

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Object oriented machine learning with a multicore real-time java processor: short
paper

Pedersen, Rasmus Ulslev; Schoeberl, Martin

Published in:
Proceedings of the 8th International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2010)

Link to article, DOI:
10.1145/1850771.1850782

Publication date:
2010

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Pedersen, R. U., & Schoeberl, M. (2010). Object oriented machine learning with a multicore real-time java
processor: short paper. In Proceedings of the 8th International Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2010) (pp. 76-78). DOI: 10.1145/1850771.1850782

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13731865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/1850771.1850782
http://orbit.dtu.dk/en/publications/object-oriented-machine-learning-with-a-multicore-realtime-java-processor-short-paper(b3f9d9a7-bd92-4cc5-af72-55fb26fd48b2).html

Short Paper: Object Oriented Machine Learning with a
Multicore Real-Time Java Processor

Rasmus Ulslev Pedersen
Embedded Software Laboratory

Department of Informatics
Copenhagen Business School
2000 Frederiksberg, Denmark

rup.inf@cbs.dk

Martin Schoeberl
Department of Informatics and

Mathematical Modeling
Technical University of Denmark

masca@imm.dtu.dk

ABSTRACT
The term intelligent systems is spreading beyond the data
mining and machine learning communities. This presents
new challenges that are fundamental to classical problems
within object oriented programming and analysis. In this
paper we investigate the use of a popular intelligent algo-
rithm on a Java-based processor. The processor is a real-
time enabled processor implemented on an FPGA, and we
deploy a support vector machine on this processor. Further-
more, we show how this support vector machine can work on
the Java-processor’s multiple cores. This is a first step to-
ward understanding how intelligent algorithms can be imple-
mented on object-oriented Java systems with multiple cores
in a hard real-time environment. Our experiments show sig-
nificant speedup of the selected machine learning algorithm,
and this can potentially be useful for other intelligent algo-
rithms also.

1. INTRODUCTION
We explore machine learning on a multi-core version of the

Java Optimized Processor (JOP) [6]. A field-programmable
gate array (FPGA) can host up to 12 JOP cores. On each
of those cores, we can install a machine learning algorithm.
The intention is to speedup the machine learning and clas-
sification by parallelization on the multi-core system. The
synchronization of the critical collection of data is a negligi-
ble part of the overall computational process.

Support vector machines (SVM) are part of a family of
flexible machine learning algorithms for predicting struc-
tured objects and they are finding their way into mainstream
computer science [2] and into embedded systems [3]. We
use a standard dataset called Weather1 to demonstrate the
multicore-enabled SVM.

This paper describes a framework for using the SVM in
a distributed environment with an emphasis on constrained

1http://www.cs.waikato.ac.nz/~ml/weka/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’10 August 19–21, 2010 Prague, Czech Republic
Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

/∗∗
∗ Method getKernelOutput, which returns the kernel of two points .
∗
∗ @param i1 − index of alpha fp 1
∗ @param i2 − index of alpha fp 2
∗ @return kernel output
∗/

float getKernelOutputFloat(int i1 , int i2) {

kernelCalls ++;

return KFloat. kernel (i1 , i2);
}

Figure 1: Normal Java code for the getKernelOut-
putFloat

computing [4].
Statistical learning theory has had a profound impact on

learning theory over the last two decades, which is sup-
ported by the over 700 references at the SVM related site
www.kernel-machines.org. Statistical learning theory has
been developed and synthesized primarily by Vapnik [8]. He
led the work on the support vector algorithm upon which
this theory is based.

The paper is structured as follows. An overview of Sup-
port Vector Machines is presented in Section 2. We use
the Java optimized processor (JOP) as the implementation
platform, and this platform is introduced in Section 3. Ex-
perimental results are presented in Section 4, and the paper
is concluded in Section 5.

2. SUPPORT VECTOR MACHINES
The SVM is an algorithm that is based mainly on work

performed by Vladimir N. Vapnik and coworkers. It was pre-
sented in 1992 and has been the subject of much research
since. We look at the algorithm from an application view-
point and review its characteristics. A secondary purpose of
this review is to introduce the definitions that play a central
part in the following sections.

The SVM algorithm is a maximal margin algorithm. It
seeks to place a hyperplane between classes of points such
that the distance between the closest points are maximized.
It is equivalent to maximum separation of the distance be-
tween the convex hulls enclosing the class member points.
Vladimr Vapnik is respected as the researcher who primarily
laid the groundwork for the support vector algorithm.

Master Core
(Thread 1)

Core 2
(Thread 2)

Core 3
(Thread 3)

Core 4
(Thread 4)

System.in

System.out
Shared object

(synchronization)

Figure 2: Overview of JOP CMP example setup for
4 cores

The kernel function k is implemented in Java. Part of
the Java implementation is shown in Figure 1. The kernel
function takes two inputs and delegates the computation to
a static method kernel in class KFloat.

The functional output of the SVM formula is ±1, which
works as a classification or categorization of the unknown
datum x into either the + or − class. An SVM model is
constructed by summing a linear combination of training
data (historical data) in feature space. Feature space is im-
plicitly constructed by the use of kernels, k. A kernel is a dot
product, also known as an inner product, in a space that is
usually not of the same dimensionality as the original input
space unless the kernel is just the standard inner product
〈 , 〉.

The optimization problem is constructed by enforcing
|f(x,α, b)| = 1 for the support vectors. Support vectors
(SV), are those data, xi, which have active constraints,
αi > 0. If the data is not separable by a linear hyper-
plane in a kernel induced feature space, then it would not
be possible to solve the problem if there was not an upper
limit to the values of the active Lagrange multipliers. Con-
sequently, the constraint, C, ensures that the optimization
problem remains solvable.

3. THE JAVA OPTIMIZED PROCESSOR
The Java processor JOP [6] is a hardware implementation

of the Java virtual machine (JVM). JOP is open source un-
der the GNU GPL. Thus, it is freely available for research
and educational purposes. JOP can be used as a research
platform for low-level hardware development, system level
research within the implementation of the JVM, and real-
time application development for embedded Java. The most
popular platform for JOP is the Cyclone FPGA from Altera.
It is available from www.jopdesign.com.

We present our approach to embedded machine learning
on a chip-multiprocessor version [5] of the JOP [6]. JOP is
implemented in a field-programmable gate array (FPGA).
The maximum number of processing cores of the chip-multicore
(CMP) system depends on the size of the FPGA. Up to 8
cores fit into a medium sized low-cost FPGA (e.g., Altera
Cyclon-II EP2C35), as found on the Altera DE2 board.

In Figure 2, we can see how one core supports the de-
velopment process by providing System.in and System.out
streams. That communication responsibility is covered by
Thread 1.

To simplify the parallelization of the SVM algorithm we
have built a small executor framework. The client of the

framework has to create an executor with the problem size
n (independent units of work) and provide a class that im-
plements an interface with a single method execute(int nr).
This method implements the unit of work and is automat-
ically invoked by the framework n times. The framework
automatically distributes the workload to all available pro-
cessor cores. Therefore, several iterations of execute(int nr)
execute in parallel. Any access to shared data needs to be
properly synchronized.

Conceptually there is a single thread per core to execute
the workload. The executor framework is more lightweight
than starting a thread per unit of work. Our approach is
similar, but simpler, than the Executor framework intro-
duced in Java 1.5. The following listing shows the usage of
our executor framework.

public static void main(String [] args) {
Execute e = new Test();
ParallelExecutor pe = new ParallelExecutor ();
pe. executeParallel (e, Test.N);
Test. result ();

}

private static class Test implements Execute {
final static int N = 100;
static int a [] = new int[N];

// the work method for one iteration
public void execute(int nr) {

a[nr] = nr;
}

public static void result () {
for (int i=0; i<N; ++i) {

System.out. println (a[i]);
}

}
}

The parallelization takes place in the
∑l

i=1 part of the
SVM formula. The parallel execution framework calculates
the αiyik(xi,x) part for each support vector. After the
parallel part, the bias, b, is subtracted to reach the decision
if the point belongs to the negative instances or the positive
instances.

Algorithm 1 Classify point in parallel

Require: Trained SVM
Ensure: y = xn

fsvm ⇐ 0
for all support vectors (αi > 0) do
fsvm+ = y {executed in parallel}

end for
Consolidate

From Algorithm 1 it is evident that some first level opti-
mization is possible for the condition αi > 0. However, since
we do not know in advance how many support vectors we
have, this number is predetermined by the algorithmic de-
signer. It is not difficult to obtain, as it can be found during
the initialization phase for example.

4. EXPERIMENTS
In this section we demonstrate the worst case execution

time analysis of the SVM on JOP. The control flow graph
is created using the worst case execution time analysis tool
called WCA [7, 1].

Kernel counts (KC)

12000

14000

Kernel counts (KC)

10000

12000

14000

Kernel counts (KC)

6000

8000

10000

12000

14000

W

Kernel counts (KC)

Kernel counts

2000

4000

6000

8000

10000

12000

14000

W

Kernel counts (KC)

Kernel counts

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50

W

Kernel counts (KC)

Kernel counts

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50

W

KC

Kernel counts (KC)

Kernel counts

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50

W

KC

Kernel counts (KC)

Kernel counts

Figure 3: Optimization versus kernel counts

Cores Classification

1 1,216,203
2 665,340
3 550,155

Table 1: Execution time in clock cycles for different
number of cores on Weather data

The kernel code used to execute this example is introduced
in Section 2. We can see how the kernel method in KFloat
is converted to a control flow graph with basic blocks (code
with no branches) and interconnecting vertices depicting the
branches. Additional blocks are introduced for method in-
vokations.

The SVM algorithm trains to optimize the objective func-
tion. The kernel2 is a heavily accessed code section in any
SVM. We have plotted the kernel counts versus the opti-
mization function for the Weather data in Figure 3.

Using the JOP programs allow us to test the speed gains
of using multiple processor cores. The experiments have
been run in an FPGA platform with 1, 2, and 3 cores and
a time-predictable memory arbitration scheme between the
cores.

The speed gains on several cores, as shown in Table 1, are
considerable. Doubling the number of cores gives almost a
linear speedup. With three cores the bandwidth to main
memory limits the additional speedup. This is an indication
that more work on core local caches needs to be done on
JOP. In general it is a sign that the communication overhead
of running the multicore analysis is insignificant compared to
the reduction in cycles of spreading the work across several
processor cores. Figure 4 shows the speedup graphically.

5. CONCLUSION
In this paper we have taken the support vector machine

algorithm, and demonstrated how it can be used in a Java
multicore environment. The Java processor JOP is used as
the execution platform, and the code is analyzed for the
worst-case execution time. This is done for both a single
CPU and multiple cores. The algorithm is parallelized on
its most computational intensive points. We achieved linear
scalability for two cores, and presented for the first time one
of the most popular machine learning algorithms enabled

2a method called getKernelOutputFloat

!"#$%& !'(%&
)*)+*,-)
+.),/) *
00,)00 -
-**)** 1

)2*)+2*,-))
++02-1,)3/*.41*) *
00,2)00 *3*),+00* -

,5

*,,,,,5

1,,,,,5

+,,,,,5

/,,,,,5

),,,,,,5

)*,,,,,5

)1,,,,,5

)5 *5 -5

!"#$%&'

!()%&'

!"#$%&'*+,'-./'0!/'!()%&'

,5

,305

)5

)305

*5

*305

)5 *5 -5

12
%%
,3

2'

4356%)'(7'#()%&'

Figure 4: Speedup on Weather data with different
core configurations

for a real-time multicore execution environment. It is our
conclusion that objected oriented intelligent algorithms are
a subject of significant interest as we have demonstrated on
popular family of algorithms on the JOP CMP processor.

6. REFERENCES
[1] B. Huber. Worst-case execution time analysis for

real-time Java. Master’s thesis, Vienna University of
Technology, Austria, 2009.

[2] T. Joachims, T. Hofmann, Y. Yue, and C.-N. Yu.
Predicting structured objects with support vector
machines. Commun. ACM, 52(11):97–104, 2009.

[3] R. Pedersen and M. Schoeberl. An embedded support
vector machine. In Proceedings of the Fourth Workshop
on Intelligent Solutions in Embedded Systems (WISES
2006), pages 79–89, Vienna, Austria, June 2006.

[4] R. U. Pedersen. Using Support Vector Machines for
Distributed Machine Learning. PhD thesis, Dept. of
Computer Science, University of Copenhagen, 2005.

[5] C. Pitter and M. Schoeberl. A real-time Java
chip-multiprocessor. Trans. on Embedded Computing
Sys., accepted for publication, 2010.

[6] M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[7] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the 4th International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2006), pages 202–211, New
York, NY, USA, 2006. ACM Press.

[8] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, NY, 1995.

