 
x E R ”  
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PROBLEM  FORMULATION  AND  METHOD OF  SOLUTION 

For easy  notation  let us introduce  the  integer  index  sets 

I = { i l i =  l;..:n}, ~ = b l j =  1:..,m} ( 6 )  

Let  there  be given a  vector of tolerances 

6 = .-, 6 ” ) T ,  6 i  > 0 ,  for i € 1 ,  (7) 

on  the  parameter  vector x. The tolerance  interval is defined as 

Qk,, = {y I ( x i  - ~ 6 i  G y i  < x i  + ~ 6 i ,  77 Z 0, i €I)}, (8) 

and  the worst-case  objective  function is defined  as 

FJX) = max  fi(y), Y = dvl, - , Y , Y  (9) 
jGJ,y‘EC2x,, 

Notice  that x is now  the  “center”  of  the  tolerance  interval 
(x contains  the  nominal  values  of  the  design  parameters)  and 
that 77 may  be  interpreted as a  scaling  factor  of  the  tolerance 
interval.  For given values  of x and q the  problem of determin- 
ing the worst-case  objective  function  (9)  shall  be  identified 
as the worst-case  problem (WCP). 

The  function @X) is a  measure of the  discrepancy  between 
the  desired  and  the  actual  pattern  at  the  jth  sample  point in 
space  for  a  set  of  nominal design parameters x. Therefore 
F, (x )  may  be  interpreted as the  largest  discrepancy  among 
all m samples  when  the  parameters  vary  within  the  tolerance 
interval. 

The fixed  tolerance  problem (FTP) is now  defined  as  that 
of minimizing  the  worst-case  objective  function  (9)  with re- 
spect  to x: i.e., determining x?* such  that 

F ,  * = F,(x,*) = min F,(x), 17 fixed. (10) 
x E R n  

In  other  words,  the  nominal  values of the  design  parameters 
are  determined in such  a  way  that  the  maximum of the  func- 
tions fi calculated  within  the  tolerance  interval is minimized. 

The  solution  of  the WCP involves  a  global  optimization 
problem  within  the  tolerance  interval.  In  the  algorithms [8] 
this  problem is  solved either  by  imposing  simplifying  assump- 
tions  on  the  functions f ;  or  by  using  interval  arithmetic.  The 
FTP is of ‘the  same  structurc as the  ZTP  and is  solved by  an 
algorithm  which is similar to   the one described  in [ 111.  For 
further  details  the  reader is referred  to [ 81. 

The  FTP was defined  with  a  fixed size of  the  tolerance 
interval. We now  intend  to  let  the size of  the  tolerance  interval 
vary,  in  fact,  to  make  it as large  as possible.  The variable 
tolerance  problem (VTP) is defined as that of determining 

q* = max 77 (1  1) 

subject  to  the  constraint 

F,* < c ,  (12) 

where  the given constant c has to   be larger  than F* for  obvious 
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reasons.  Essentially, we have  defined  the  VTP as a  one-dimen- 
sional  problem of maximizing  a single parameter,  namely q, 
subject to a  nonlinear  constraint  which is expressed  in  terms of 
the  solution  to  the  corresponding  FTP. 

The  algorithm  proposed in [8]  for  the  VTP is based on re- 
peated  application  of  the  previously  described  algorithm  for 
the  FTP.  The  problem is to  determine  the  intersection be- 
tween  the  function F,* and  the  constant c (see  (1 l )  and  (1  2)). 

. This is done  by  a Regula-Falsi method  where  each  iteration  in- 
volves  one  solution  of  the  FTP. We thus  simultaneously  deter- 
mine  the  maximum  value of q, called q*, and  the  center of 
the  tolerance  interval x = x*,=,* under  the  condition  that  the 
constraint  (1 2) is satisfied. 

The  algorithms  have  been  implemented  in  double  precision 
Fortran  IV  on  an IBM 370/165  computer  carrying  about  16 
decimal  digits [ 91 . The  user  must  program  the  functions f i  and 
their  partial  derivatives  and  submit  an  initial  value x. of  the 
vector X, an  initial  step  length no for  the  FTP  algorithm,  and  a 
stopping  criterion E .  In  the  case of a VTP the  constant c also 
has to be  specified.  The  parameter 11 is  initially given the  value 
of  unity. 

OPTIMIZATION OF LINEAR  BROADSIDE  ARRAYS 

The Normalized  Radiation  Pattern 

Consider  symmetrical  arrays  with N elements  (Fig. 1). 
The  normalized  radiation  pattern  may  be  written 

A 

' B  
f .  = - 

where 

iN 
B = a o  + 2  ai ,  

i= 1 

0, N even, 

1 ,  hr o d d ,  

iN = 

N - N even I 
2' 

N -  1 

2 
N o d d .  

Both  the real  excitation  coefficients ui and  the  elements posi- 
. tions xi may  be  parameters.  Therefore  the  partial  derivatives 

a f ,  _ -  - (-4nai sin B j  sin  (2nxi  sin Bj))/B (17) axi  
and/or 

are  needed. 

Fig. 1. Symmetrical broadside arrays with N elements. 
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Fig. 2. Contour plot of zero tolerance objective function for six- 
element array. Initial and optimum tolerance intervals. 

Uniformly  Spaced  Arrays 

In  this  section  the  element  position  vector is constant  and 
we consider  (X/2)-spaced  arrays [ 121.  For  such  arrays  the 
Dolph-Chebyshev  excitation  coefficients  may  be  calculated 
using the  formula given by  Stegen [ 131. 

For  example, if N = 6 and  the  desired  sidelobe is -20  dB, 
we  get  for  the  normalized  excitation ( a l ,   a 2 ,  = ( 1.0, 
0.7768,  0.5406)T.  Our  purpose is to vary the  excitation  coef- 
ficients  in  order to  optimize  the  array  in  the  worst-case  sense. 
The  zero  tolerance  function 

F(a2,  as)  =max I f j ( a ~ ,  a 3 )  I ,  a1 = 1,  (19) 
j €  J 

is shown in  Fig. 2: where  the  angles B j  are  essentially  chosen 
with 0.5' spacing,  but  the angles where  the  pattern  attains  its 
maxima  are  also  included [ l o ]  : 

(el,...,e,)T=(21.11,21.5,22.0,...31.43,...., 

56.30, .-, 90.0)T, m = 141.  (20) 

Let  there  be given the  VTP;  determine  the  excitation  co- 
efficients a2  and ug and  maximize  their  tolerances  such  that 
the  worst-case  sidelobe level  is -17 d B - c  = 0,14125.  Asini- 
tial  conditions  we  choose az  = 0.95, a3 = 0.65, 6 = (0.C1, 
O.O1)T, q .= 1, = 0.05, and E = After 15 iterations 
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Fig.  3. Radiation pattern for optimized  six-element  array  calculated 
at nominal  values (~1, q2, a3) = (1, 0.8066, 0.5368). Worst-case 
pattern indicated by dotted curves. 

we  get  the  solution a2* = 0.8066, a3* = 0.5368,  and q* = 
7.300.  The  initial  point  and  the  solution  together  with  their 
corresponding  tolerance  intervals  are  depicted  in  Fig. 2. In 
Fig.  3 the  radiation  pattern  calculated  at  the  nominal  value  of 
the  solution is shown as  well as  the  critical  part  of  the  worst-case 
pattern  for  the  excitation  (1.0,  0.8066 f 0.073,  0.5368 f 
0.073).  It is seen  from  either  figure  that  inside  the  optimum 
tolerance  interval  the  sidelobe level is below  -17  dB,  as  it 
should  be. 

Next  we  consider  a  14-element  array  and  the  zero  tolerance 
function 

F(a2,  a,) = max 1 fj(a2, .-, a7)  1, al = 1,  (21 1 
jEJ  

where  the  sample  angles  correspond  to  a -20-dB sidelobelevel: 

(el, -,e,)T = (8.355,8.5,9.0, --, 12.16, -, 19.74, -., 

28.68, .-., 38.81, .-., 50.85, ..., 67.68, ..-, 

90.0)T, rn = 171.  (22) 

Again we  solve  a  VTP  with c = 0.141  25,  and  the  initial  condi- 
t i o n s a r e a 2 = ~ ~ ~ = a 7 = 1 . 0 , ~ i = 0 . 0 1 , ~ = 1 , ~ = 0 . 0 5 , a n d  
e = After  14  iterations  the  solution (a2.* .-., a7*lT = 
(0.9632, 0.8859, 0.7973,  0.6651,  0.5549,  0.7675IT  and 
q* = 6.428 is found.  The  corresponding  radiation  pattern is 
shown  in  Fig. 4 together  with  the  critical  parts of the  worst- 
case  pattern,  the  maxima of which  are  -17.00  dB.  The  excita- 
tion  coefficients  found  may  be  compared  with  those  corre- 
sponding  to  the  zero  tolerance  -20-dB  Chebyshev  pattern 
[131. 

Nonuniforrnly Spaced  Arrays 

In this section  the  array  excitations  are  kept  constant, 

ai = 1,  (23) 

and  the  element  positions x i  are  varied. 
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00 30' 60° e 90' 

Fig. 4. Radiation pattern for optimized  14-element  array calculated at 
nominal  values ( a l ,  -, a7) = (1, 0.9632, 0.8859, 0.7973, 0.6651, 
0.5549, 0.7675). Worst-case pattern indicated by dotted curves. 
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Fig. 5 .  Contour plot of zero tolerance objective function for seven- 
element array. 

First, N = 7,  and  we  consider  the  zero  tolerance  objective 
function 

F(xl,x2)= max Ifj(xl,x2) I ,  x3 = 1.5,  (24) 
j S  J 

where  the  pattern is sampled at   the  angles 

fjj = 16.5 + j - 0.5, j = 1, ..., 147. (25) 

This  means  that  the  radiation  pattern is sampled  with  intervals 
of  0.5' and  that  the  total  length of the  array is a  fixed  con- 
stant.  From [ 101 the  zero  tolerance  solution is known  to   be 
x* = (0.432,  0.926)T, F* = 0.153 - -16.3  dB  (see Fig. 5 ) .  
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Now  the  VTP  is solved under  the  initial  conditions x. = 

A, = 0.05, and E = After  19  iterations  the  solution 
x*,.,* = (0.441,  0.931)T, q* = 13.0 is found  and  indicated  in 
Fig. 5. In  other  words, if we realize  a design where  the posi- 
tions of the  elements  are  (0.441 2 0.013, 0.931 k 0.013)T, 
then  we  know  for  sure  that  nowhere in the  radiation  pattern 
are  the  sidelobes  higher  than - 15 dB. 

Next, Ar is equal  to 15. In  this case we  have  the  function 

(0.5, I.O)T,& =(10-3, 10-3)T,q= 1 , ~ = 0 . 1 7 7 8 3 - - - 1 5  dB, 

F(x ,  I . . ‘ I  x 6 )  = max 1 f i ( x l  I “’, x 6 )  1, x 7  3.5 (26) 
j €  J 

where  the  pattern is sampled  at 

B j  = 8.5 + j  - 0.5, j = 1, -., 163  (27) 

Again the  solution  to  this  ZTP is known  f rom  [ lo] ,  x* = 
(0.374,  0.785,  1.167,  1.637,  2.1  17,  2.756)T, F* = 0.075 - 
-22.5 dB. 

We now  solve  the  VTP  under  the  following  conditions: 

loM3 10-3)T, c , =  0.1 - -20  dB, E = IO-*, and 
A,-, = 0.05. The  solution is reached to  the  required  accuracy 
in 23  iterations  and  the  tolerances  have  been  increased  from 

t o  q*hi = 0.012.  The  optimal  element  positions  are  now 
(0.370,  0.775,  1.154,  1.632,  2.124,  2.781IT  and  the  worst 
cases  are  equal  to  0.1 - -20  dB  within  four  significant  digits. 

DISCUSSION  AND  CONCLUSION 

’ x. = (0.5, 1.0, 1 . 5 , 2 . 0 , 2 . 5 ,   ~ . o ) T ,  6 = (10-3,10-3,10-3, 

By minimizing  the worst-case sidelobes  in  linear  broadside 
arrays  by  varying  both the excitation  and  the  element  posi- 
tions,  the  usefulness of the  algorithms  to  solve  antenna design 
problems  involving  tolerances  has  been  demonstrated.  Since 
the  analytical  partial  derivatives,  which  are  required  with  the 
present  version of the  algorithms,  are  difficult  to  obtain  when 
handling  more  complicated  antenna  systems,  we  consider  the 
alternative  possibility of applying  numerical  approximations  to 
the derivatives. 

A  further  development  of  the  method  would  be  to  allow 
for  structures  which  are  symmetrical  by  nominal  values  but 
with  nonsymmetrical  deviations.  This  would give a more  realis- 
tic  treatment of the  examples  in  this  communication. 

The  largest  worst-case  optimization  example  considered  had 
six  variables  and  171  functions  and  required  a  total  CPU  time 
of 9 s. Of this time,  approximately  one-third was spent  com- 
puting  the  functions fJ and  the  partial  derivatives.  Clearly,  by 
exploiting  an Q priori knowledge of the  critical  parts of the 
radiation  patterns,  the  number  of  sample  points  could  be  con- 
siderably  reduced,  thereby  also  reducing  the  required com- 
puter  time  and  storage. 
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Multiple  Beam  Feed  Networks Using an Even  Number of 
Beam Ports 

CHARLES F. WINTER 

Abmact-An aperture illumination  compatible with the use of an even 
number of adjacent beam ports in a multiple beam feed network is 
discussed. The antenna pattern  characteristics of near-in sidelobe  levels, 
half-power beamwidth,  aperture efficiency, and feed network loss are 
evaluated. Maximization of the  available  antenna  gain at adjacent beam 
crossover points is shown to be possible for either  sequential or si- 
multaneous operation of a receiving  system.  The results presented  indicate 
that lossy feed networks are quite  suitable for certain array antenna 
applications. 

I. INTRODUCTION 
A  previous  communication [ 1 ] presented  results  indicating 

that several antenna  pattern  characteristics  should  be  closely 
evaluated  in  the design of receiving antenna  systems  using 
multiple be’am feed  networks  which  operate  on  adjacent  beams 
either  sequentially  or  simultaneously.  The  aperture  illumina- 
tion  family  considered  therein was  of the  Taylor (Q = 0) 
distribution  type [ 21 with  the  usual  i-restriction  removed.  It 
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