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Abstract Name Altas | Comment
. . PURE.DFG D A pure datafiow graph

In this paper we present a coarse grain CDFG (Control/Data FULL.LOOP* FL | Awhole loop node

. o LOOP_BODY™ iB Loop body node
Flow Graph) model suitable for hardwarc/software partition- LOOPENTRY . | LE | Loopentry node
ing of single processes and demonstrate how it is neces- LOOR.EXIT | %’é kﬂ&!ﬁz’m m]’fe
sary to perform various transformations on the graph struc- bRANGH BODY1* | BI | First branh body
ture before partitioning in order to achieve a structure that :g:zemmnﬂ* S% gwong bmp%l} b"dﬁ't .

. . . . CH.SPLIT ranch variable s node
allows for accurate eshmatiqn of communication overh‘ead ERANCH.MERGE | BM | Branch vatiable rgﬂge node
between nodes mapped to different processors. In particu- REPEATER ﬂ_ I_R;Peml{ ﬂpdﬂt, exface node
lar, we demonstraie how various transformations of control HIER_OUT Ho | Hictarohy ouput intesfave node
structures can lead to a more accurate communication anal- gg-quLL* Fs ;unct,ion call l:?derfa &

s . . . . 11 1]
ysis and more efficient implementations. The purpose of the -oUT Fo | Function ouput inte-faes mode
transformations is to obtain a CDFG structure that is suffi- NOP N NOP (variable duplicator) node
VOID v Void node {variable sink)

ciently fine grained as to support a correct communication
analysis but not more fine grained than necessaty as this will
- increase partitioning and analysis time,

1 Introduction

In this paper we focus on communication analysis for hard-
ware/software partitioning of control-intensive applications
that are specified using hierarchy, functions, conditionals and
loops. In particular, we focus on the structures that imple-
ment control, i.e. conditionals and loops. These structures
are used to direct the flow of data between functional ele-
ments according to the values of test variables. As com-
munication overhead is an important factor to consider dur-
ing hardware/software partitioning [4][5], the mapping of
these structures is thus important to analyze and optimize.
The presented CDFG model supports the exploration of var-
ious implementation alternatives for these structures through
conditional and loop transformations which will be demon-
strated in the following. Furthermore, it supports communi-
cation analysis for cross hierarchy communication through
hierarchical expansion and for function calls through vir-
tual function expansion. Virtual function expansion is only
described briefly in this paper. The purpose of the transfor-
mations is to obtain a CDFG structure that is sufficiently fine
grained as to support a correct communication analysis but
not more fine grained than necessary as this will increase
partitioning and analysis time.
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Table 1: Elements of NodeType Hierarchical nodes are
marked with an asterisk(*).

2 CDFG model

This section defines the CDFG model which is used to de-
scribe the functionality of a single process. It includes struc-

- tures for basic arithmetic and logical operations, hierarchy,

conditionals, loops and functions and is as such sufficiently
expressive as to be able to represent universal computation
power [2].

The CDFG can be denoted a high level CDFG as nodes
represent high level functions rather than simple operations,
either in the form of function calls or in the form of data
flow graphs (DFGs) containing simple arithmetic and fogi-
cal operations and no control, and edges represent variable
sets that are communicated between the high level functions
rather than single variables.

Nodes can have different types, as defined in table 1. The

. alias column defines short forms of the type names that will

be used in figures. Nodes are records that contain a number
of parameters, as defined in table 2.

Edges are also records and contain the parameters de-
fined in table 3. Edges can be either data or controt edges, as
distinguished by the EdgeType parameter.

The usage and meaning of the various nodefedge types
and fields will be defined as they are used in the following

sections',

Only the parameters that are relevant for this paper ate shown in the tble. The
type (Variable 7} Varlable) denotes 4 map (sometimes called dictionary) that maps
variables to variables.



Name Type Comment

type Node lype The type of a nade.

rset Variable-set The set of variables read by a node.

wset Variable-set The set of variables written by a node.

cdfg The CDFG this node is a part of.

subcdfg | CDFG The sub-CDFG of a hierarchical node.
subdfg DFG The datafiow graph of a DFG node.

tvar Variable The branch, loop and rpt, node est variable.
pol Bool The test variable polarity.

bmap1 | Variable7}Variable | Branch variable mapping for branch body 1.
bmap2 | Variable?!Variable | Branch variabl mapping for branch body 2.
emap Variable?; Variable | Loop entry node vagiable mapping.

xmap Variable ! Variable | Loop exit node variable mapping.

rmap Variable; Variable | Repeater node variable mapping.

Table 2: The parameters associated with a node.

Name vage Comment |
type EdgeType The type of an edge (DATA of CONTROL).

sIC Node The node that feeds an edge.

snk Node The node that is fed by an edge.

varset | Variable-set | The set of variables ransferred on a data edge.

Table 3: The parameters associated with an edge.

Note that the fact that hierarchical nodes can reference a
subgraph via the subcdfg parameter makes the CDFG def-
inition recursive. A CDFG contains nodes bui nodes may
themselves contain whole CDFGs. :

As for operationat semantics of the graph, we use toke;
flow semantics as defined in [1], This means that variables
are tokens that flow on edges and that each node executes
according to a firing rule that defines that output tokens are
generated for each output variable when and only when all
input tokens are present on the input edges. During this pro-
cess, the input tokens are 2bsorbed by the node.

As mentioned, edges do not correspond to single vari-
ables but to sets of variables that are communicated between
nodes, Therefore, we denote these edges hyper edges.

For a given node, an input hyper edge is created for each
node that feeds it and an output hyper edge for each node
that it feeds itself. .

The individual variables that are communicated on edges
can in general be of any type. For simplicity, we only model
simple variables like integers and reals and arrays of simple
variables. This means that we need only record the bit width
and length of each varjable (the fength of a simple variable is
1). Using the methodology in [5], the communication time
for read- and write sets that, according to analysis, need to
be transferred between different processors using particular
protocols can be estimated with the help of these parameters.

3 Transformations for communication analysis

Traditional CDEG formats like the one described in [1] use
a separate edge for each variable that is communicated be-
tween nodes in the graph. If for example seven variables
are transferred between two nodes, seven edges will be the
result. Our coarse grain CDFG format supports fast com-
munication -analysis as we use a single hyper edge between
each pair of nodes that communicate with each other. This
reduces the number of edges and therefore decreases analy-
sis and partitioning time. For implementing conditional and
loop structures, we use special control nodes that direct the
flow of data according to the values branch or loop test vari-
ables, as described in sections 3.2 and 3.3. These nodes
correspond to multiplexers/demultiplexers in hardware and
to conditional or loop constructs in software. The format
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in [17 ases one control node for each variable in the sys-
tem, leading to a very large number of control nodes to con-
sider for partitioning, While this fine grain graph format
allows for maximum flexibility with respect to partitioning
control structures, it also complicates the graph and there-
fore increases analysis and partitioning time. Our graph for-
mat allows for exploring the whole range from using just
two large control nodes for each control construct to using
control nodes for each variable. In the following sections
we demonstrate how graphs with large control nodes can be
transformed into sufficiently fine grained structures that al-
low for better optimization of communication, These trans-
formations improve both efficiency of the final implementa-
tion and accuracy and efficiency of analysis. It is important
to note that, while the transformations allow for exploring
different implementation alternatives for loops and condi-
tionals, they should only be performed to the extent that the
synthesis tools are able to produce similar implementations.
If, for instance, the hardware synthesis tool can only produce
a coarse grain loop control implementation (i.e. using one
controller and single big multiplexers/demultiplexers), the
loop control nodes should not be transformed in the graph
prior to doing partitioning, The graph structure must reflect
what is done in synthesis, even if what is done is not effi-
cient, For a further discussion of the relation between the
model domain and the implementation domain, please refer
to [4].

In the following, we first introduce a basic transforma-
tion called hierarchical expansion which eases the analysis
of cross hierarchy communication and which is a prerequi-
site for performing the subsequently presented conditional
and loop transformations correctly.

3.1 Hierarchical expansion

Hierarchy is introduced by letting hierarchical nodes (those
marked with an asterisk in table 1) reference a CDFG. The
node H in figure 1A is such a hierarchical node. We use
double circles in figures to denote hierarchical nedes.

b} {o}

FLU R Y]

A)

E)

Figure 1: Structure of a CDFG h'ierarchy. A} Atomic (node)
view. B} Expanded view.

All subgraphs of hierarchical nodes are polar graphs as
shown in figure 1B, D4 and D5 are DFGs and FB is a full
branch node whose sub-CDFG is not shown., We see that
the hierarchical node H in figure 1A is fed by three nodes
and feeds two nodes itself. The hierarchy CDFG of a hier-
archical node always contains a hierarchy input node Hi and
a hierarchy output node Ho. These nodes act as an interface
to the hierarchy and as placeholders for the variables that go



in and out of the hierarchy?. The write set of the Hi node
equals the set of variables that are read from outer hierar-
chies. The read set of the Ho node equals the set of variables
that are written to outer hierarchies. We assume that every
variable that is produced in 2 CDFG is unique with respect
‘o its name throughout the whole CDFG, i.e. throughout all
hierarchy levels of the CDFG.

As menticned in [7], one of the first steps in the code-
sign process is to determine the granularity of the functional
specification that partitioning operates on. This can be done
in a number of ways [3}{6][7], the simplest being kierarchi-
cal granularity selection [6] where we for each hierarchical
nede determine whether it should be regarded as a granule
(i.e. atomic function which is not split across processors) or
whether we shouid replace the hierarchical node with the
contents of the hierarchy and thus make the input specifica-
tion more fine grained. Our graph structure supports com-
munication analysis for both cases. If the hierarchical node
H is to be regarded as a granule itself, we simply use the
input- and output hyper edges shown in figure 1A for com-

" munication analysis for a particular processor mapping of
the node H. If the contents of the hierarchy is to be regarded

Figure 2: One-level éxpansion of .a hierarchical node. A)
CDFG prior to expansion of H. B) CDFG after expansion.

as granules, we perform hierarchical expansion in order to
be able to perform a correct data dependency analysis for
a particular mapping of the nodes inside and outside of the
hierarchy to different processors. This is shown in figure 2
where the hierarchical node H, corresponding to the hierar-
chy in figyre 1B, is expanded into its surrounding CDFG.
The expansion is a one-level expansion as the full branch
within the CDFG of node H is not expanded, but of course
expansion can be multi level. Note that when performing
hierarchical expansion, the Hi and Ho nodes are eliminated
and hyper edges are regenerated so that we can analyze the
true dependencies between the nodes inside the hierarchy
and the nodes outside the hierarchy.

In the example, D5 and D7 are placed in hardware while
the rest of the nodes are placed in software. This expansion,
for example, allows us to see that even though D7 reads three
variables, {f;i,j}, it only needs to have two variables {f,i}
transferred across the hardware/software boundary.

Note that it is legal for the same variable to be present on
several edges when more than one node reads the variable,
as it is the case for the variables b and f in the figure. When
several nodes that read such a shared variable are mapped
to another processor than the producing node is mapped to,

2This makes the hierarchy graphs polat and correspnnds to the :mplemenmmn of
hierarchy in the flow graph model defined in {2].
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there are several possibilities for scheduling the correspond-
ing edges. If dynamic memory storage on the receiving pro-
cessor allows it, the variable needs only be transferred once,
for the first scheduled node (D5, for the variable f). For sub-
sequent edges that contain the variable (the one from D4 to
D7 for f), such an already transferred variable can be re-
moved from variable set of each edge which decreases the
communication time of the edges and possibly allows sub-
sequent nodes (D7 for f) to be scheduled earlier, If memory
storage on the receiving processor is limited and memory
storage on the transmitting processor allows it, the variable
can be stored temporarily on the transmitting processor, re-
transmitted each time it is needed by a receiving node and
freed when the last receiving node has been scheduled. De-
termining the optimal time/space mapping of shared vari-
ables can be done by introducing variable duplicator nodes
whose mapping and scheduling in effect determine in which
time slots the variables are stored on which processors, This
is left to future work.

3.2 Branches

Branches or conditional structures are introduced by using
full branch, branch bedy 1, branch body 2, branch split and
branch merge nedes. A full branch hierarchical node is used
to encapsulate the whole branch. The basic structure of a
conditional is shown in figure 3.

Figure 3: Basic structure of a full branch. A) Node view. B)
Expanded view.

The BS node is a branch split node that duplicates its
input variables and sends them to either Bt or B2, depending
on the value of the test variable (1 in the figure). The BM
node is a branch merge node that selects the output variables
from either B1 or B2, also depending on-the value of the
test variable, and outputs the corresponding branch output
variables. The test variable is identified by the tvar field of
the BS and BM nodes. A test polarity parameter (tpol) of
the BS angd BM nodes specifies which of the branches that is
taken if the test variable is true. If the test polarity is true, B1
is taken, otherwise B2. In order to keep track of how input
variables map to output variables of the BS and BM nodes,
we use the bmap1 and bmap2 variable maps which define
the mappings for B1 and B2, respectively. In the examples
we have used the intuitive mapping that a variable named X
outside of a branch maps to the variable X1 in B1 and to x2
in B2.



3.2.1 Transformation for unshared variables

In figure 4A we see that the (copies of the) variables {a,b}
are used solely by B1 and {d,e} solely by B2>. 1f the branch
is implemented using only a single BS node, such variables
must be led through the BS node which may be very ineffi-
cient, depending on the mapping of the BS node. Figure 4B
shows a transformation that alfows such variables to be com-
municated directly from their producing node to the branch
they are used in.

A) B)

Figure 4: Transformation for unshared variables, A) Origi-
ral branch structure. B) Transformed branch structure.

Here we have expanded the branch into a surrounding hi-
erarchy where D1 supplies the {a,b} variables, D2 the {c}
variable and D3 the {d,e} variables. The branch test vari-
able is disregarded in the rest of this section. In figure 4A, we
have assumed that the branch has been constructed in such a
way that all variables read within the branch are led through
the branch split node. In figure 4B, a repeater node is added
for each of the source nodes of the branch split node that
produces variables that aze only read by one of the branches.
These repeater nodes are called R1 and R2 in the figure.
A repeater node copies its input variables to its output vari-
ables (according to the rmap variable map) if the value of
the repeater test variable (tvar) is equal to the value of its
polarity field (tpol). Otherwise it absorbs its input variables.
Repeater nodes for B1 must have the same polarity as the
branch split node and repeater nodes for B2 must have op-
posite polarity®.

Asgsume that we know that the left branch B1 is taken so
that the BS node does not communicate variables to B2. In
the un-transformed case in figure 4A, communication anal-
ysis shows that six variables cross the hardware/software
boundary because it is not recognized that {a,b} can be
communicated directly from D1 to B1. In the transformed
case in figure 4B, only two variables cross the hardware/soft-
ware boundary.

We find that a similar transf(}rmatlon is not needed for
the branch merge node because the two branches produce
equivalent sets of output variables.

Note that the B1 and B2 nodes are regarded as granules
in this example, If granularity selection has determined that
they should be expanded, this expansion must be performed
before the branch optimization so that repeater nodes are

3The unused variables {d1,e1,a2,b2} are assumed to be absorbed within the BS
node. Indeed, assuring this for all unused variables is another transformation that we
perform but which is not shown here.

#Note that the token flow semantics of the CDFG mean that we can nof use a simple
hyper edge instead of a repeater node. We should only direct variables (tokens) to the
active branch, and, for this, a repeater node is needed.

generated with respect to the nodes inside the branch hierar-
chies. In general, we have that hierarchical expansion must
be performed before transformation.

3.2.2 Transformation for shared variables

This section describes a transformation for those variables.
that are read by (and produced by) both branches, like ¢ in

- figure 4.

=

{a,b}

{a1,b1,c1,d%;

{f,a1

sW

A) -

B}

Figure 5: Transformation for shared variables. A) Original
branch structure. B) Transformed branch structure.

Consider-the branch structure in figure 5. Here the vari-
ables {a,b,c,d} are read by both branches. With the given
structure, it is not recognized that the (copies of the) vari-
ables {a,b} can be led directly from D1 to B1 and that the
(copies of the) variabies {c d} can be led directly from D2
to B2, If we assume again that the left branch B1 is taken,
we see for the structure in figure 5A that 9 variables must be
moved across the hardware/software boundary. In figure 5B,

_the BS and BM nodes have been split and communication

analysis now shows that only three variables {c¢1,d1,91}
have to be moved across the boundary. Notice how the f
and ¢ output variables are now led directly to D3 and D4.

Splitting of the BS node must.be performed for each of
its source nodes that produces at least one variable that is
read by both branches. Such a source node may also produce
variables that are only read by one of the branches. Such
variables are still transferred to the original branch split node
or to a repeater node, as described in section 3.2.1.

Splitting of the BM node is currently performed for each
of its sink nodes, If, however, several sink nodes share vari-
ables in their read sets, this leads to several branch merge
nodes that produce the same variable, Either, one of these
branch merge nodes must be selected as the sole producer of
such a variable, or the produced variables must be renamed,
as we do not support two nodes producing the same variable.
We use the last strategy.

3.3 Loops

We use- the structure shown in figure 6 to represent a full
loop. LB is the loop body that also prodiices the loop test
variable t. The loop is a REPEAT UNTIL loop® that executes
LB until the value of the test variable t is false. LE is a
multiplexer that initially, when t is false, directs the input

3A REPEAT UNTIL loop can always be transformed into a WHILE loop by enclosing
it in a conditional [2], so the graph structure can represent both kinds of loops.
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Figure 6: Basic structure of a full loop. A) Node view. B)
Expanded view.

variables of the full loop, {a0,b0,c0}, to LB, When t be-
comes true, it directs the output variables from the LX node,
{a3,b3,c3}, back into LB. A false token is assumed to have
been placed on the t edge of all LE nodes before execution
of the graph as to ensure that the loops start when they re-
ceive their first input variables. LX is also a multiplexer that
directs its input variables {a2,b2,c2} back to LE as long as
t is true and out of the loop (to Ho in the figure) when t
becomes faise.

We perform the single LE/LX node split transformation
shown in figure 7 in order to obtain a loop structure that
allows us to analyze communication between nodes within
the loop more accurately. This transformation is performed
with respect to the nodes within the loop as these nodes may
communicate a large number of times with the LE/LX nodes
while nodes outside of the loop only communicate one time
with the LE/LX nodes. The splitting is performed by produc-
ing one LE node for each of the sink nodes of the original
LE node and one LX node for each of the source nodes of
the original LX node. It may be the case that several nodes
within the loop read the same variable from the original LE
node, thus causing several LE nodes that produce the same
variable to be generated, This is currently handled the same
way as described in section 3.2.2, i.e. by variable renaming.

{80,b0,00 /

{ad,b3,0%}

’%
(b2) *(p9)
- @@

(ad,ha,c4}

SWiHW

A) B)

Figure 7: LE/LX node split transformation. A) Initial loop
structure. B) Resulting loop structure.

Figure 7B shows the resulting loop structure in which
it is apparent that only t needs to be transferred across the
hardware/software boundary for the given mapping. In fig-
ure 7A, we have that five variables must be transferred be-
tween hardware and software for each loop iteration.
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3.4 Transformation of the full graph

In order to obtain the full CDFG structure on which par-
titioning and analysis is to be performed, we first perform
a recursive hierarchical expansion of all hierarchical nodes
that should be expanded according to granularity selection.
This expansion includes a CDFG wide regeneration of hyper
edges. Thercafier, the branch and loop fransformations de-
scribed in the previous sections are performed for each loop
and branch structure, Furthermcre, we perform so-called
virtual expansion of functions where each function call is
fully expanded, i.e. (recursively) replaced with a copy of the
function implementation CDFG. During this expansion, for-
mal parameters of the function are recursively replaced with
actual parameters (yielding new names for variables on in-
put and output edges of the function graph) and internal edge
names of the CDFG made unique (as to avoid collision with
other virtually expanded instances of the same function}, so
that a correct data dependency analysis can be performed
with respect to nodes that feed the function cail and nodes
within the function. Function expanston is denoted virfual
as it is only performed in order to analyze communication
carrectly, not for mapping nodes of functions to processors
(i.e. we do not assume inlining of functions). Mapping of the
nodes of a function graph is performed only once, and this
mapping is retained for each of the nedes of each virtually
expanded instance of the function.

4 Conclusion

We have presented a coarse grain CDFG format that is use-
ful for performing hardware/software partitioning of control
intensive processes. We have shown that loop and condi-
tional structures can be specified at different levels of granu-
larity and that it is important to choose the right granularity
in order to be able to perform a correct communication anal-
ysis and an efficient exploration of implementation alterna-
tives for these structures. We have developed a tool that can
translate a VHDL process into this CDFG format and which
can perform the transformations described above. Future
work includes integrating this with hardware/software par-
titioning and communication estimation in the LYCOS [6]
co-synthesis system.
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