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Carrier  Diffusion  and  Higher  Order  Transversal  Modes 
in Spectral  Dynamics of the  Semiconductor Laser 

Abstruct-The  dynamic and  spectral  behavior of the semiconductor 
stripe laser has  been investigated. For this  purpose the rate  equations 
have  been  generalized to include several longitudinal and  tmnsversal 
modes,  spontaneous  emission into the  active  modes, and position 
dependence of the  electron  density through a term  describing the 
charge-carrier diffusion  in the  plane of the active  layer.  The  parameters 
used  for  solving  these equations are found by theoretical and experi- 
mental  considerations.  The  results  show  a  broadening of the  spectrum 
together with a  significant content of higher  order  transversal modes 
along  the junction plane. 

T 
I. INTRODUCTION 

HE understanding of the spectral dynamics of  the semi- 
conductor laser is of major importance  for  their applica- 

tions in fiber optical communication systems. It is the  pur- 
pose of this paper to work out a  fundamental description of 
these properties based on numerical solution of a set of non- 
linear multimode,  position-dependent  rate  equations  for  the 
photon and the  electron densities. 

Earlier attempts to solve the rate equations  by numerical 
methods have been based on  a simple position-independent 
description involving the  total  photon density. In [ 11 - [3] a 
term  for  the  spontaneous emission into  the laser-active modes 
was not included. However, it has been shown that  the magni- 
tude  of  the  spontaneous emission has a  dominating influence 
on the ringings in  the  transient response [4] - [ 6 ] .  For  this 
situation,  approximate analytical solutions have  also been 
found [6]  - [7] . Since the spectral width decreases with  in- 
creasing current  density,  the  total  spontaneous emission into 
the lasing modes decreases with increasing current in the 
stationary  state [8]. This can be taken  into  account in the 
theory of [4] -171 . A more detailed description is obtained  by 
using multimode rate equations.  In [9] those  equations  with 
no position dependence were solved, taking the  photon  den- 
sity  for  each  mode as a variable. A position dependence of  the 
spectral dynamics comes in through  the diffusion of charge 
carriers in  the active layer of the laser. The diffusion has been 
studied earlier for  the  stationary-state  situation of the laser 

In this paper, we  have developed a more general model 
which describes the spectral and dynamic behavior during fast 
modulation dealing with both longitudinal and higher order 
transversal modes. The  model consists of  a set of  multimode 
rate equations including spatial variations in both electron and 
photon densities where a special term  accounts  for  the carrier 
diffusion. We have found  that the existence of higher order 
modes is closely related to the carrier diffusion, and the results 

[lo]-[12]. 
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are in good qualitative agreement with  experiments [ 131 , 
[14] . In Section I1 we present our  model in its general form; 
the laser parameters are discussed in Section 111, and in Section 
IV  the results which we have obtained are summarized. 

11. SPATIAL VARIATION OF ELECTRON AND 

PHOTON DENSITIES 

In [ l ]  -[9] all spatial variations are neglected. Since both 
the wavelength and  the thickness of  the active layer are much 
smaller than  the diffusion length of  the charge carrier, we 
neglect the spatial dependence along the  stripe  and  perpen- 
dicular to the active layer. In the active layer where the stripe 
width is of  the same order of magnitude as the diffusion 
length, we describe the diffusion of charge carrier by a  diffu- 
sion term  in  the rate equation  for  the  electron  density. 

Since the stripe width is much larger than  the wavelength, 
one can expect to find higher order transversal modes. The 
photon energy depends on  the longitudinal mode  number i but 
is almost independent of the transversal mode  number j ;  hence 
the wavelength dependence of  the gain  can be described by 
the longitudinal mode number i as Gi.  The field distribution is 
assumed to be  dependent only on the transverse mode  number 
j .  Using this, we find the rate equations 

The symbols are defined as follows: n(x,  t )  and J(x ,  t)  are the 
electron and current densities at  the position x to the time t ,  
e the  unit charge, d the thickness of the active layer, rs the 
spontaneous carrier lifetime, D' the diffusion constant, Ei(x) 
the normalized field distribution  for  a  mode  with  the  trans- 
versal mode number j ,  Sii the photon densities, Gii, rpij, and 
Oii the mode gain, photon  lifetime,  and spontaneous-emission 
parameter for  mode ( i ,  j ) ,  respectively, and 2s the stripe  width. 
The mode gain  is  given by 

where the normalization of the electric field 
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The field distributionEi(x) is, in principle, dependent  on  the 
gain and refractive index profiles [15], and hence on the 
electron density profile n(x). This could be accounted  for by 
a field equation. This, however, would complicate the solu- 
tion of the  equation drastically. For simplicity, we have used 
approximated fixed distributions. 

Contrary to the  multimode  equation in [9], (1) is two- 
dimensional since the position dependence is included, and it 
contains  a second-order term. 

In Section IV we describe some simplifications we  have 
made in order to transform (1) to a set of one-dimensional 
first-order differential equations. 

111. DISCUSSION OF THE LASER PARAMETERS 
The simplest form of the rate equations is 161 

dn J n 
d t  ed r, 

- - -  GS 

dS -= (G--+p-, n 
d t  7, 

where S is the total  photon density in the lasing modes, and 
p is the  total  fraction of spontaneous light emitted into  the 
lasing modes. The effective gain G depends  on  the mean 
electron density n only. Describing the gain by a Taylor 
expansion at  the working point  of  the laser, a linear depen- 
dence on  the  electron density is obtained. 

G = a ( n  - N o ) .  (7) 

Equations ( 5 )  and (6) have been treated analytically for  the 
small-signal  case [13], [ 161 - [18] and the  solution is found to 
show a resonance behavior. It is then possible to find values 
for r,, rp , and p by microwave modulation measurements. 

From  [13] we have r, = 2 ns, rp = 23 ps, and p = 7.5 . 
The value of r,, which also includes diffusion loss of electrons 
from the stripe region, is in good agreement with values 
currently used in the  literature. Measurements of the  turn on 
delay confirm this value. The  values of rp and are surpris- 
ingly high. The lifetime of the  photons, however, should be 
interpretated in conjunction  with  the gain. From (7) we 
obtain 

with 

I rp = TP 
1 + ouyorp 

From  a numerical calculation of G we have found a = 0.62 . 
10-l' m3/s, No = 1.3 * loz4 m-3, which gives r; = 1.2 ps. We 
believe that the values of rp given in the  literature, e.g., [I61 
and [ 181 , are in fact r; . Using ( 5 )  and 46), we find the thresh- 
old current density 

Hence if Jth is measured versus the mirror reflectivity one 
finds r; and  not rp .  This is also the case  if T~ is found from 

resonance frequency and quantum efficiency measurements. 
In  [13] we found rp on  the basis of the damping parameter of 
the resonance curve. 

The gain calculation is based on the assumptions of Lasher 
and  Stern [19, formulas 9, 14,151 (parabolic bands and no k- 
selection). The gain depends on the  electron  density  through 
the fermi levels and on the  photon energy as shown in Fig. 1. 

The calculation of the gain for a given photon energy and 
electron  density involves evaluation of the Fermi levels and 
integration over the energy axis. This procedure is too slow 
to use in a  solution of the rate equations.  Therefore we have 
developed a simplified description. As can be seen from Fig. 
1, the spatial gain  as a  function of the  photon energy E for  a 
given electron  density can be approximated by a parabola 

g =g(n, E )  =grnax(n) - (Ernax(n) - fYn)z (1 1) 

If gmax, Emax, and P are expressed as parabolas in n,  we 
obtain  a simple formula for g. The 9 coefficients in this 
description are found from the  exact gain curves. The  tem- 
poral longitudinal gain  is Gi(n) =g(n, hi) . c, where c is the 
light velocity in the laser. 

The diffusion of charge carriers in the active layer involves 
both holes and electrons. Hence the effective diffusion 
constant D' is determined by combining the  transport  equa- 
tions  for  holes and electrons in the active layer. After ne- 
glecting a nonlinear field term, we find for D' 

where p, and p p  are mobilities, and D, and Dp are diffusion 
constants  for electrons and holes, respectively. 

This formula was also used in [lo] . When evaluating the 
parenthesis in (12) one must take  into  account that the  con- 
duction band is degenerated. Hence we  use the generalized 
Einstein relations 

where ap and a, are functions of the hole and electron  den- 
sity, respectively. For  electron densities in the range loz4 
mW3-2 1 IOz4 m-3, we obtain  from  [20] ap x 1, a, 2. 
Together with  the  fact >> p p  we find 

IV. RESULTS 
We have  solved the  position-dependent rate equations 

numerically by reformulation of  the  differential  equation (1) 
into  a set of difference equations  with respect to the  position. 
The subdivision of  the active layer into zones with  constant 
electron  density can  be made as fine as  we want,  but in order 
to  save computer time we  have  used only five zones, two out- 
side and three inside the stripe region. The calculations are 
outlined  in  Appendix I .  This simple subdivision restricts the 
model to describing the  fundamental  and  first-order  trans- 
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Photon energy (rneV) 

Fig. 1.  Gain g in a GaAs  laser,  intrinsic  material,  as  a function  of  the 
photon energy with  the  electron density as a parameter. No k-selec- 
tion rule. 

versal modes in  the plane of  the active layer. The reason is 
that  for each new pair of'subregions (because of  symmetry) we 
have  an additional degree of  freedom and therefore a new 
mode to  describe the electromagnetic field. 

The  current is  assumed to be confined in the active region 
neglecting current spreading [ 121 . The light is confined in the 
stripe region. Variations in the field distribution  function 
Ei(x) due to changes in the  electron-density profile are ne- 
glected. Finally it  should also be  mentioned that thermal 
effects have been disregarded. 

It has been proven that  the grouping of  the modes is an 
excellent method to save computer  time in the numerical 
calculations. Taking two  modes  in each group, the grouping is 
done by a multiplication  of both the mode spacing and the 
spontaneous-emission parameter per mode  by two.  Control 
calculations show that we obtain  the same spectral distribution 
both for  fundamental and first-order transversal modes ir- 
respective of the  number of modes per group. With a funda- 
mental mode spacing of 4.25 ii (corresponding to a laser 
length of 250 p n )  and pji = after grouping we get a 
mode spacing of 8.5 A and pji = 2. 

For  the carrier lifetime we use a value of 3 ns. This is in 
agreement with  the measured effective lifetime of 2 ns, since 
in (l) ,  the diffusion is accounted  for  explicitly. Using p p  = 
0.017 m2/V*s,  [21], we find D" = 1.3 . lo-' m2/s (at 300 K). 
From  this we have the effective diffusion length L' = = 
1.97 pm. For  the stripe width 2s = 10 p n ,  the zone widths 
(see Fig 8) become a = 3.33 pm, b = 2.2 p n .  

We measure current densities in units  of  the  threshold 
current  density J t h  . This quantity is defined in  Appendix 11. 

In Fig. 2 we show the calculated ratio  between  the total 
photon density in first-order modes and the  total  photon 
density in the  fundamental  modes as a function  of  the  current 
density.  For  current densities from J m  1.05 Jth to J=  1.2 
J t h ,  only  fundamental modes are present. Below threshold, 

J'Jth 

Fig. 2. Ratio of total  photon density in first-order transversal modes to 
total  photon density in the  fundamental modes in  static  state as a 
function  of current density. 

Fig. 3. Time evolution  of  total  photon  density, and photon densities in 
fundamental  and  first-order  transversal modes  in several longitudinal 
mode groups with  two  modes in  each.  The  mode  spacing  was 4.25 A ,  
the bias current 0.95 X threshold  current,  and  current  step 0.65 X 
threshold  current. 

spontaneous emission dominates and many  types  of modes are 
seen. A high photon  density in the  fundamental  modes will 
give strong  stimulated emission in the  central  part  of  the active 
region (Zone 1). This will decrease the  electron  density  in  this 
zone. Hence the gain profile becomes flatter, giving a higher 
gain for  first-order modes, and these modes will dominate  for 

We have  solved the rate equations  for  the case of a step 
J>  1.8Jth. 

current 

J = J B ,  t < O  

J=JB +Js,  t>0.  (16) 

In  the following, we shall discuss the results for JB = 0.95 
Jth, Js = 0.65 J t h .  Figs. 3 and 4 show the  photon and 
electron densities. We note  that  the  total  photon density 
exhibits  the well-known transients. A qualitative discussion of 
this  phenomenon is given in [6] , [7]. 

In Fig. 5 we show the  ratio  between  the  modes (n ,  0) and (n,  
1) as a function of time.  The oscillation between  the  funda- 
mental and the first order is in qualitative agreement with 
experimental results [13] , [ 141 . 

The physical mechanism behind this curve is as follows: at 
the prebias current level below threshold  the  spontaneous 
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1.2 0 I 0.5 1.0 ( n s )  

T I M E  

Fig. 4. Time evolution of electron density in central and border zones 
of stripe. Conditions were the same as in Fig. 3. 

t Relal lve power of 
t ransversal   modes 

3t f irst  order 

‘fundamental 

J 
0.5 1 0  1.5 

Fig. 5. Time  evolution of the  ratio of power  in the first-order  trans- 
versal mode to  the fundamental  mode corresponding to  the longi- 
tudinal  mode dominating in the static  state. Conditions were the 
Same as in Fig. 3. 

emission dominates,  thus exciting all modes, including the 
transverse modes, almost equally in power. When the  current 
pulse  is applied, the  electron  density and hence the gain in the 
three  central zones will grow, amplifying both fundamental 
and first-order modes. The  fundamental modes, however, 
have the greatest mode gain-due to the outdiffusing of 
electrons to the  two passive  regions outside  the stripe-and will 
reach threshold first, causing the relaxation spikes to appear. 
The laser action in the  fundamental modes will remove 
electrons  from  the  central regions (spatial hole burning) and 
can give a spatial minimum of  the  electron  density, while the 
two  border zones in the stripe will be pumped further, in- 
creasing the first-order mode intensities. After the second 
spike, first-order modes may even dominate  before  a  steady 
state is reached. 

From  the calculations we  also find the spectral width as a 
function  of time (Fig. 6). This result is in good agreement 
with  experiments from [ 131 , [14]. In [22]  a slower variation 
is found. Since the  photon  energy’at which the gain has its 
maximum value depends on  the  electron  density,  the wave- 
length of maximum photon  density will depend on the  time 
(Fig. 7). 

The difference between the maximum wavelength for  the 
fundamental and the  first-order  modes will depend  on dif- 
ferences in  the  photon lifetimes; in this case the same photon 
lifetime was used. 

O l  I I 

0 0.5 1.0 1.5 

Fig. 6 .  Time  evolution of spectral width with the same conditions  as in 
Fig. 3. 

E 876 - -h 
F i r s t   a r d e r  mode 

: I  I I 
0 0 5  I O  

T I M E  
( n s l  

Fig. 7. Time evolution of the wavelengths for  the  fundamental and 
first-order transversal modes with  maximum photon contents. The 
conditions  were the same as in Fig. 3. 

For  the time interval T between the first two spikes, the 
following relation is found to  be in agreement with  the simple 
rate equations ( 9 ,  (6) [6] , [7]. 

T % (~rJs)-l’~,  (1 7) 

where a is given by (7). The calculated value of T is  also  in 
agreement with experimental results [13] -[14]. From  the 
gain  curves we find that a decreases with  a decreasing value of 
the critical electron  density, and since n, decreases with in- 
creasing value of  the  photon lifetime, we see that T increases 
with increasing rp and we take  the agreement between cal- 
culated and observed values of T as a verification of the large 
value of rP .  

V. CONCLUSION 

With the model described in this paper we  are  able to 
account  for both spectral behavior and the existence of first- 
order modes in the transients of  a GaAlAs laser. The results 
are in qualitative agreement with experiments. 

The spectral width of the laser  will be of practical interest 
for system considerations, only in the case of fibers having 
carefully controlled index profiles. On the  other  hand changes 
from  fundamental to first-order modes might have a severe 
effect on  the coupling to fibers with  a small normalized fre- 
quency [23]. The dynamic behavior is of  interest in digital 
communication systems with directly modulated lasers  since 
the ringing transients set a limit on the maximum modulation 
speed [7]. 
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APPENDIX I T d-0.5 pm ' 
The active region of a  semiconductur laser has the  typical 

dimensions of  the order of magnitude shown in Fig. 8, 2s 2 s -  IO pin 

being the stripe width. In order to describe the transversal 
variations the active layer is divided into five zones. Due to 
the  symmetry it is only necessary to consider three zones: 1 ,  
2-2', and 3-3'. The  electron  density is approximated by 3' 2 '  1 2 3 

A X 

- 5  0 S 

+b-a - - -+ - -a -a -b+  

- 
5 - 5  0 

S 
n l ,  for [ X I < -  

3 

n 2 ,  for -< 1x1 < s  

Instead of the  photon lifetimes for  fundamental  and  first- 
n 3 ,  for s < I x l < b t s .  (AI)  order modes rDo and rDl we define the  photon lifetimes for 

Fig. 8. Dimensions of the active  region of laser, and the  subdivision  in 
zones used in computer  calculations. 

S 

3 

3 -1 

r;*=(-$-;:t-7-;:)  2 . 

We can write the  equations  for the  photon densities: 

l o  1x1 > s (A2) Pi nl t 2n2 

(only fundamental and first-order modes are considered). 
t- 

7s 3 
The  mode gain becomes d& = (0.2(Gi(nl) - rp*-') t 0.8(Gi(n2) - rp**-')) Si, 

1 -  dt G.. zj = - 2s 1., Gi(n(x)) IEi(x)l2 dx 
Pi nl 2n2 
7s 3 * 

t- ( A  10) 

1 1 
2s S 

SI 3 

= - Gi(nl) l,,,, lEi12 dx + - Gi(n 2)1/: i q 2  dx ,  The  electron  flux @ due to diffusion is given by Fick's  law 

dn @=Dl-  
(-43) dx' (A1 1 )  

using D' being the diffusion constant.  The  density change per unit 
time in the volume V due to diffusion through  an area A is 

@I = @ -  

A 
dt DIF v' 

As an examble we consider diffusion from  zone 2-2' to zone 
1 ; we find 

2s ( 1  - $) - 0.4s, f o r i =  0 
3 dn  n - n  --u - 

dx a lEi12 dx = (1 t$)-0.8s, f o r i =  1 .  A = 2  L d (L is the laser length) 

(A41 V = a L d  
We define the gain for  fundamental and first order modes by f l DIF 

=d--p(n2 2 - n l ) .  
(A13) 

Gio = 0.6 Gi(nl)  t 0.4 Gi(n2) 

Gj l  = 0.2 Gj (n l )  t 0.8 Gj(n2) .  (A51 With this procedure (1) can  be  written as three  equations: 

The average electron  density  in  the stripe region  is dnl J nl 2 
dt  ed rs a i 

-=-- - + D I T ( ~ ~  - nl)- 1.8 x Gi(nl)Sio 

- 0.6 Gi(nl)Sil 
i 
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dnz J nz 1 1 2  -=-- - + D ’ - ( n l   - n z ) t D  ~ 

(a t b)a dt ed rS a’ (n3 - nz) 

- 0.6 Gi(nz)Sio - 1.2 Gi(nz)Sil (A151 

The width  of  the passive zone 3-3’ is found by using the 
condition  that  the  ratio n3/nz found  from (A14)-(A16) 
should have the same value  as the corresponding ratio  for  the 
average electron densities found from (I), when stimulated 
emission is neglected. We find typically 

b - L ’ = f i ,  (A 17) 

L’ being the effective diffusion length. 

APPENDIX I1 

In order to  define a  threshold  current  density  for  funda- 
mental  modes, we first define the critical electron  density n, 

1 0.6  0.4 G(n,)=-=-+- 
T p o  T P *   T P * * .  

Assuming that G is linear in n,  we obtain,  from 0.6 G(n l )  t 
0.4 G(nz)  = G(n,), 

0.6 n l  t 0.4nz =n,. (A191 

For  a given current  density we find n 1  and nz from (A14)- 
(A16) by  setting d/dt = 0, and neglecting stimulated emission. 
The  current density for which (A19) is satisfied is then defined 
as the threshold current  density. 
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