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Investigating Solvability and Complexity of
Linear Active Networks by Means of Matroids

BJORN PETERSEN

Abstract—The solvability and complexity problems. of linear active
networks are approached from a purely combinatorial point of view, using
the concepts of matroid theory. Since the method is purely combinatorial,
we take into account the network topology alone. Under this assumption
necessary and sufficient conditions are given for the unique solvability of
linear active metworks. The complexity and the number of - dc-eigen-
frequencies are also given.

’I‘hemethodenablosyoutodecideildegeneraciaareduetothe

topology alone, or if they are caused by special relations-among network -

parameter values. If the network parameter values are taken into account,
the complexity and number of dc-eigenfrequencies given by the method,
are only upper and lower bounds, respectively.

The above conditions are fairly easily checked, and the complexity and
number of dc-eigenfrequencies are found, using polynomially bounded
algorithms (matroid partition and intersection algorithms).

1. INTRODUCTION

N THE THEORY of RLC-networks without con-

trolled sources, combinatorial methods have been
known for many years, which solve the following two
essential problems.

1) Decide if a certain network is solvable (i.e., if the
network equations have a unique solution).

2) In case of a solvable network find a set of independent

state variables.
The graph theoretical tool is known as the normal tree

method. This expression was originally used by Kuh and
Rohrer [9] although the method is identical to that of
Bryant [3]. The basic observation of this combinatorial
method is, that the topology alone (i.e., the network graph
and the type and position of the network elements) is
sufficient to answer 1) and 2). These answers are not
affected by any specific choice of the network parameter
values. ,

If RLC-networks contain controlled sources then, in
general, the topology and a specific choice of network
parameter values must be taken into consideration
answering 1) and 2). In most approaches this involves
calculating the determinants of large matrices, although
methods have been given to reduce the size of these
matrices [4]. To determine the complexity, the normal tree
method has been used to give a preliminary set of state
variables [5], and conditions have been given for the
increase or decrease of the complexity [6]. If a network is
not solvable (in the following the network is then said to
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Fig. 1. The network N, of Example (1.1) and Example (6.3).
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Fig. 2. The network N, of Example (1.2) and Example (6.4).

be singular) it is not possible however, by the above
methods, to decide if the singularity is due to the topology
or a specific choice of network parameter values.

In the following, examples are given, illustrating these
topics.

Example (1.1)
The network N, of Fig. 1 is singular due to the topology
alone (this is verified in Section VI). O

In most cases, however, singularity is also due to a
specific choice of network parameter values. This is
illustrated by the following example.

Example (1.2)
The network N, of Fig. 2 is solvable except for a= —1
and/or r,=0 and/or r,=0 (this is verified in Section VI).
O
In the same way the number of independent state
variables, i.e., the complexity, may be restricted exclu-
sively by the topology or by a specific choice of network
parameter values.

0098-4094 /79 /0500-0330$00.75 ©1979 IEEE
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It has been the subject of many papers to develop
methods making it possible to determine if singularity is
due to the topology alone, and to give a better upper
bound on the complexity, than the number of capacitors
and inductors. In [11] a generalized tree is introduced to
obtain sufficient conditions for capacitor voltages and
inductor currents to be state variables. In [7], [14], and [21]
the concept of two graphs is considered. The concept of
two graphs was originally introduced by Mayeda [12], but
[7], [14], and [21] cover a wider class of networks. In [7],
[14], and [21] the network element descriptions are given,
if not explicitly then essentially, by a hybrid immittance
matrix. To each nonzero element in the hybrid immittance
matrix a controlled and a controlling edge is introduced,
which may increase the number of edges considerably,
and two graphs, different from the network graph, is
defined. In [7] and [21] necessary and sufficient conditions
are given for solvability and complexity of linear active
networks. Furthermore, [7] gives necessary and sufficient
conditions for the existence of hybrid immittance descrip-

tions. In [7] the conditions are given a matroid interpreta- .

tion, which enables a unifying algorithmic approach, using
the algorithm which finds a base in the union of matroids.
In the present paper we will go one step further and use
matroids, not only in the interpretation of the conditions,
but in the mathematical model itself.

The constellation of electrical networks and matroids
has been considered to be a very useful combinatorial tool
in electrical network theory for some years [13]. The
author was introduced to the subject through a seminar
directed by Recski, Research Institute for Telecommuni-
cation, Budapest, during his visit to Denmark in the
autumn of 1975. The basic idea of Recski [18] was the
introduction of the union of matroids as a tool in the
theory of linear active networks. The models of [19],
however, treated current and voltage constrains sep-
arately, thus neglecting the algebraic constrains forced
upon currents and voltages by, e.g., resistors. These mod-
els, therefore, did not allow the formulation of necessary
and sufficient conditions for solvability and complexity.

The extension of the method of Recski [19], which is the
subject of this paper, was conceived as a part of the
author’s M.Sc. thesis [15] during the spring of 1976. The
basic idea of this model, is the introduction of two copies
of the edge set of the network graph. The main new
features is that the model introduce no additional elements,
treat network element descriptions given by any algebraic
matrix (not necessarily a hybrid immittance matrix; thus
the model treat, e.g., norators and nullators), maintain a
‘close relation between the network graph and the
matroids treating the graphic constrains and introduce (by
means of the union of matroids) the concept of a network
matroid which give compact conditions, easily checked by
polynomially bounded algorithms. Apart from necessary
and sufficient conditions for solvability, complexity, and
existence of hybrid immittance descriptions, we give nec-
essary and sufficient conditions for the existence of any

331

prescribed description. Furthermore, a modification pro-
posed by the author [16], of the algorithm of [8], give the
zero and nonzero entries of the corresponding matrices.

The paper contains more material than necessary for
the explanation of the basic ideas in the mathematical
model. It is the hope of the author, however, that this
relatively detailed presentation will be appreciated by
readers not familiar with matroid theory in advance.
These readers are referred to the following section con-
taining a brief introduction to matroid theory, and to an
excellent expository paper by Wilson [22].

II. A BRIEF INTRODUCTION TO MATROID THEORY

A matroid M is a pair of sets: M =(S,%). The set S is
called the ground set of the matroid, and B is a set of
subsets of the ground set, called bases, B;,B,," - -, B, with
the following two properties: (b1) no base is properly
contained in another base; (b2) if B; and B; are arbitrary
bases, and x; € B, then an element x; € B; exists, such that
(B\{x;})U{x;} is an element of B (i.e,, is a base).

The set of base complements, denoted B *, is the set of
bases of a matroid M*=(S,® *), called the dual matroid
of M.

Trees (i.e., spanning trees) of graphs and maximal sets
of independent columns of a matrix also have the proper-
ties (b1) and (b2). Thus matroid theory is the common
generalization of graph theory and linear algebra. Notice,
that graphs can be found for which the set of tree comple-
ments is not equal to the set of trees of another graph.
These are the nonplanar graphs for which no dual graphs
exist. In contrast to this the dual of a matroid always
exists.

To give an idea of the concept of matroids, the follow-
ing examples are given.

Example (2.1)

Let H denote the graph of Fig. 3. If §(H) denotes the
set of trees of H, then

J(H)={{a,c},{a,d},{a,e},{b,c},
{b,d},{b,e},{c.e},{d.e}}.
It can be shown that §(H) equals the set of bases of a
matroid M(H), with ground set S={a,b,c,d,e}, called
the circuit matroid (or polygon matroid) of H. The dual
matroid of M(H) is called the cutset matroid of H, and is
denoted M*(H). Every subset of a base is called an
independent set, e.g., {a}, {b}, {¢}, and {d} are indepen-
dent sets. Notice, that the empty set is an independent set.
The subsets of the ground set, which are not independent,
are said to be dependent, e.g., {a,b,c}, {b,c,d,e}, and
{c,d,e} are dependent sets of M(H). The minimal depen-
dent sets are called the circuits of the matroid, e.g., {a,b},
{b,c,e}, and {c,d} are circuits of M(H). The circuits of
the dual matroid is called the cocircuits (or cutsets) of the
matroid, e.g., {a,b,e}, {c,d,e}, and {a,b,c,d} are
cocircuits of M(H). The cardinality, i.e., the number of
elements, of a base is called the rank of the matroid (the
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Fig. 4. The dual graph H* of Example (2.1).

bases are equicardinal). The rank of M(H) in this exam-
ple equals two.

Let 3*(H) denote the set of bases of the dual matroid
of M(H). Then

J*(H)={{b,d,e},{b,c,e},{b,c,d},{a,d e},
{a,c,e},{a,c,d},{a,b,d},{a,b,c}}

and M*(H)=(S, T *(H)). The set of bases T*(H), equals
the set of trees of the graph H* shown in Fig. 4, i.e.,
T*(H)=T(H*). Thus M*(H)=(S,T*(H))=(S,T(H*))
= M(H?*), i.e., M(H*) is the circuit matroid of H* and the
cutset matroid of H. It may be noticed that H* is the dual
of the graph H. This is always the caseif H is planar. []

Example (2.2)
Let {a,b,c,d,e} denote the column set of the matrix 4
of

a b ¢ d e
-3 0 0 -2 0

4 9 0 0 —-6 Of (1)
6 0 0 —4 O

If $(A) denotes the set of maximal sets of independent
columns of 4, then &(4)={{a},{d}}. It can be shown
that & (4) equals the set of bases of a matroid M(A4) with
ground set S={a,b,c,d,e}, called the matric matroid of
A. In this example the rank of M(A) equals one. O

Example (2.3)

Two arbitrary matroids are said to be isomorphic, if it is
possible to establish a one-to-one correspondance between
the ground sets of the matroids, such that a subset, in one
of the matroids, is independent iff the corresponding
subset is independent in the other matroid.

Let G denote the graph of Fig. 5 and M(G) the circuit
matroid of G. Then M(A) of Example (2.2), is isomorphic
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Fig. 5. The graph G, the circuit matroid of which is isomorphic to the
matric matroid M(A4) of Example (2.2).

to M(G), since the following one-to-one correspondence
satisfies the condition: a1, <32, c3, ded, e<>5.

If for an arbitrary matroid M, a graph G exists such
that M is isomorphic to M(G), the matroid M is said to be
graphic. Thus the matroid M(A) of Example (2.2) is

graphic. |
Example (2.4)

The common ground set of M(H) (Example (2.1)) and
M(A) (Example (2.2)) is S={a,b,c,d,e}. If we take all
possible unions of elements from S (H) and &(4), and

denote by B (U) the set of unions with maximal cardinal-
ity, then,

B(U)={{a,b,c},{a,b,d},{a,b,e},
{a,c,d},{a,c,e},{a,d e},
{b,d,e},{b,d,e},{c,de}}.

It can be shown that B (U) equé.ls the set of bases of a

new matroid M(U), with ground set S, obtained from
M(H) and M(A), in the above way. The matroid M(U) is

called the union (sum) of M(H) and M(A), and is.denoted . .

MU)=(S,B(U)=M(H)\ M(4).
In this example M(U) can be shown not to be graphic.
O

III. DEPENDENCIES AMONG VOLTAGES AND

CURRENTS

The idea of using graphs in electrical network  theory
arises from the fact that the basic algebraic Kirchhoff
equations are formulated in graph theoretical terms.
When no controlled sources are present the dependencies
among the voltages are given by the circuits of the graph,
and the dependencies among the currents are given by the
cutsets of the graph. Since these dependencies are vital for
the solvability and the complexity, graphs as a combina-
torial tool have been used for many years. But matroids
could have been used as well [1], [2]. Instead of the
network graph, we could have used the circuit matroid of
the graph or the cutset matroid of the graph. (In fact the
reader may choose for himself, whether he wants to treat
these graphic dependencies as circuits of matroids or as
cocircuits (cutsets) of matroids). The main results of this
paper are entirely based on consideration of matroid
cocircuits, and their relation to certain matrices.

The all-important point in using matroids is that
matroid theory combines and generalizes graph theory
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and linear algebra. Matroids are, therefore, the perfect
tool for handling, and unifying, the graphic as well as the
nongraphic, that is, algebraic dependencies encountered
in linear active networks.

IV. THE GENERAL CASE AND G-SOLVABLE
NETWORKS

In order to determine if singularity is due to the
network topology exclusively, the network parameter val-
ues must be eliminated from the treatment. This can be
done by assuming all parameters to be general. Generality
means that if a specific choice of the network parameter
values would cause a network matrix under consideration
to become singular, then the parameter values are consid-
ered to be different from those specific choices. A more
precise definition of generality is given by the following
definition.

Definition (4.1)

An electrical network is g-solvable iff at least one set of
network parameter values exists for which the network is
solvable.

Since matrices play an important role in the following
sections, two more definitions concerning the generality
are given.

Definition (4.2)

A matrix, containing general parameters, is g-nonsingular
iff at least one set of parameter values exists for which the
matrix is nonsingular (i.e., the determinant is nonzero).

Definition (4.3)

A set of columns of a matrix, containing general parame-
ters, is g-linearly independent iff at least one set of parame-
ter values exists for which the columns are linearly indepen-
dent. .

Notice, that ordinary nonsingularity (solvability) implies
g-nonsingularity ( g-solvability).

V. THE MATROIDS OF THE MODEL

As mentioned in Section III all the dependencies will be
treated by the cocircuits of appropriate matroids.

In the following S denotes the edge set of the network
graph H. To each element s €S we associate two other
elements s; and s, corresponding to the current and the
voltage of the network element, respectively. The two
associated sets will be denoted S, and Sy, ie., S;={s|s €
S} and S, ={s,|s €S }. The same notation will be used if
subsets of S, S}, and S, are considered.

Let Q; denote a fundamental cutset matrix (over the
reals) of the directed graph H. From graph theory it is
well known [20], that a subset of columns of @ is linearly
independent iff the columns correspond to a circuit-free
subgraph of H. Now the graphic dependencies among the
currents due to KCL will be treated by the following
matroid G;.
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Definition (5.1)

G, is a matroid on the ground set S;. A subset of S, is
defined to be independent in G, iff the corresponding col-
umns of Q; are linearly independent.

It is implied by the above description that G is isomor-
phic to the circuit matroid M(H). Thus the cocircuits of G,
treat KCL.

Similarly, let B; denote a fundamental circuit matrix
(over the reals) of the directed graph H. Now a subset of
columns of B, is linearly independent iff the columns
correspond to a cutset-free subgraph of H [20]. The
graphic dependencies among the voltages due to KVL will
be treated by the following matroid Gy .

Definition (5.2)

Gy is a matroid on the ground set Sy. A subset of Sy is
defined to be independent in Gy, iff the corresponding col-
umns of B, are linearly independent.

It is implied by the above description that G, is isomor-
phic to the cutset matroid M*(H), the dual of M(H). Thus
the cocircuits of G, treat KVL.

Since the ground sets of G, and G, are disjoint, all
graphic dependencies among voltages and currents due to
KVL and KCL can be merged by the matroid operation:
direct sum. The direct sum of two arbitrary matroids M,
and M, on disjoint ground sets S, and S, is denoted
M @ M,. A set X is independent in M, @M, iff X NS, is
independent in M, and X N S, is independent in M,. All
the above graphic dependencies will be treated by the
following matroid G.

G is a matroid on the ground set S;U Sy: G= G,;D Gy.

In a similar way all nongraphic, that is, algebraic de-
pendencies among voltages and currents, such as control
equations, memoryless n-port descriptions and resistive
element equations may be treated by a matroid.

Let A denote the matrix containing all the above men-
tioned algebraic equations, such that A-(i},i5-"-,ig)
1,0,° " *,05) " =0. In the general case 4 contains in each
row, precisely one entry equal to 1 which is no network
parameter, and the remaining nonzero elements represent
different network parameters. Then the algebraic depend-
encies will be treated by. the following matroid 4.

Definition (5.3)

A is a matroid on the ground set S;S,. A subset of
S;U Sy is defined to be independent in A iff the correspond-
ing columns of A are g-linearly independent.

More specifically, a subset S’ of S;U S, is independent
in A iff the matrix formed by the corresponding columns
in A, contains at least one g-nonsingular maximal square
submatrix 4’ (see (2)).

0))
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Finally, all information about the dependencies (i.e.,
Kirchhoff constraints as well as element and n-port con-
straints) in the network can be merged into one single
matroid M using the matroid operation: union (or sum).
The union of two arbitrary matroids M, and M, on the
same ground set S, is denoted M,\/M,. By definition a
subset X C S, is independent in M\/M, iff X=X, U X,
where X, is independent in M, and X, is independent in
M,. Then,

M is a matroid on the ground set S;U S,: M=G\/A=(G,
D Gy)VvA.

M is called the network matroid.

To check if a certain set is independent in M, it is not
necessary to construct the whole set of bases of M. It is
the advantage of using matroids, that polynomially
bounded algorithms are available [8], [10], i.e., algorithms
that terminate in a¢ most a number of steps given by a
polynomial in the size of the problem (i.e., in this case the
number of elements of the ground set). These algorithms
[8], [10], check independence in M, knowing the indepen-
dent sets of G and A only. Normally, much storage space
in a computer is required to check independence in G and
A. For the type of problems considered here, however,
this can be simplified. The simplification in G, is due to
the fact, that the network graph H contains al/ informa-
tion about G. In A the simplification is a consequence of
Corollary 6.2 given in the following section. Thus the
conditions in the following theorems concerning matroids,
can fairly easily be checked. '

VI. NETWORKS WITHOUT CAPACITORS AND

INDUCTORS

Let N denote the coefficient matrix of the total system
of network equations (see (3)).

ilo
VHE ©
where
|<2|S ||
0 T
N= & |S] =[£}
o B | }
S|—g
A ILI

Let E! denote the set of independent voltage sources and
E] denote the corresponding subset of S, Similarly let 7'
denote the set of independent current sources and I}
denote the corresponding subset of S;. Now interchange
columns of N to obtain the matrix N " (see (4)), where the
columns of N, correspond to ESU I;.

N=[Nyi N ). @)
If g is the number of independent sources then N, consists
of 2|S|—g rows and columns and N, consists of 2|S|—
rows and g columns. Now the network is solvable iff the
determinant of N, differs from zero. If the network
parameters are assumed to be general, then it is the
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advantage of using matroids that the determinant need
not be calculated. The question of g-solvability is
answered by the following theorem.

Theorem (6.1)

Networks without capacitors and inductors are g-soluable
iff ELU 1} is a base of M*.

Proof: “=": Expand the determinant of N, by |S|—
columns of A4, using the Laplace expansion formula. Since
det Ny#0, at least one term in the expansion, e.g., det
G, det A, is different from zero (see (5)). The columns of
A, are linearly independent, and thus the subset of S,U S}
corresponding to these columns form a base of A. Simi-
larly the elements corresponding to the columns of G
form a base of G, and since the bases are disjoint, the
union is a base of M. Thus EJU I;' is a base of M*.

l<IS|>l g ] .
G, : ! S
N'= [__°_:T:4_; N, l*' (%)
PO Ifl—g
| € 2/S| >|

“<”: If EjU I} is a base of M* then the rank r,,=2|S|
—g. Since r, <rg+r, <|S|+(S|—g), ryy=rs+r, Thus
g-nonsingular column disjoint submatrices G, and A4,
exist (see (5)). The determinant of G, equals * 1. Since 4,
is g-nonsingular, at least one set of network parameter
values exists, such that A, is nonsingular. Choose the
network parameter values of 4, to equal such a set, and
choose arbitrarily a set of finite values for the remaining
network parameters. Now at least one term in the expan-
sion of the determinant of A, differs from zero. Thus a
permutation of the columns of A4, exists such that the
diagonal elements of the resulting matrix are nonzero.
Some of these distinguished nonzero elements represent
network parameters, others are the nonparameter element
1. Now imagine all distinguished nonzero elements to
equal a common variable x, while all other elements
remain unchanged. The determinant of N, thus is a poly-
nomial in x. Furthermore the determinant differs from the
zero polynomial, since the coefficient of x(U51=® equals
det(Gy), ie., = 1. Thus an infinite number of finite and
nonzero values x; exist, such that the determinant of N,
differs from zero. Choose one of these values. If a dis-
tinguished nonzero element represents a network parame-
ter, then that parameter assumes the value x, If the
distinguished nonzero element is the nonparameter ele-
ment 1, the values of the network parameters in that row
are divided by x, (i.e., the row is scaled by x;). Thus a set
of network parameter values has been found such that the
determinant of N, differs from zero, i.e., the network is
g-solvable. O

Notice that the proof of the necessity did not use the
generality at all. More specifically the solvability follows
from the fact that, under the conditions of Theorem (6.1)
all voltages and currents y ' corresponding to elements
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not in E} U I}, can be expressed as a unique linear combi-
nation of the voltages and currents x* corresponding to
elements of EpuU I}

y=—N;'NxT. (6)

The following corollary is an immediate consequence of

the proof of Theorem (6.1).
Corollary (6.2)

Let A, denote a maximal square submatrix of A. Then A,

is g-nonsingular iff a permutation of the columns of A, can

be found such that the resulting matrix has diagonal ele-

ments which are nonzero.
Similarly a subset of columns of 4 are g-linearly inde-
pendent iff the matrix formed by these columns contains
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S,US,

9,

Fig. 6. The area bounded bly heavy lines is the base (S;USp)\
(EfuL}lyof M.

The examples of Section I will now be considered more
closely. In the following examples the total system of

at least one maximal square submatrix, for which the network equations and the associated matroids will be

desired permutation of columns can be found.
Now consider a bipartite graph, the vertices of which
correspond to the rows and the columns of A, respec-

tively, and the edges of which correspond to the nonzero

elements of A. Then the algorithm which finds a maximal

matching in a bipartite graph, can be used to find a

maximal square submatrix with the desired properties,

and a permutation of columns of 4, Hence, the test for

independence in A is fairly simple.
To give an idea of the matroid M, notice that the
matroid M —(E;} U I}}) obtained from M by deleting E}U

L2 3% 4 5 6 7, 1,
1 0 00 1 0 ~1'
0 100 0 1 1,
0 0 10 0 0 1,
0 0 0 1 -1 0 1,
-1
Ne= 0 Lo
R
0 0 00 0 0 0!
0 -, 00 0 0 0, g
0 0 0 0 —-r, 0 01 o
| -8 0 00 0 0 110

I}, in case of regularity is the free matroid, i.e., M —(E}U
1)) contains no circuits.

Furthermore, the fundamental circuits of M with re-
spect to the base (S;U Sy)\(E,UI}) and defined by the
elements of the base complement E;}U I, are related to
the nonzero elements of Ny 'N,, in the following way. The
element in the ith row and jth column of N; !N, is
nonzero, iff the element corresponding to y, is an element
of the fundamental circuit of M with respect to the base
(S;US))MEpU L)) and defined by the element of the
base complement Ej U I, corresponding to x; (see Fig. 6).
The elements of these fundamental circuits of M are
easily obtained using the algorithm which checks the
condition of Theorem (6.1).

given. If the matroids are graphic, graphs will be given,
such that the matroids are the circuit matroids of the
graphs. It may be noticed that, if the graph H, corre-
sponding to G,, is planar, then the graph corresponding to
G, is the dual of H.

Example (6.3)

The network N, of Example (1.1), is shown in Fig. 1.
The total system of network equations is given in (7). The
submatrix N, is formed by the columns corresponding to

1, 2, 4, 5,6, 7,3,,4,,5,,6, 7,
2') 30 40 50 60 70
i
0 _
]
1) 0
0 0 1 1.0 0 ]
-1 0 0 0 1 0]_
= ) 7
-1 -1 -1 0 0 1 0 B ™
0 -a 1 0 0 0 A
0 0 01 0 of L |
0 0 0 0 1 0
0 0 0 0 0 0

The associated matroids are shown in Fig. 7 (in this case
the matroids G;, Gy, and A4 are graphic).

According to Theorem (6.1), the matrix NV, is g-nonsin-
gular iff Ejul'={1,2,3;} is a base of M*, ie., the
complementary set B={3,, 4,, 5., 6., 75, 1, 2;, 4,, 5;, 6,,
7.} is a base of M. A reformulation of this condition is,
that disjoint bases of G,, G, and A exist, such that the
union of these bases equals the complementary set B.

To find out whether such disjoint bases exist, {1,,2,,3;}
is deleted from the matroids (deleted elements are denoted
by crossed edges in Fig. 7). Since {6,,2,} is a cocircuit
(cutset) in Gy, {6,} must be an element of B (the elements
forced into B, are denoted by heavy edges in Fig. 7). Now,
{6,,5;} is a cocircuit (cutset) of 4, and {5;,} must be an
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A

Al % % 4 3.‘('( the remaining elements
OO@@%; } of S,UuS, are Lloops

Fig. 7. The matroids G;, Gy, and A associated with the network N, of
Example (6.3) (Fig. 1).

A

remaining elements

SUS,  are (oops

Sy Sy dv o N the
TN % :
OO |

= = 3, 2y

Fig. 8. The matroids G, Gy, and A associated with the ‘network N, of
xample (6.4) (Fig. 2).

element of B. When {3,,5,} is deleted from G, {4,,1,,7,}
must be contained in B. So the disjoint bases, mentioned
in the condition, do not exist, since {1,,7;} is a cocircuit
(cutset) of A. Thus, according to Theorem (6.1), the de-
terminant of NV, equals zero for any choice of the network
parameter values. . O

Example (6.4)

The network N,, of Example (1.2), is shown in Fig. 2.
The associated matroids are given in Fig. 8 (in this case
G;, Gy, and A are graphic).

It is easily checked that {1,,2,,3;} is a base of M*, i.e,,
{1, 2, 4, 5;, 6, 3., 4,5 5, 6,} is a base of M (the heavy
edges of Fig. 8). Thus N, is g-solvable.

If specific choices of network parameter values are
made, N, may become singular. To find these specific
choices, the total system of network equations is consid-
ered (8).

(1 0 o 1 !

o 1 0o-1 1 1|

0o 0 1 -1 1 0,

______________ P71
N= 0 : 0

______________ L 9

0 0 0 0 0 0r g

0 -r, 0 0 0 0! g

0 0 0 0 —r, 0] 0

The submatrix N, is formed by the columns correspond-
ing to0 iy, iy, iy, is, g, D3, Uy Vs, Vg. The determinant of N,
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S

Fig. 9. The area bounded by heavy lines is the tree T of H.

equals r,r,(1+ a). Thus N, is singular iff r,=0, r,=0, or

a=—1. O
Theorem (6.1) has the following interesting corollary.

Corollary (6.5)

Networks with independent and controlled sources and
resistors only, containing no circuits formed by voltage
sources alone and no cutsets formed by current sources
alone, are g-solvable.

Proof: Let E? and I? denote the set of controlled
voltage- and current sources, respectively. If H denotes
the network graph, then E'U E? contains no circuits of
H. Similarly, 7'y I? contains no cutset of H. Now, it is
well known ([20], Theorem 6—10) that a tree T can be
found such that E'U E2C T and I'U1%C T*, where T*
denotes the tree complement. Since G, is isomorphic to
M(H) and G, is isomorphic to M*(H), (T), and (T*),
are bases of G, and G, respectively, (see Fig. 9). Thus
(T),U(T*), is a base of G. '

Let R’ and R” denote the resistors contained in T and
T *, respectively. Choose from 4 the elements D= E2U
(RN U(R" U I},

The row of 4, corresponding to an element of E2U R U
I?, contains a nonzero element in the column of A,
corresponding to that specific element of D. Since the
cardinality of D equals the number of rows of A, and
since |D| nonzero elements, in different rows and col-

20 30 40 50 60
.
0 _ -
___________ o, 0
1 11 00
-1 -1 0 1 0(=|, B
-1 0 0 0 1 4 ®)
0 —a 1 0 0 A
o 0 0 1 ol * .
0 0 0 0 1

umns, have been found, D is a base of 4 (according to
Corollary (6.2)). Since D and T,U(T*), are disjoint,
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DU T,U(T*), is a base of M, and thus E} U I, is a base
of M*. Hence, according to Theorem (6.1), the network is
g-solvable. O

Sufficient conditions, very much similar to those of
Corollary (6.5), have been given by Ozawa [14, theorem
2].

The conditions of Corollary (6.5) are sufficient only.
Example (1.2) gives a counterexample to the necessity.
However, necessary conditions for solvability, have been
given by Purslow [17]. The conditions of Purslow allow
circuits formed by voltage sources, if the current in at

lanct nana nf tha alamentc of
Vilw wvi LALW Wi ILEWLAL

tha sirenit is a controlline
AwaoL D L LilW WiLlWUWIL 10 @4 W Aé

quantity somewhere in the network. Similarly cutsets
formed by current sources are allowed, if the voltage in at
least one of the elements of the cutset is a controlling
quantity. The conditions of Purslow are necessary only,
which is shown in Example (1.1).

Sufficient conditions, similar to those of Corollary (6.5)
can be given, if arbitrary memoryless n-ports are allowed
in the network.

VIL

From the networks treated in Section VI, the memory-
less n-ports naturally arise, in the following way. Point out
n arbitrary pairs of vertices, which will be considered as
the ports of the n-port. Then insert an edge for each port.

N-PORT DESCRIPTIONS

i 2i 31 41 5i 61 10
r i
1 0 0 0 -1 1,
01 0 -1 1 0,
0 0 1 0 —-1 1
"0
0 =1
I —1
N=l-—"""Ffr"""""="=--=- - ==
| =R, 0
0 !
]
] 0 ~Rei
ro!
0o ' !
o 0
p 1y
- [

These edges are called port-edges, and the set of port
edges is denoted by P. If the network contains indepen-
dent sources, then for each source, the pair of vertices
incident to the source are considered to be one of the
n-ports.

Let x denote a n-tuple containing port voltages and/or
port currents, and y denote another n-tuple containing the
remaining port voltages and port currents. Then y= Nx is
called a matrix description of the n-port.

Example (7.1)

A 2-port N, is given in Fig. 10.
The norator-nullator equivalent (considered here as a
2-port within N;) is used for the ideal operational ampli-
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Fig. ii. The equivaient neiwork N; of Exampie (7.1).

fier, and the equivalent network is shown in Fig. 11. The
description of the norator-nullator pair is given in (9).

[2]-[o o][%] ®

The total systemr of the network equations is given in (10).

20 30 40 50 60
0
__________ r 1
-1 0 1 0 O o 0
1 1 0 1 0
01 0 0 1
— ans - — .I. _____ = 0 Bf (10)
| 1 0 —_
0 I
l 0 1 4
il __ I
[ | | -
i |
| I 0
1 0
[ ! -
A possible description of the 2-port is given in (11).
i 0 0l v
=| R . 11
0, ?: +1 0| i, (11)
O

The question of interest, is to find the types of matrix
descriptions, if any at all. This question is answered by the
following theorem.

Theorem (7.2)

There exists at least one description iff there exist subsets
P, P? of P such that |P'|+|P%=|P| and PLUP? is a
base of M*.
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Si 6

Fig. 12. The matroids G;, Gy, and A associated with the 2-port N, of
Example (1.1) (Fig. 10 or Fig. 11).

If a description exists, the elements of Py U P} correspond
to the elements of x.

The theorem can easily be proved, following the ideas
in the proof of Theorem (6.1). The only thing which has to
be noticed is that P! and P? need not be disjoint. If they
are disjoint, P U P? is said to be I-V-disjoint, and y = Nx
is called a hybrid immittance description (see, e.g., the
description (11)).

The well-known open circuit impedance description
and the short circuit admittance description, are both
hybrid immittance descriptions. Theorem (7.2) is
illustrated by the following example.

Example (7.3)

The 2-port of this example is the 2-port of Example
(7.1), shown in Fig. 10. The matroids of the 2-port is
shown in Fig. 12. It is easily verified that {1,,2;} and
{2,,2,} are bases of M* ((S;U S))\{1,,2;} is a base of M,
which is illustrated by the heavy edges of Fig. 12). The set
{1,,2;} corresponds to the description (11) and the set
{2,,2;} corresponds to the description (12). Since a 2-port
is considered, the description (12) is called a chain descrip-
tion.

R
U1 l=| R+ R - 2 (12)
i o oil-i

The zero entries of the descriptions (11) and (12) could
have been predicted, since none of the sets (1,1},
{1,,2,}, {1,2;}, and {1,,2,} are bases of M*. If, for
example, the element of the second row and the first
column in the description (12) had been nonzero, a de-
scription with x=(i},i,) would have existed. Thus {1,2;}
would have been a base of M*, which however, is not the
case.

Furthermore, the element in the ith row and jth column
of a description is nonzero (in the general case) iff the
element corresponding to y; is an element of the funda-
mental circuit of M with respect to the base (S, U S,)\(P;
U P?) and defined by the element of the base complement
P}U P} corresponding to x; (see Fig. 2). Theorem (7.2)
has the following corollary.

Corollary (7.4)

There exists at least one hybrid immittance description iff
there exist subsets P',P? of P such that P'NP*=,
P'UP?=P, and P} U P} is a base of M*.
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If a description exists, the elements of P} U P} correspond
to the elements of x. .

Corollary (7.4) answers the following interesting ques-
tions. Is it possible to attach independent sources to the
ports, such that the obtained network is g-solvable? If it is
possible, how can it be done? Thus in Example (7.1) the
only possible set of independent sources is a voltage
source at port 1 and a current source at port 2, if the
obtained network is to be g-solvable.

NETWORKS CONTAINING CAPACITORS AND
INDUCTORS

The results and ideas of Section VI, now enable us to
solve the interesting problem concerning the complexity
of the network.

The following theorem gives the exact number in the
general case, in the following denoted g-complexity, and
an upper bound if specific choices of network parameter
values are taken into consideration.

In the following L and C denote the set of inductors
and capacitors, respectively. Subsets of L and C are
denoted L° and C°, respectively.

VIIIL

Theorem (8.1)

If |C2U LY is maximum with respect to E},U CoU(L\
L%, u(C\C%,u LU I} being a base of M* then |CoU
L)\ is the g-complexity of the network, and the capacitor
voltages and inductor currents corresponding to the elements
of CJU L) form a set of independent state variables.

Proof: First the statement on the complexity is proved.
Let the number of reactive elements (i.e., inductors and
capacitors) be k, and put the total system of network -
equations in the form of (13):

NllTil=ar[i]=
[Htal-rli]-o
such that Z represents the Laplace transformed element
descriptions of the inductors and capacitors (see (14))

where L and C represent diagonal matrices and U repre-
sents a unit matrix).

(13)

| € 2| S > |
(C\COLY €S (LA\LYy
p—— p— rt— p——
= _—_U_E_o_ E QE S_C_S_ _0__.: 0_] 7(_ (14)
0:sL: 0 0: -U: 0| |
S N [ N —
CI LI LV

Now interchange columns of T to obtain the matrix T’
(see (15)), where the columns of T, correspond to E}U I}
The columns of T, form a (2|S|—g)X(2|S|—g) matrix.
The determinant of T, is a polynomial in s, the degree of
which is the complexity of the network. -

N, |
LT

z, | (15)

The determinant of 7, is now expanded using the Laplace
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expansion formula. The determinant of the matrices Z;
formed by k columns of Z, (see (16)) is different from
zero iff the corresponding subset of S;U S, is I-V dis-
joint, i.e., of the form CJU(L\L%, U(C\CYUL)CC,
UL,UC,UL,. The determinant of the matrices Ng

formed by 2|S|—(k+ g) columns of IV, (see (16)) is diffe-
rent from zero iff the columns correspond to a base of M.
2|S|-(k+g)
| -
. Em : (16)
o= SR
i i
|z | k
' 4

The “only if” is due to the generality (Theorem (6.1)).
Thus if we assume that the set E; U Cyu(L\Lo)Vu(C\
C%,ULPUI! is a base of M* then at least one term in
the coefficient of sI’Y 4! is different from zero, and since
other nonzero terms will contain at least one capacitive or
inductive element value corresponding to an element not
in C2U LY, the coefficient is, in the general case, different
from zero. If, at the same time, |CQU L] is maximum
among the subsets of C, UL, satisfying the above
assumption, then |CPU L{| equals the degree of the poly-
nomial in s. Hence, |C2U LJ| is the g-complexity of the
network.

Next, the statement on the state variables is proved. For
each base X of M*, the voltages and currents correspond-
ing to elements not in X, can be expressed as a linear
combination of the voltages and currents corresponding
to elements of X. Let us consider the elements of CPU(L\
L%,u(C\C%,ULY, only. The corresponding voltages
and currents can be expressed as shown in (17).

Yo

N

where x, is a vector formed by the voltages and currents
corresponding to the elements of CoU L}, denoted x,~
Cou Ly

x~(C\C); U(L\LY)y  yo~CPULy

n~(C\CYy U(L\LY),  w~Epul).

Since |CQU L}| is maximum, every symmetric minor of F,,
is singular. Otherwise, the vector x, could have been
expanded by elements of y,, contradicting the maximality
of |C2u LY. (This observation is due to Recski). In partic-
ular F,, is singular. Thus it is possible by row operations
in F,;, F,,, and H,, to make the last row of F,, consist of
zeros only. So the last coordinate y,, of y,, can be ex-
pressed as a linear combination of the coordinates of x,
and u, in the following denoted by y,,= L,(xqu). Now
the derivative of y,, is proportional to x,,, and at the
same time it can be expressed as a linear combination of
the elements of x,, x;,, w, and ua: kx,,= L,(X,u)=
Ly(xg, x,,u,u). The last equality is due to the fact that the
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derivative of each coordinate of x, is proportional to the
same coordinate of y,. Since the network parameters are
general x,, can be expressed as a linearcombination of the
coordinates of x,, x|, #, and 4, where (x},x,,)=x,: x;,=
L,(xg,X],u,%). A new system of equations is then obtained
(see the following):

H, |

----- a.

i

F | F{z
Every symmetric minor of Fj, is still singular and the

nrocess can he reneated Fna‘lv the svstem of (19) is

PAUMASS Sail U avpvaivu.e 2 Syoswans Vi (17 s

x

[Hfo
+

obtained.
)]
Yo=Fiixo+ E H u. (19)
Jj=0
Since y,= Dx,, where D is a diagonal matrix, the state

equations are obtained (see the following):

(J)
D= p,=F{\x,+ EOH
=

(20)
or

D 'Fixy+ D! 2 H(n
Ji=0

Xo=

The set of algebraic equations, obtained during the pro-
cess, is a part of the system of equations expressing all
remaining voltages and currents as linear combinations of

the coordinates of x, and (ljl). ;]

It appears from the proof of Theorem (8.1) that max|Cy
ULy is an upper bound on the complexity, ie., o <o, =
max |C2U L?|. The upper bound is reached if the topol-
ogy alone is taken into consideration. Specific choices of
the network parameter values may decrease the complex-
ity.

If |C2U L] is minimum, instead of maximum, then a
lower bound on the number of dc-eigenfrequencies &8 is
found, i.e., § >8,=min |CPU L{|. Furthermore, the quali-
tative appearance of the determinant, considered as a
polynomial in s, can in the general case be found.

The proof of Theorem (8.1) has the following im-
mediate corollary.

Corollary (8.2)

RLC networks containing controlled sources are g-solv-
able iff subsets C°C C and L°C L exist such that E} U C2
UL\LY, U(C\CY, U LPU I} is a base of M*.

A corollary similar to Corollary (6.5) can be given, if
capacitors and inductors are allowed in the network.

Corollary (8.3)

RLC networks containing controlled sources are g-solv-
able if the set E'U E? does not contain any circuit, and the
set I'U I? does not contain any cutset of the network graph.

The theorems concerning the complexity are now
illustrated by some examples.
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Fig. 13. The network N, of Example (8.4).
Gt
A:

Fig. 14. The matroids %,, Gy, and A associated with the network Ny of

xample (8.4) (Fig. 13).

Example (8.4)

The network N, is shown in Fig. 13. The total system of
network equations is shown in (21).

1 0 0 O 1 0o -1

0 1 00 O 1 1:

0 01 0 0 0 1,

0O 0 01 -1 0 1,

k.. G S e

|

0 |

N |

{7]= 0 0 0 O 0 0 o

0 -, 00 0 0 0

0 0 0 0 —r, 0O O

—_ |
cBo 0 00 00 1

-1 0 0 | !

0o -1 0 .0 !

0 0 sL, | :

|

The associated matroids are given in Fig. 14 (in this case
graphic). It can be verified that {1,,2,3,;} and {1,,2,,3,}
are bases of M* and that {1,,3,} and {1,,2,} are maxi-
mum sets. ((S;U Sy)\{1,,2;,3;} is a base of M, which is
illustrated by the heavy edges of Fig. 14). Thus the g-com-
plexity is two. If specific choices of network parameters
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8, s [hu
N,

Fig. 16. The matroids G;, Gy, and 4 associated with the network N o1
Fxample (8.5) (Fig. 15). i

are taken into account the complexity may decrease. For
instance, if C,/ Ly=r,r,/a the complexity equals zero. []

v 20 30 40 506070
0

________________ [ i
-1 0 0 110 0 oo

0 -1t 0 0 0 1 0] |—]

-1 -1 -1

1 1 001_03,

0 0 -« 100 0] |—— @n

0 0 o0 01 00 P

0 0 o0 001 0

0 0 0 ©0 000 7

_______________ N J
sc, 0 0 |

0 sC, O 10

0 0 -1 |

Example (8.5)

The network N is shown in Fig. 15. The matroids of
the network is shown in Fig. 16.

It can easily be verified that {1,,2;} and {1,,2,} are
bases of M* ((S;U Sy)\{1,,2;} is a base of M, which is
illustrated by the heavy edges of Fig. 16). Furthermore
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Fig. 18. The matroids G;, Gy, and A4 associated with the network N of
Example (8.6) (Fig. 17).

both are maximum and minimum sets. Thus either the
complexity and the number of dc-eigenfrequencies both
equal one, or the network is singular. Now the network
determinant is found to equal —s(C,R;RsRs+ L R)).
Thus if R;>0(j=3,4,5,6) the network is solvable. O

Example (8.6)

The network N is shown in Fig. 17. The matroids of
the network is shown in Fig. 18.

It is easily verified that {1,,2;} and {1,,2,} are bases of
M*, and (1,} or {2,} are maximum sets ((S;US))\
{1,,2,} is a base of M, which is illustrated by the heavy
edges of Fig. 18). Thus the g-complexity is one. Further-
more {1,} or {2,} are minimum sets as well. Thus either
the complexity and the number- of dc-eigenfrequencies
both equal one, or the network is singular. The latter
occurs if Kk, = C,/C, (in this case, the currents i, and i,
are not unique.) O

IX. CoNCLUSION

In the general case, necessary and sufficient conditions
for unique solvability of linear active networks have been
given. Pure graph theoretical sufficient conditions have
also been found. Necessary and sufficient conditions for
the existence of n-port descriptions were given. A set of
independent state variables has been found, and the com-
plexity as well as the number of dc-eigenfrequencies were
given.

If the network parameter values are taken into consid-
eration, the necessary and sufficient conditions of the
general case, are necessary only. If these conditions are

met, then degeneracies are caused by special relations
among the network parameter values. Numerical calcula-
tions are then wunavoidable. The combinatorial tool is
matroids. The conditions of the theorems can be checked
using polynomially bounded algorithms. A detailed de-
scription of the algorithms will be given in a forthcoming
paper. The algorithms have been implemented in Fortran
IV on an IBM 370/165 computer (e.g., the execution time
of Example (6.3) is 0.007 s, and the execution time of
Example (8.5) is 0.020 s).
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Realization Theory of Discrete-Time Nonlinear
Systems: Part I — The Bounded Case

EDUARDO D. SONTAG

Abstract—A state-space realization theory is presented for a wide class
of discrete time input/output behaviors. Although in many ways restricted,
this class does include as particular cases those treated in the literature
(linear, multilinear, internally bilinear, homogeneous), as well as certain
nonanalytic nonlinearities. The theory is conceptually simple, and matrix-
theoretic algorithms are straightforward. Finite-realizability of these be-
haviors by state-affine systems is shown to be equivalent both to the
existence of high-order input/output equations and to realizability by
more general types of systems,

INTRODUCTION

HIS WORK deals with some aspects of realization
theory of deterministic nonlinear discrete-time sys-
tems. The realization theory of /inear systems is by now a
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successful part of system theory, which has resulted in a
deep understanding of behavior and has permitted the
application of state-space methods of analysis and synthe-
sis. It may be reasonable to expect, then, that a corre-
sponding theory will eventually derive analogous benefits
for nonlinear systems.

For the most part, this paper presents a “linearized”
realization theory via systems which are linear in state
variables -but arbitrarily nonlinear in inputs, state-affine
systems. While such systems are highly restrictive vis a vis
general nonlinear models, they do include those for which
a detailed realization theory has been developed, in partic-
ular, linear, internally bilinear, and multilinear systems.
The importance of S-A representations in the analysis of
certain nuclear reactors, heat-transfer processes, and
population models, among others, has been made explicit
by various authors (see, for instance, [34]); other applica-
tions being currently explored are in the areas of image
processing and in stochastic filtering. Moreover, in some
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