
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

On determining if a specular point exists

Rusch, W; Sørensen, O

Published in:
I E E E Transactions on Antennas and Propagation

Link to article, DOI:
10.1109/TAP.1979.1142021

Publication date:
1979

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rusch, W., & Sørensen, O. (1979). On determining if a specular point exists. I E E E Transactions on Antennas
and Propagation, 27(1), 99-101. DOI: 10.1109/TAP.1979.1142021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13731977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TAP.1979.1142021
http://orbit.dtu.dk/en/publications/on-determining-if-a-specular-point-exists(10ae9574-cf84-4db4-8d26-986919943b1f).html


COMMUNICATIONS 99 

- P EBC 

(A) ERROR RATE (B) TOTAL CROSS 
SECTION 

Fig. 3. Comparison between the proposed EBC and Waterman’s 
EBC for an origin-shifted circular cylinder (koa = 2.0, h = 0.6, 
K = 3.0). . 

trophe in an earlier  stage for  the cases where the degree of 
convergence of the series solution is not so good. I t  is to be 
mentioned  that  the proposed method does not always give re- 
sults  superior to Waterman’s and on  the  contrary in  some cases 
of near-circular cross section  shape Waterman’s method hap- 
pens to give better results. As for  the  computing  time,  the  pro- 
posed method consumes  more time  than Waterman’s method, 
but  not so much as expected from  a simple consideration of 
the  number of multiplications  and divisions. For example, 
it is only increased 30 percent at  most  in the case of N = 16 
of Fig. 2. (The  total  computing  time  for this  example is about 
23 s on  the NEAC 2200-700  computer.) 

The EBC method is simpler and more useful than  the 
method of solving directly the integral equations [ 6 ,  eqs. (43)- 
(46)  or  (53)-(56) J when the  boundary shape of the dielectric 
cylinder is smooth and convex. For  the dielectric  cylinder of 
relatively complex boundary shape, however, the  limitation of 
applicability of the EBC method seems to exist. 
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On Determining if a Specular Point Exists 

W. v. T. RUSCH, FELLOW, IEEE AND 0. SQRENSON 

Abszruct-A technique is presented  whereby the existence  of  a 
specular point on a  convex surface of revolution  can be  determined 
without actually fiiding it. Only the evaluation of two simple algebraic 
expressions is involved. Should  a  specular point  be  found  not to exist, a 
search procedure has been thereby eliminated. 

I. INTRODUCTION 

All geometrical theories  of  diffraction require superposition 
of a classical specular or geometrical-optics  ray to determine 
the  total field. Geometrical laws relate the reflected  and inci- 
dent  fields at a  specular point in  a  straightforward manner [ I ] ,  
yet  the  location of a  specular point  on a  complex surface can 
be a difficult,  or at  least tedious,  procedure. Depending on  the 
reflector geometry,  and  the  location of the  source and field 
points,  one-  or two-dimensional iteration schemes can be  used. 
These techniques waste time and yield ambiguous  results,  how- 
ever, if the source/field point  orientation is such that a specu- 
lar point  does  not exist. 

A procedure based on Fermat’s principle will be described 
whereby the existence of a  specular point can be determined 
for a  general  convex  surface of revolution.  The following two 
cases are considered. 

1) Source  and field point  are coplanar with the symmetry 

2)  Source  and field point  location is unrestricted. 
axis. 

11. ANALYTIC TREATMENT 

Let 0 be the  source  point, P be the  observation  point, R be 
a point  on  the surface,  be the vector  from 0 to R, and RP 
be the vector from R to P (Fig.  1). Let Ro be  a  specular point 
on the surface.  Define 

For a  convex monotonic surface d will be a global minimum at 
Ro so that,  at  most,  one specular point may  exist on the sur- 
face. The gradient of d with  respect to the  coordinates of R is 
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Fig. 1. Geometry of general problem. 

and it is easily shown  that 

v ~ d  (OX X R P )  = 0 .  (3) 

Thus VRd lies in the plane  containing 0, R ,  and P .  Next, de- 
fine 

- 
U VRd - (VRd - A); (4) 

where A is the  outward  normal at R .  Thus V is the projection 
of V R d  on a  plane  tangent to  the surface at R ,  and  Valso lies 
in  the plane containing 0, R ,  and P .  For R in the vicinity of 
R o ,  Vwill  be  directed away  from R ,  since d is a  minimum  at 
Ro.  

A.  Axially  Symmetric  Convex  Reflector  with  Source and 
Observation  Point in the  Same  Aximuthal Plane 

The planar cross section  containing 0, P ,  and  the reflector 
axis is shown  in Fig. 2. The specular point R ,  will also lie in 
this plane.  Consequently, this special case reduces to  a 
two-dimensional  problem. 

As shown  in the previous section,  for al l  points R in the 
planar cross section, < also lies in  this plane  and  can only be 
zero at  a  specular point which may or may not  exist.  Further- 
more, if a  specular point exists, as shown  in the figure, ; will 
point to  the right for all R on  the right side of R o  and to the 
left  for all R on the left of R , .  Thus, at both edges of  the sur- 
face in the cross section (E,  and E 2 ) ,  j will point O W Q ~  from 
the surface. However, if no specular point exists, u cannot re- 
verse direction  (because it will be necessary to become  zero  in 
the process). Consequently, F will point in the same direction 
along the  entire surface  and will point toward the surface at 
one edge and away from  it  at  the  other. 

Thus, for  this two-dimensional special case, in order to de- 
termine if a  specular point exists, Fneed only be evaluated  at 
the two edges. The specular point will exist if and only if 5 
points away from  the surface at  both edges. If a  specular point 
is found to exist, many different  algorithms  are available to 
locate it, one of which may be based on  the principles of this 
communication [ 21 . 
B. Axially  Symmetric  Convex  Reflector  with  Source and 
Observation  Point  Not  Restricted  to  the  Same 
Azimuthal Plane 

The  geometry of this configuration is shown in Fig. 1. 
Define the surface by 

P 2  = f(Z) (5) 

@(P, z )  = P2 -f(z) = 0 ( 6 )  

Fig. 2. Geomew of planar problem. 

In this case 0 and P do  not necessarily lie in  the same azi- 
muthal plane. However, according to  Fermat’s  Principle, at  the 
specular point, 0, R ,  P, and V R @  (or ;) all lie in the same 
plane. Hence 

VR@ (OR X R P )  = 0 . (8) 

Expanding ( 8 )  yields 

A X R   + B y ,  + C = O  (9) 

where 

A = -2[ D O  -YP)(zR -zO) + YO (20 -zp)] 

- f ’ h  )(Yo -UP) (10) 

+ f ’ @ R  ) (x0  - X P )  (1 1) 

= +2[(x0 -xP)(zR -20) + XO(z0 - z P ) ]  

=f’(ZR)(XPYO  -YPxO).  (12) 

Equations  (9)-(12)  represent a  three-dimensional surface S, 
which reduces to  the cross-sectiond  plane of the previous 
section  when x o l y o  = x p / y p .  

The surface S intersects  the axially symmetric  reflector in a 
curve C as  shown  in the figure. The specular point R o ,  if it 
exists, lies along C. At every point R along C, Tis tangent t o  C. 
Consequently, as in the previous section, the  problem reduces 
to finding the  two  points El  and E2 where C intersects  the 
reflector rim and to evaluating U at  those  points. A specular 
point will exist if and  only if Fpoints away from  the surface at 
both E, and E 2 .  

The  two edge points may be found by substituting 

+ YR = f ( z R m )  (1 3) 

into (9). The  four possible types of solution are as follows. 
1) If B = 0: 

X R ~  = </A ( 1 4 4  

3) If A = 0 and B = 0: 0 and P are  coincident, causing (9) 
to become indeterminant. However, the  techniques of the 

vcp = 2x6, + 2y6, - f ( z )6z  . (7) previous section can  be used. 
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h 
4 ) I f A f O , B f O :  

L J 

The descriminant of (16b) is never negative so that  two real 
roots always exist. 

As a  specific  example, let x 0  = x p  = 0 so that  both 0 
and P lie  in the yz  plane. Then, from (1  1)  and (1 2), B = C = 
0 so that  (14a)  and  (14b) yield X R I M  = 0 and yRI,M = 

Having, again, as in  the previous section,  demonstrated  the 
existence of a  specular point  for  the  nonplanar case, many dif- 
ferent search techniques are available for locating it. However, 
should the simple evaluation of F a t  the  two  points  on  the re- 
flector ring defined by  (9) indicate that  no specular point 
exists,  a  search procedure  has been  eliminated. 

P R I M ,  as expected. 
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Transient and Time-Harmonic  Dyadic  Green’s Functions 
for a  Perfectly  Conducting  Cone 

K. K. CHAN AND L. B. FELSEN 

Abstract-New  representations  for  the  timedependent  dyadic 
Green’s functions  for  a  perfectly  conducting semi-infiite  cone are 
presented.  For  the  special case of small cone angles and an on-axis 
source,  simplified  expressions are given  for both the  timedependent 
and time-harmonic  regimes. 

In a  separate  paper, new representations for  the  timede- 
pendent scalar Dirichlet and Neumann Green’s functions  for a 
semi-infiiite  cone were developed [ 1 1.  It was shown  that these 
formulations can be simplified substantially when the  cone 
angle is small and the  source is located on  the  cone axis. It was 
also shown  that new closed-form time-harmonic solutions can 
be obtained by Fourier  transformation of the  transient fields. 
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The present communication  extends these  results to the 
dyadic Green’s functions generated  by  vector  dipole excitation. 

Consider an electric  dipole of vector strength J situated  at 
the  point r = rr outside  a perfectly  conducting  cone defined by 
the surface 8 = e o .  The  components of J in the (r, 8 ,  Q) di- 
rections  are J,, Je  , and Jo ,  respectively. The  total field can be 
regarded as a  superposition of the  separate responses,due to 
J,, J g ,  and .Io. The response to a  radial  electric  dipole source 
may be obtained  from  the scalar Dirichlet Green’s function 
discussed in [ 1 1. The electric field due to a transverse dipole 
source of vector  strength J t  can be  represented  in terms of 
functions S’ and S” as follows [ 21 : 

E = ErrO + EeOo + (1) 

where 

The scalar functions S’, S” can be decomposed into a free- 
space portion  and a perturbation  term  accounting  for  the  effect 
of the cone. Since the free-space portion of the  solution is 
known, only the evaluation of the  perturbation fields  (distin- 
guished by subscript s) need concern us here.  Suitable  repre- 
sentations  for  the  latter are [3] 

s,’ = SSlr  + s,’ 
i 

SSl = - - jo(kr@o(l)(kr)) 
- cos m(Q - Q r )  

2nk m = l  m 

- tan - tan - tan2 - 1 : :  ke) l  
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