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Fig. 2. Ratios  of  lateral  current (Zlat) and  corner  current (Icorner) 
normalized  with  respect to  vertical current (Iv) ,  plotted versus  spacirig 
X N  -Xi between p+-n junction  and  isolation  diffusion  for  lifetimes of 
10 and 1 ps. The curves  are  for  a  rectangular  diffused diode  measur- 
ing  80 pm X 20 pm  and are obtained  by  numerical  integration of (4;. 

kind of order  zero.  The  equation  may also be solved simg , y  
using numerical  integration, by  choosing an  initial guess for .> 
at r = Xi and iterating  on  this value until  the  boundary conch- 
tion I, = 0 at Y = XN is satisfied.  However, in  the special case 
where  the  n+  diffusion is within one  diffusion  length of the 
p+-n junction,  the corner current may be  calculated quite 
simply  by setting L ,  = ~0 in (4). This yields 

We recall that  in  the case where XN - X i  >> L,, the  result 
given in [ 21 may  be used 

where K 1  is of order  unity and  nearly independent of lifetir e. 

111. RESULTS FOR TYPICAL STRUCTURE 

In  order  to illustrate the significance of the relative contr:ilw- 
tions of each of the  three  components (vertical, lateral, and 
corner) we show in  Fig, 2 results  obtained  by numerical inte- 
gration of (4) for  a  structure  made by  diffusing a  rectangular 
p+ region 20 pm X 80 pm  to  a  depth of 1  pm  on an epitaxial 
layer of thickness Xepi = 5 pm.  In  interpreting  these  results it 
should be  noted  that  for all practical  purposes they are  almost 
independent of the value of Xepi (unless Xi becomes cornpa- 
rable to Xepi); in addition,  it should be  remembered  that the 
lateral  current is proportional  to 2(B + L )  and  the vert .cal 
current is proportional  to BL. Thus  for  a square diffusion 
1 5  pm X 15 pm,  the Ibt /Iv  curve would shift upwards by 
about  a  factor of two  and  the I,,,,/I, curve would shift up- 
wards by  a  factor  of  about eight. 

For X N  - Xi >> L,, all the curves tend to a constant value 
as predicted by  the results  in [ 1 1 ,  [ 21. For XN - X j  <<: L,, 
the Ilat/Iv curve shows  a linear dependence  on spacing between 
the  junction and the  n+ isolation  diffusion. The linear de1)en- 
dence also exists for  the corner current  for low values of  %lac- 
ing (XN close to X i ) ;  this changes to  a  square  dependence  for 
XN >>Xi as predicted  by ( 5 ) .  

As an example of a  particular case, consider a  20-pm spacing 
with  a  hole  lifetime of 10 ps  in the epitaxial  layer. The  remlts 

in Fig. 2 indicate  that  the  lateral  current is about  twice  the 
vertical current and the  corner  current is about 80 percent of 
the vertical current. This  would represent  a  total  reduction  in 
current gain of an  IIL  transistor of about  three  (with  the sim- 
plifying assumption  that  the gain is originally limited only  by 
recombination in the  epitaxial  layer  under  the  p+  diffusion). 
Notice that  for higher lifetimes  (for  the same spacing) the 
ratios  remain  unchanged. 

IV. CONCLUSIONS 
The above  results  enable  rapid estimation of “excess” cur- 

rents  due  to sideways diffusion of carriers from  a  p+-n  junction 
in the presence of a  deep n+ isolation  diffusion. The  additional 
components of current are of importance  not  only in diode 
design but also in gain  calculations for IIL structures  with  n+ 
isolation  diffusions  at  a  finite  distance  from  the  p  diffused 
base. In  this  respect,  it must  be noted  that  the  n-n+  interface 
has  been assumed to  be  a plane of zero  hole  current.  For,very 
small spacing, it is clear that in the  limit,  the  lateral and  corner 
currents discussed in this  correspondence  tend to zero  (as seen 
in Fig. I )  and the  nonzero  contribution arising from  direct in- 
jection into the  n+ region would have to be considered. The 
result given by [3, eq. (16)] could be used to estimate  the im- 
portance of this  current. 
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The  Influence of Nitride  Thickness  Variations on the 
Switching  Speed of MNOS Memory  Transistors 

ERIK BRUUN 

Abstract-The  influence of nitride  thickness  variations  on  the  switch- 
ing  speed of MNOS memory  transistors  is  examined.  The  switching 
time  constant is calculated as a function of the nitride thickness using 
a model  of  modified  Fowler-Nordheim  injection.  The  calculated 
characteristics  compare well with  measured  characteristics  and  show  a 
strong  dependence  on  the  nitride  thickness. 

I. INTRODUCTION 
In  the  literature  on MNOS memory  transistors considerable 

attention has  been paid to the  impact of the  oxide thickness 
on  the switching  speed [ 11, [ 21. The  influence of the  nitride 
thickness  has  been somewhat neglected because the switching 
properties are normally  examined with  the  nitride  field  (or  the 
oxide field) as the  externally applied parameter, However, for 
a practical memory circuit it is necessary to specify the gate 
voltage rather  than  the gate insulator fields. With a  fixed value 
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Fig. 1. Idealized  switching  characteristics for MNOS memory transistor. 
MNOST threshold  voltage VT versus  programming  pulse  length t p .  
For  positive  programming  voltage (Vp > 0) the  characteristics  are 
shown for two different  initial values of V T ,  Vh;.,, and V&. YTO 
is the threshold  voltage  corresponding  to  zero  stored  charge  in  the 
nitride. The switching  time constants are t: for  the  positive  value of 
Vp and t i  for the negative  value  of Vp. 

of the gate  voltage,  variations  in the  nitride  thickness result in 
variations in  the  oxide field which, in turn,  affects  the switch- 
ing speed.  It is, therefore,  important  to  determine  the varia- 
tions  in switching speed which can be expected  from  manufac- 
turing  tolerances  on  the  nitride  thickness. 

11. SWITCHING  THEORY 
The switching characteristics of MNOS memory  transistors 

are normally  plotted  in  a semilogarithmic  diagram,  showing 
the MNOS transistor  threshold voltage VT versus the  length t p  
of  the  applied gate voltage pulse. Fig. 1 shows an idealized 
switching  diagram. 

The switching characteristics may  be  divided into  three 
regions: 

1) An initial region for very small values of t p ,  where vir- 
tually  no shift of VT is observed. 

2) A shift region where VT shows a  logarithmic  dependence 
on t p .  

3) A saturation region for very large values of t p .  
The  transition  point  between region 1) and region 2) is 

determined  by  the initial value of VT prior  to  the  application 
of the  programming voltage V p .  In Fig. 1 the switching char- 
acteristic  for positive V p  is shown  for  two  different values of 
the  initial  threshold  voltage, 

The  transition  point  between region 2) and region 3) depends 
on the  saturation value of VT which depends  on  the applied 
voltage V p  and  the  properties of the  gate  insulators. 

The value VTO of the  threshold voltage  which is shown in 
Pig. 1 is the value of VT which corresponds to zero  stored 
charge in  the  nitride. V T ~  can  be found  experimentally  either 
from  the switching characteristics [ 11, [ 2 ]  or from discharge 
measurements [ 31 . 

The shift region of the switching  characteristics is uniquely 
determined by the  slope of the characteristics and  the  inter- 
section  time t ,  between VT = V T ~  and  the switching  curve. 
The  intersection  time t ,  is referred to  as the switching time 
constant [ 21, and  the  slope ( d V T ) / ( d  log t p )  of the switching 
characteristics is given by [ 21 

d VT EA 
CG d log t p  

= 2.3 eo, -- 

where eo, is the  oxide  permittivity  and CG is the  total gate 
capacitance  per  unit area. E A  is called the switching  field 
parameter [ 21 and is a  property of the MNOST which depends 
on  the  oxide field and  the  oxide  thickness. 

The most important  parameter describing the switching 

speed is the switching time  constant t , ,  and it is, therefore, 
of prime interest t o  examine  the  influence of nitride thickness 
variation on t,. 

The switching time  constant t ,  is a  function of the  oxide 
thickness and  the  oxide field. The  oxide field is a  function 
of the applied voltage and  the  insulator thickness,  hence the 
influence of the  nitride thickness on t,. Based on an assump- 
tion of an approximately  exponential  dependence of the  oxide 
current density J o x ( E o x )  on  the  oxide field E,, it can be 
shown [ 1 1 ,  [ 21 that t ,  is given by 

where CN is the  nitride  capacitance per unit area and Eox0  is 
the  oxide field resulting from  the application of the gate voltage 
V,  when  no charge is stored  in  the  nitride. CN is given by 

Similarly, the  oxide  capacitance  per  unit area is  given  by 

WN and W,, are the  nitride  thickness  and  the  oxide thickness, 
respectively, and EN is  the  nitride  permittivity. 

In  a practical memory  circuit,  it is more convenient to relate 
the switching time  constant to  the programming voltage V p  
than,  to  the  oxide field E,,. E,, 0 is given by 

1 
Eoxo = - CN 

w~~ Vp cox i- CN ' 

Now, assume that  a fixed value of the programming voltage V p  
is specified. The  problem  then is to  determine  the  insulator 
thickness  variations  which can be tolerated in the  manufactur- 
ing  process in  order  to  obtain  a  guaranteed switching  time. 

In  practical  memory circuits, the  oxide thickness is 20-25 8 
and  it can be very well controlle:, e.g., using a dry oxidation 
at  a  rather  low  temperature (600 C) for  the  preparation of the 
gate oxide. Curves showing the switching time  constant versus 
the  oxide thickness are given in [2]  and will not be  dealt  with 
in  the present correspondence. 

The  nitride  thickness  in practical memory circuits is normally 
around 600 8. This gives a programming voltage Vp about 
30 V  corresponding  to an oxide field about 8 MV/cm. The 
nitride is deposited  by the silane-ammonia reaction.  The varia- 
tions  in thickness  may well be on  the  order of 5 percent  or 
more,  and this can be shown to  have a major  influence on  the 
switching time  constant. 

It  has  been shown by several investigators [ 1 1 ,  [ 21 , [4]  that 
for  oxide fields  above approximately 6 MV/cm a good agree- 
ment  between measured  switching data  and calculated  charac- 
teristics is obtained if the  oxide  current is assumed to be a 
modified  Fowler-Nordheim injection  from  the silicon into  the 
nitride.  From  the  theoretical  model of Fowler-Nordheim 
injection Jox(Eox)  can be computed [2]  and, using (2) and 
(5), t ,  can be calculated  as a  function of WN for  a  fixed value 
of V p .  Fig. 2 shows the relative  variation of t ,  versus W N  for 
a device with  typical  parameters. 

The curves are calculated for  a device with an oxide thick- 
ness W,, = 20 8. The  nitride thickness is normalized versus 
W N O  = 600 A, The programming voltage V p  is assumed to 
be +30 V. The  switching time  constant t ,  is normalized versus 
tso = 5.06 X s for V p  = + 30 V and tSo = 2.89 X s 
for V' = - 30 V. These values of tso correspond  to WN = 

From  the figure it is seen that  a relative variation of only 5 
percent in W N  results in  a relative variation of t ,  of almost 3 
times. 

W N ,  = 600 A. 
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Fig.  2.  Normalized  switching  time constant versus normalized nitxiie 
thickness for V = *30 V, W,, = 20 A. WN has  been  normali:z,:d 
versus WNO = 6(0 A, and t ,  has been  normalized  versus tSo = 5.06 
X 10% for Vp = + 30 V, and tso = 2.69 X 10m4s for Vp = -30 V. 
-, calculated  curve for Vp = + 30 V; ---, calculated  curve for l'p 
= - 30 V; 0 ,  measured  results for V p  = + 30 V; 0, measured  results 
for V p  = - 30 V. 

As one would expect,  this variation  has a  major  effect  on  the 
threshold voltage window obtained using a specified lenglh 
and amplitude of the programming pulse. From  (1) 1:he 
threshold window  may be found 

where the superscripts + and - are used for positive V p  ar  d 
negative V p ,  respectively. In (6), td and t i  are strong  functions 
of WN as shown  in Fig. 2. EA and E;i are weak functions of 
WN, and so is C G .  

As an example of the  impact  on AVT of variations in W,v, 
AVT is calculated versus the relative nitride thickness (lbk 
normalized versus W N ,  = 600 8) for Vp = k 30 V and t,, -- 
10 * tSo.  (t'p = 5.06 X s, t i  = 2.89 X s.) The  resd.t- 
ing curve is shown in Fig. 3. 

111. EXPERIMENTAL RESULTS 
Measurements of t ,  have been performed  on  p-channel 

devices with an  oxide thickness W,, = 20 8, measured by I &  

lipsometer,  and  a  nitride  thickness WN around 600 8. Tile 
nitride  thickness  has, for each device, been determined from a 
gate  capacitance measurement using 

A relative  dielectric constant of 6.5 for  the  nitride has bem 
assumed. The switching time  constant has  been found frlorn 
switching  characteristics  which were measured in  the  followilg 
way. Before  each measurement VT was made highly positive 
(negative) by the  application of a  gate voltage of + 30 V 
(- 30 V) for  5 s. Then  a negative (positive) gate voltage pulse 
with an  amplitude of 30 V and  length t p  was applied,  and  t:le 
threshold voltage was measured by an automatic equipmsent 
applying to  the transistor a gate  voltage  which  ensures that t:le 
transistor conducts  a drain current of 3 pA.  The measuring 3f 
the  threshold voltage takes place within 80 ps after  the  ternli- 
nation of the gate  programming  pulse. 

0.8 0 9  1 0  11 1 2  

WN/WNO 

Fig. 3. Calculated  and  measured threshold voltage  window A V ~ v e r s u s  
normalized nitride  thickness WN/WNO. W,, = 20 A, WNO = 600 A. 
Programming conditions: V$= +30 V, tf = 10. t& = 5.06 X 
s; V;= - 30 V, t ;= 10 * tso = 2.89 X 10-3s. 

The  measured values of t, have been normalized with  the 
calculated values of tSo for V p  = 2 30 V, W, 1 6 0 0  8, and 
W,, = 20 8. The  experimental  results  are  plotted  m Fig. 2. 

Although  the agreement between  the calculated curves and 
the measured  results is not  perfect,  it is evident that  the 
switching time  constant shows the  expected  strong  dependence 
on  the  nitride thickness. I t  is also seen that  the  dependence is 
stronger  for positive Vp than  for negative Vp as expected  from 
the  theory.  The reasons for  the  nonperfect agreement between 
the calculated curves and  the measured values may simply be 
inaccuracies in  the measured values of t ,  and  the gate capaci- 
tance C G .  Also, in the  calculation of the curves, only  the 
modified Fowler-Nordheim injection is taken  into  account 
as this is  the  dominant  injection mechanism at  the fields 
involved. Other  injection mechanisms may, however, be 
present [ 21, 

In Fig. 3 we show  the measured values of the  threshold 
voltage window obtained with tp  = 10 t , ~ .  The  measured 
results  are  in  reasonable  agreement  with the calculated curve 
except  for  the result obtained  for  the device with W N  = 0.85 
W,, = 5  10 8. For  this device, a  saturation of the  threshold 

voltage takes place  with the applied values of V p  and t p ,  thus 
limiting the  threshold voltage window. 

The measured  results  clearly demonstrate  the necessity of 
maintaining  a close tolerance on the  nitride thickness if critical 
switching requirements are to be fulfilled. 

IV. CONCLUSION 
It has been shown  both  theoretically  and  experimentally 

that  the switching time  constant of MNOS memory  transistors 
is strongly  dependent  on  the  nitride thickness for  a  fixed value 
of the programming voltage. Curves showing the variation of 
t ,  versus the variation of the  nitride  thickness are given. It is 
demonstrated  that  for  a  typical MNOS device a variation in  the 
nitride thickness of only 5  percent results  in a relative variation 
of the switching time  constant of almost 3 times. Consequently, 
an  extremely good control of the  nitride  deposition is required 
in  order t o  obtain  reproducible switching  characteristics. 
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Influence of Surface States on the Measurement of Field- 
Effect Mobility 

S. T. HSU 

Absfract-The  effect  of  surface  states  on the measurement  of  field 
mobility has been  analyzed.  The  result  shows that this  effect is  im- 
portant when the  rate of  change  of the surface  charge  density  with 
respect to the  surface  potential is  larger  than the mobile  charge  density 
at the  conductive  channel of the MOSFET. 

The  conventional  method of obtaining  the field-effect  mo- 
bility of electrons  and holes  in MOSFET’s is by measuring the 
slope of the  transfer current-voltage  characteristics of the 
MOSFET’s operated in the linear region [ 11.  The results that 
one  obtains are found  to be dependent  upon  the  fabrication 
process.  This  process-dependent  field-effect mobility is inter- 
preted as arising from charges in the surface  scattering  mech- 
anism and the  redistribution of impurities  in  the silicon near 
the  Si-Si02  interface [ 21 , 

During the course of life testing  p-channel MOSFET’s we 
found  that  the field-effect  hole mobility measured  by the 
conventional  method is approximately linearly proportional 
to the  absolute value of the threshold  voltage, as is shown in 
Fig. 1.  In  this figure we plotted  the field-effect hole  mobility 
as a function of threshold voltage of six chips  in  plastic  pack- 
ages. Each  chip contains  three p-channel and  three n-channel 
MOSFET’s and other test devices. The MOSFET’s were 
stressed with negative bias at high temperature (NBT). The 
typical NBT stress was done  with gate  voltage between - 10 to 
-20 V, the  temperature was between  150  to 2OO0C for a time 
interval of up  to  1000  h.  After NBT stress, the  threshold 
voltage of p-channel MOSFET’s increased. The  amount of the 
p-channel  threshold voltage increase depends  on  the device 
process,  package conditions as well as the bias voltage,  and 
time  duration of NBT stress. This threshold voltage increase 
can be  reduced by a  positive bias temperature (PBT)  stress. 

The threshold voltage of our n-channel MOSFET’s can be 
changed only very slightly by NBT stress. The  threshold volt- 
age increase of p-channel MOSFET’s caused by NBT stress is 
believed due  to holes  injected into  the  oxide  trap  states. One 
would expect a  stronger  surface scattering mechanism in 
p-channel MOSFET’s after NBT stress. Hence, the field-effect 
hole mobility should decrease instead of increase  with NBT 
stress  as was observed. We present  an analysis in  this corre- 
spondence showing that  the  conventional  method measures 
the field-effect mobility of MOSFET’s only when the charge 
density  at  the fast  surface states is independent of the surface 
potential when the surface is inverted. 

The gate voltage of a MOSFET can  be written as 

1 
VG = P M S  + PS - - ( Q B  + Qss + Qit - Qit + Q,)  (1) 

CO 
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Fig. 1. Relative  field-effect  hole  mobility at small drain  current as a 
function  threshold  voltage.  The  threshold  voltage is changed by bias- 
temperature  stress. 

where 

PMS 
CPS 
QB 

Qst 
Qit 
QC 

C O  

QY 

work  function difference between gate and  substrate 
surface potential 
charge density  per unit area in bulk Si 
fixed surface state density 
positive charged fast surface state density 
negative charged fast  surface state density 
mobile charge density  at the  conduction channel 
unit area oxide capacitance. 

The threshold voltage V T ,  therefore, is  given by 

1 
~ T = C P M S + ~ C P F - - ( ( ~ B + ~ S , + ~ , : - ~ , ) .  ( 2 )  

CO 
The mobile charge density at  the  conduction channel can be 
written as 

where the  upper sign  is for p-channel MOSFET’s and the lower 
sign is for n-channel devices. The drain current ID is given by 

W W 
I D = - P Q C V D = L  L PC, (VG-   VT)   VD.  (4) 

The field-effect mobility measured with the conventional 
method is 

In  this expression the  threshold voltage V,  is assumed to be 
constant. If  we examine (2) carefully we find  that VT is a 
function of VG through  the variation of fast surface state, Qst, 
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