

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Graph based communication analysis for hardware/software codesign

Knudsen, Peter Voigt; Madsen, Jan

Published in:
Proceedings of the Seventh International Workshop on Hardware/Software Codesign, 1999. (CODES '99)

Link to article, DOI:
10.1109/HSC.1999.777407

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Knudsen, P. V., & Madsen, J. (1999). Graph based communication analysis for hardware/software codesign. In
Proceedings of the Seventh International Workshop on Hardware/Software Codesign, 1999. (CODES '99) (pp.
131-135). New York: IEEE. DOI: 10.1109/HSC.1999.777407

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13731875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/HSC.1999.777407
http://orbit.dtu.dk/en/publications/graph-based-communication-analysis-for-hardwaresoftware-codesign(66930923-682b-4263-a647-70123ce8cb50).html

Graph Based Communication Analysis for Hardware/Software Codesign

FL

Peter Voigt Knudsen and Jan Madsen
Department of Information Technology, Technical University of Denmark

pvk@it.dtu.dk, jan@it.dtu.dk

A whole loop node

Abstract
In this paper we present a coarse grain CDFG (ControVData
Flow Graph) model suitable for hardwarehftware partition-
ing of single processes and demonstrate how it is neces-
sary to perform various transformations on the graph struc-
ture before partitioning in order to achieve a structure that
allows for accurate estimation of communication overhead
between nodes mapped to different processors. In particu-
lar, we demonstrate how various transformations of control
structures can lead to a more accurate communication anal-
ysis and more efficient implementations. The purpose of the
transformations is to obtain a CDFG structure that is suffi-
ciently fine grained as to support a correct communication
analysis but not more fine grained than necessary as this will
increase partitioning and analysis time.

1 Introduction

In this paper we focus on communication analysis for hard-
ware/software partitioning of control-intensive applications
that are specified using hierarchy, functions, conditionals and
loops. In particular, we focus on the structures that imple-
ment control, i.e. conditionals and loops. These structures
are used to duect the flow of data between functional ele-
ments according to the values of test variables. As com-
munication overhead is an important factor to consider dur-
ing hardwardsoftware partitioning [4][5], the mapping of
these structures is thus important to analyze and optimize.
The presented CDFG model supports the exploration of var-
ious implementation alternatives for these structures through
conditional and loop transformations which will be demon-
strated in the following. Furthermore, it supports communi-
cation analysis for cross hierarchy communication through
hierarchical expunsion and for function calls through vir-
tual function expansion. Virtual function expansion is only
described briefly in this paper. The purpose of the transfor-
mations is to obtain aCDFG structure that is sufficiently fine
grained as to support a correct Communication analysis but
not more fine grained than necessary as this will increase
partitioning and analysis time.
Permission to make disital or hard copies of all or pari oftliis work for
personal or CI~SSIUDIII w e i s griinied wilhuut fcc provided ihai copier
arc not made 01 distnhiitcd for profit or commercial adwiiiege and ihai
copies hcai this notice and the full ciiaticm an t l ic first pgc. l o copy
utheiwisu, io republish, to post on sei~ers or to redistribute to lists,
rewires unor soecific ocrmisaion ond!or a fee.

Name
PURE-DFG
PULL.LOOP*
LOOP.BODY*
LOOP.ENTuY
LOOP-EXIl
FULL-BRANCH'
BRANCHBODY I *
BRANCH.BODYZ*
BRANCH-SPLIT
BRANCH.MEXDE
REPEATER
HIERJN
HIER.O"T
F".CCALL*
FUJN
FU-OUT
NOP
"Om

LB Loop body io&
LE Loop e n q node
U(hopexitnode
FB A full branch node
81 First branch body
BZ Second branch body
BS Branch variable split node
BM Branch variable merge no&
R Reoeaterno&
HI Hi&mhy input interface node
Ho Hierarchy output interface node
F Function call node
FI Function input laterface no&
Fa Fuuoction output interface node
N NOP (variable duplicator) node L Void node (vadable sink)

Table 1: Elements of NodeType. Hierarchical nodes are
marked with an asterisk(*).,

2 CDFG model
This section defines the CDFG model which is used to de-
scribe the functionality of a single process. It includes struc-
tures for basic arithmetic and logical operations, hierarchy,
conditionals, loops and functions and is as such sufficiently
expressive as to be able to represent universal computation
power [2] .

The CDFG can be denoted a high level CDFG as nodes
represent high level functions rather than simple operations,
either in the form of function calls or in the form of data
flow graphs (DFGs) containing simple arithmetic and logi-
cal operations and no control, and edges represent variable
sets that are communicated between the high level functions
rather than single variables.

Nodes can have different types, as defined in table 1. The
alias column defines short forms of the type names that will
be used in figures. Nodes are records that contain a number
of parameters, as defined in table 2.

Edges are also records and contain the parameters d e
fined in table 3. Edges can be either data or control edges, as
distinguished by the Edge'Type parameter.

The usage and meaning of the various noddedge types
and fields will be defined as they are used in the following
sections'.

'Only the parametus &at M relevant for this paper M shown in the &le. The
type (Variable 2 Variable) denotes a map (sometimes d k d dictionary) &at m a p s
variables to variables.

CQDES 199 Rome ;taly
Copyright ACM 1999 1-581 13-132-1199105 ... $5.00

131

Name Type

G K::L%Tet
w e 1 Variable-aet

subdfg OFG
war Variable
ip01 Boa1
bmapl VariablezVariable
bmap2 VariablezVariable
wmap VariablezVariable
map VariabIezVariable
map VariablwzVariablw

%& E 2

in [l] uses one control node for each variable in the sys-
tem, leading to a very large number of control nodes to con-
sider for partitioning. While this fine grain graph format
allows for maximum flexibility with respect to partitioning
control strnctures, it also complicates the graph and there-
fore increases analysis and partitioning time. Our graph for&
mat allows for exploring the whole range from using just
two large control nodes for each control conshuct to using
control nodes for each variable. In the following sections
we demonstrate how graphs with large control nodes can be
transformed into sufficiently fine grained structures that al-
low for better optimization of communication. These trans-
formations improve both efficiency of the final implementa-
tion and accuracy and efficiency of analysis. It is important
to note that, while the transformations allow for exploring
different implementation alternatives for loops and condi-
tionals, they should only be performed to the extent that the
synthesis tools are able to produce similar implementations.
If, for instance, the hardware synthesis tool can only produce
a coarse grain loop control implementation (i.e. using one
controller and single big mnltiplexers/demultiplexers), the
loop control nodes should not he transformed in the graph
prior to doing partitioning. The graph strncture must reflect
what is done in synthesis, even if what is done is not effi-
cient. For a further discussion of the relation between the
model domain and the implementation domain, please refer
to 141.

In the following, we first introduce a basic transforma-
tion called hierarchical wlparzrion which eases the analysis
of cross hierarchy communication and which is a prereqni-
site for performing the subsequently presented conditional
and loop transformations correctly.

3.1 Hierarchical expansion
Hierarchy is introduced by letting hierarchical nodes (those
marked with an asterisk in table 1) reference a CDFG. The
node H in figure 1A is such a hierarchical node. We use
double circles in figures to denote hierarchical nodes.

comment
The type of a node.
The set of variables read by B node.
The set of variables wdtten by a node.
TheCOFGthisnodeisapartof.
The subCOFG of a hierarchid node
The datalow graph of B OFG node.
The bmch, loop andrpt. nodetesrvadabla.
The a t vmiable paladty
Branch variablemapping for h o h bady 1.
Branch variablemapping for branch body 2.
Loop emy node variable mapphg.
Loop exit nodevariablemspplng
Repeater node variable mapping.

4 B)
Figure 1: Structure of a CDFG hierarchy. A) Atomic (node)
view. B) Expanded view.

All subgraphs of hierarchical nodes are polar graphs as
shown in figure 1B. D4 and D5 are DFGs and FB is a full
branch node whose sub-CDFG is not shown. We see that
the hierarchical node H in figure 1A is fed by three nodes
and feeds two nodes itself. The hierarchy CDFG of a hier-
archical node always contains a hierarchy input node Hi and
a hierarchy output node Ho. These nodes act as an interface
to the hierarchy and as placeholders for the variables that go

N a m
e E

snk
mrrel

132

Type CO-enf
td ryPe 0 an ge DATA or CONmOL). Node geTypw

Node
Variable-set

%node &t & k edge.
The node hat is fed by an edge.
The set of variables m f d on B data edge.

in and out of the hierarchy*. The write set of the Hi node
equals the set of variables that are read from outer hierar-
chies. The read set of the Ho node equals the set of variables
that are written to outer hierarchies. We assume that every
variable that is produced in a CDFG is unique with respect
to its name throughout the whole CDFG, i.e. throughout all
hierarchy levels of the CDFG.

As mentioned in [7], one of the first steps in the code-
sign process is to determine the granularity of the functional
specification that partitioning operates on. This can be done
in a number of ways [3][6][7], the simplest being hierarchi-
cal grunulariry selection [6] where we for each hierarchical
node determine whether it should be regarded as a granule
(i.e. atomic function which is not split across processors) or
whether we should replace the hierarchical node with the
contents of the hierarchy and thus make the input specifica-
tion more fine grained. Our graph structure supports com-
munication analysis for both cases. If the hierarchical node
H is to he regarded as a granule itself, we simply use the
input- and output hyper edges shown in figure 1A for com-
munication analysis for a particular processor mapping of
the node H. If the contents of the hierarchy is to be regarded

A) 6) i

Figure 2: One-level apamion of a hierarchical node. A)
CDFGprior to expansion of H. B) CDFG after expansion.

as granules, we perform hierarchical expansion in order to
be able to perform a correct data dependency analysis for
a particular mapping of the nodes inside and outside of the
hierarchy to different processors. This is shown in figure 2
where the hierarchical node H, corresponding to the hierar-
chy in figure lB, is expanded into its surrounding CDFG.
The expansion is a one-level expansion as the full branch
within the CDFG of node H is not expanded, but of course
expansion can be multi level. Note that when performing
hierarchical expansion, the Hi and Ho nodes are eliminated
and hyper edges are regenerated so that we can analyze the
(rue dependencies between the nodes inside the hierarchy
and the nodes outside the hierarchy.

In the example, D5 and D7 are placed in hardware while
the rest of the nodes are placed in software. This expansion,
for example, allows us to see that even though D7 reads three
variables, {f,i,j}, it only needs to have two variables {f,i}
transferred across the hardware/software boundary.

Note that it is legal for the same variable to be present on
several edges when more than one node reads the variable,
as it is the case for the variables b and f in the figure. When
several nodes that read such a shared variable are mapped
to another processor than the producing node is mapped to,

'This p k e s the hierarchy graphs polar and corresponds to the implementation of
hierarchy m thepow graph m d e l defined in 121.

there are several possibilities for scheduling the correspond-
ing edges. If dynamic memory storage on the receiving pro-
cessor allows it, the variable needs only be transferred once,
for the first scheduled node (D5, for the variable f). For sub-
sequent edges that contain the variable (the one from D4 to
D7 for f), such an already transferred variable can be re-
moved from variable set of each edge which decreases the
communication time of the edges and possibly allows snb-
sequent nodes (D7 for f) to be scheduled earlier. If memory
storage on the receiving processor is limited and memory
storage on the transmitting processor allows it, the variable
can be stored temporarily on the transmitting processor, re-
transmitted each time it is needed by a receiving node and
freed when the last receiving node has been scheduled. De-
termining the optimal timekpace mapping of shared vari-
ables can be done by introducing variable duplicator nodes
whose mapping and scheduling in effect determine in which
time slots the variables are :stored on which processors. This
is left to future work.

3.2 Branches
Branches or conditional structures are introduced by using
full branch, branch body 1, branch body 2, branch split and
branch merge nodes. A full branch hierarchical node is used
to encapsulate the whole branch. The basic structure of a
conditional is shown in figure 3.

&J "

A) 6)

Figure 3: Basic structure qfafull branch. A) Node view. B)
Expanded view.

The BS node is a branch split node that duplicates its
input variables and sends them to either B1 or 82, depending
on the value of the test variable (t in the figure). The BM
node is a branch merge node that selects the output variables
from either B1 or 82, also depending on-the value of the
test variable, and outputs ihe corresponding branch output
variables. The test variable is identified by the tvar field of
the BS and BM nodes. A test polarity parameter (tpol) of
the BS and BM nodes spec:ifies wbicb of the branches that is
taken if the test variable is true. If the test polarity is true, 81
is taken, otherwise 82. In order to keep track of how input
variables map to output variables of the BS and BM nodes,
we use the brnapl and bmap2 variable maps which define
the mappings for B1 and EI2, respectively. In the examples
we have used the intuitive mapping that a variable named x
outside of a branch maps to the variable XI in 61 and to x2
in 82.

133

3.2.1 Transformation for unshared variables
In figure 4A we see that the (copies of the) variables {a,b}
are used solely by B1 and {d,e} solely by B23. If the branch
is implemented using only a single BS node, such variables
must be led through the BS node which may be very ineffi-
cient, depending on the mapping of the BS node. Figure 4B
shows a transformation that allows such variables to be com-
municated directly from the= producing node to the branch
they are used in.

sw/ HW yo
A) B)

Figure 4: Transformation for unshared variables. A) Origi-
nal branch structure. B) Transformed branch structure.

Here we have expanded the branch into a surrounding hi-
erarchy where D1 supplies the {a,b} variables, D2 the {c}
variable and D3 the {d,e} variables. The branch test vari-
able is disregarded in the rest ofthis section. In figure 4A, we
have assumed that the branch has been constructed in such a
way that all variables read within the branch are led through
the branch split node. In figure 4B, a repeater node is added
for each of the source nodes of the branch split node that
produces variables that are only read by one of the branches.
These repeater nodes are called R1 and R2 in the figure.
A repeater node copies its input variables to its output vari-
ables (according to the rmap variable map) if the value of
the repeater test variable (War) is equal to the value of its
polarity field (tpol). Otherwise it absorbs its input variables.
Repeater nodes for 81 must have the same polarity as the
branch split node and repeater nodes for 82 must have op-
posite pokirity4.

Assume that we know that the left branch 61 is taken so
that the BS node does not communicate variables to 82. In
the un-transformed case in figure 4A, communication anal-
ysis shows that six variables cross the hardwardsoftware
boundary because it is not recognized that {a,b} can he
communicated directly from D l to 81. In the transformed
case in figure 4B, only two variables cross the hardware/soft-
ware boundary.

We find that a similar transformation is not needed for
the branch merge node because the two branches produce
equivalent sets of output variables.

Note that the B1 and 82 nodes are regarded as granules
in this example. If granularity selection has determined that
they should be expanded, this expansion must be performed
before the branch optimization so that repeater nodes are

unused variables {dl ,el .a2,b2} ace assumed to be absorbed wiUlin the BS
node. h d d , assuring this far all unused vsdables ia anoUlu mnfomtion fhaf we
perform but which is no1 shown here.

'NateUlatUlctokcnflowsemaoticsof~~CDFGmeanfhawecaonofuseasimple
h y p r edge instead of a repeater node. We should only direct variables (tokens) to the
activebranch,and,forthis,arepeaternodeisneeded.

generated with respect to the nodes inside the branch hierar-
chies. In general, we have that hierarchical expansion must
be performed before transformation.

3.2.2 Transformation for shared variables
This section describes a transformation for those variables
that are read by (and produced by) both branches, like c in
figure 4.

sw HW sw nw

A) 6)

Figure 5: Transformation for shared variables. A) Original
branch structure. B) Transformed branch structure.

Consider the branch structure in figure 5 . Here the vari-
ables {a,b,c,d} are read by both branches. With the given
structnre, it is not recognized that the (copies of the) van-
ables {a,b} can be led directly from D1 to B1 and that the
(copies of the) variables {c,d} can be led directly from D2
to 82. If we assume again that the left branch B1 is taken,
we see for the structure in figure 5A that 9 variables must be
moved across the hardware/software boundary. In figure 5B,
the BS and BM nodes have been split and communication
analysis now shows that only three variables {c l ,dl ,gl]
have to be moved across the boundary. Notice how the f
and g output variables are now led directly to D3 and D4.

Splitting of the BS node must be performed for each of
its source nodes that produces at least one variable that is
read by both branches. Such a source node may also produce
variables that are only read by one of the branches. Such
variables are still transferred to the original branch split node
or to a repeater node, as described in section 3.2.1.

Splitting of the BM node is currently performed for each
of its sink nodes. If, however, several sink nodes share vari-
ables in their read sets, this leads to several branch merge
nodes that produce the same variable. Either, one of these
branch merge nodes must be selected as the sole producer of
such a variable, or the produced vanables must be renamed,
as we do not support two nodes producing the same variable.
We use the last strategy.

3.3 Loops
We use the structure shown in figure 6 to represent a full
loop. LB IS the loop body that also produces the loop test
variable t. The loop is a REPEAT UNTIL loop5 that executes
LB until the value of the test variable t is false. LE is a
multiplexer that initially, when t is false, directs the input

134

LE (tl
(.3,WG3)

(*,,b,,d)

(*,b2,=21

*. -. ..p -. la%M,dl

A) B)

Figure 6: Basic structure of afull loop. A) Node view. B)
Expanded view.
variables of the full loop, {aO,bO,cO}, to LB. When t be-
comes true, it directs the output variables from the U(node,
{a3,b3,c3}, back into LB. A false token is assumed to have
been placed on the t edge of all LE nodes before execution
of the graph as to ensure that the loops start when they r e
ceive their first input variables. LX is also a multiplexer that
directs its input variables {a2,bZ,cZ) back to LE as long as
t is true and out of the loop (to Ho in the figure) when t
becomes false.

We perform the single LE/LX node split transformation
shown in figure I in order to obtain a loop structure that
allows us to analyze communication between nodes within
the loop more accurately. This transformation is performed
with respect to the nodes within the loop as these nodes may
communicate a large number of times with the LE/LX nodes
while nodes outside of the loop only communicate one time
with the LE/LX nodes. The splitting is performed by produc-
ing one LE node for each of the sink nodes of the original
LE node and one LX node for each of the source nodes of
the original LX node. It may be the case that several nodes
within the loop read the same variable from the original LE
node, thus causing several LE nodes that produce the same
variable to be generated. This is currently handled the same
way as described in section 3.2.2, i.e. by variable renaming.

Figure I: LERXnode split transformation. A) Initial loop
structure. B) Resulting loop structure.

Figure 7B shows the resulting loop structure in which
it is apparent that only t needs to be transferred across the
bardware/software boundary for the given mapping. In fig-
ure 7A, we haye that five vaiables must be transferred be-
tween hardware and software for each loop iteration.

3.4 Transformation of the full graph
In order to obtain the full CDFG structure on which par-
titioning and analysis is to be performed, we first perform
a recursive hierarchical expansion of all hierarchical nodes
that should be expanded according to granularity selection.
This expansion includes a CDFG wide regeneration of hyper
edges. Thereafter, the branch and loop transformations de-
scribed in the previous sections are performed for each loop
and branch structure. Furthermore, we perform so-called
virtual expansion of functims where each function call is
fully expanded, i.e. (recursively) replaced with a copy of the
function implementation CDFG. During this expansion, for-
mal parameters of the function are recursively replaced with
actual parameters (yielding new names for variables on in-
put and output edges of the function graph) and internal edge
names of the CDFG made unique (as to avoid collision with
other virtually expanded instances of the same function), so
that a correct data dependency analysis can be performed
with respect to nodes that feed the function call and nodes
within the function. Function expansion is denoted virtual
as it is only performed in order to analyze communication
correctly, not for mapping nodes of functions to processors
(i.e. we do not assume inlining of functions). Mapping of the
nodes of a function graph is performed only once, and this
mapping is retained for each of the nodes of each virtually
expanded instance of the function.
4 Conclusion

We have presented a coarse grain CDFG format that is use-
ful for performing hardware/software partitioning of control
intensive processes. We have shown that loop and condi-
tional structures can be specified at different levels of granu-
larity and that it is important to choose the right granularity
in order to be able to perfoim a correct communication anal-
ysis and an efficient exploration of implementation alterna-
tives for these structures. We have developed a tool that can
translate a VHDL process i.nto this CDFG format and which
can perform the transformations described above. Future
work includes integrating this with hardwarehoftware par-
titioning and communication estimation in the LYCOS [6]
co-synthesis system.

Acknowledgements
This work is supported by $he Danish National Center for IT
Research under grant no. CIT 149.
References

G. G. de long. Data flow saphs:
unrestricted semantics. In Proc.
, O D ,

system specification with the most
European DAC, pages 401 - 405,

[2] Gupta CO-Synthesis ofHardwnre and Sofnoare jor Digital E m
bedded3 stems. Kluwer Academic Publishers 1995.

[3] 1. Henkerand R. Emst. A Hardwarelsoftware ~ ~ t i o n e r Using A Dy-
namically Determined Granularity h PNC. 34th DAC, pages 691 -
696, 1997.

141 P. V. Knudsen and I. Madsen. Aspects of System Modelling in Hard-
ware/Software Partitioning. In Proc. 7th RSP Workshop., pages 18 -
23 1996.

[SI P. b. Knudsen and 1. Madsen. h t e p t i n g Communication Protowl
Selection with Partitioning in HardwardSofovare Codesign. In Pmc.
IlthlSSS, pa s 111 - 116 1998.

[6] 1. Madsen, Jp"Gro&, P. v' Knudsen, M. E. Petersen, and A. H a -
thausen. LYCOS: the Lynghy CO-Synthesis System. Design Automa-
tion orEmbeddedS stems 2(2):195 -235 1997.

Large Behavianl Pmcessw. In Pmc. 11th ISSS, pages 152 - 157,
1998.

[7] P. &d. A Three-& A&oach CO the kuncuond Partitioning of

135

