

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Cyclic executive for safety-critical Java on chip-multiprocessors

Ravn, Anders P.; Schoeberl, Martin

Published in:
Proceedings of the 8th International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2010)

Link to article, DOI:
10.1145/1850771.1850779

Publication date:
2010

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Ravn, A. P., & Schoeberl, M. (2010). Cyclic executive for safety-critical Java on chip-multiprocessors. In
Proceedings of the 8th International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2010) (pp. 63-69). DOI: 10.1145/1850771.1850779

http://dx.doi.org/10.1145/1850771.1850779
http://orbit.dtu.dk/en/publications/cyclic-executive-for-safetycritical-java-on-chipmultiprocessors(b4875b8e-07b7-4930-9a19-cc8325d3390d).html

Cyclic Executive for Safety-Critical Java on
Chip-Multiprocessors

Anders P. Ravn
Department of Computer Science

Aalborg University
apr@cs.aau.dk

Martin Schoeberl
Department of Informatics and Mathematical

Modeling
Technical University of Denmark

masca@imm.dtu.dk

ABSTRACT
Chip-multiprocessors offer increased processing power at a low
cost. However, in order to use them for real-time systems, tasks
have to be scheduled efficiently and predictably. It is well-known
that finding optimal schedules is a computationally hard problem.
In this paper, we present a solution, that uses model checking to
find a static schedule, if one exists at all, which gives an imple-
mentation of a table driven multiprocessor scheduler. To evaluate
the proposed cyclic executive for multiprocessors we have imple-
mented it in the context of safety-critical Java on a Java processor.

1. INTRODUCTION
Cyclic executives have been used for decades to build safety-

critical real-time applications, because they are simple to under-
stand. They give a fully deterministic scheduler and avoid dynamic
locking of shared variables. It is well-known that the rigid disci-
pline of a static schedule comes at a cost in terms of restrictions on
the tasks to be periodic with reasonably aligned periods and small
variations in execution times. The behavior under overload con-
ditions is rather unpredictable as well. The pros and cons are well
known, and we have little to add to this debate, see eg. [10] for an il-
luminating discussion. In summary, a cyclic executive with a static
schedule has, compared to priority based preemptive scheduling,
the following advantages and disadvantages.

Advantages:

• Determinism

• Non-interference

• Predictable worst-case execution time (WCET) (e.g., caches
on preemption)

• Simple context switch because it happens at predefined points
of the program

• Fewer context switches because there are none caused by
preemption

• Simple dispatcher

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’10 August 19–21, 2010 Prague, Czech Republic
Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

Disadvantages:

• Constraints on periods

• Constraints on the maximal allowed WCET

• Frame overruns are poisonous

• No easy way to implement a bandwidth server

We find that from a programmers point of view, the constraints
on periods are the most problematic. Algorithms have to be artifi-
cially split into sub-tasks to enable the construction of a schedule.
When using the cyclic executive scheme on a chip-multiprocessor
(CMP) we would like to keep the advantages and relax some of
the constraints (disadvantages). The issue of restrictions of task
periods can be relaxed as longer tasks can run on their own pro-
cessor core, while on another core tasks with a shorter period can
be scheduled. Furthermore, the discipline of having minor frames
defined by the greatest common divisor (GCD) of periods can be re-
laxed even on a uni-processor. It was presumably used to ease man-
ual schedule generation or to use non-programmable, fixed rate,
coarse grained real-time clocks. However, both considerations are
not relevant these days.

Although dynamic scheduling offers greater flexibility, static
scheduling with cyclic executives continues to exist. Even in the
proposed safety-critical Java specification (SCJ) [5], the most con-
strained level, which should be particularly suited for certification,
prescribes the use of a cyclic executive. Thus, in order to com-
bine the processing power of a CMP with the assurances of a static
scheduling discipline, we explore the options and possible pitfalls
of a cyclic execution model on a shared memory CMP.

The contribution is a flexible static schedule that allows tasks to
be scheduled at varying points of time, thus avoiding the straight-
jacket of minor cycles. Furthermore, tasks are allowed to move
between processors between executions, which allows longer run-
ning tasks to interleave with shorter ones. An observation is that
the truly parallel execution relaxes some of the restrictions of the
cyclic executive model, for instant pointed out in [10]; but it also in-
troduces conflicts in access to shared data, which we solve through
additional constraints on the allowable schedules.

Schedule generation is done with a model checker, because the
problem is known to be NP-complete, so we may as well use tools
that are built to tackle such problems. Furthermore, as demon-
strated in the Times tool, a model checking engine is very useful
for analyzing scheduling problems where there are additional con-
straints on the tasks, e.g. dependencies.

In the following, we give a short background on related work
and the work on safety-critical Java, then we introduce the exe-
cution model in Section 3, followed by a description of schedule

generation in Section 4. Section 5 gives some initial results, and
Section 6 describes a concrete implementation for a Java enabled
CMP. The conclusion in Section 7 touches on the advantages for
precise worst-case execution time analysis of statically compiled
schedules.

2. RELATED WORK
Chip-multiprocessors have renewed interest in multi-processor

scheduling, which has been investigated by researchers over the
years. In our initial investigations, we have been assisted immensely
by a recent survey by Davis and Burns [4]. It is very comprehen-
sive and gives a taxonomy of scheduling methods, which we will
use in the following sections. However, the cyclic executive com-
putational model in general and on shared memory multiprocessors
has not received much attention in the academic world. It is pre-
sumably too simple to warrant much attention; nevertheless, Baker
and Shaw give a formal definition of a cyclic executive and provide
implementation suggestions within Ada [2]. In the survey men-
tioned above, an algorithm by Horn [7] to build a schedule for a
job shop problem is mentioned. It reformulates the problem as a
linear programming problem which has a polynomial time com-
plexity (cubic) in the lowest common multiple (LCM) of the task
periods. This algorithm can be adapted to independent cyclic tasks
with known periods and execution times. Yet, it does not seem to
have found much use.

Although not explicitly called a cyclic executive, the time-triggered
architecture (TTA) for distributed real-time systems [9] assumes a
static, cyclic task scheduling on the connected computing nodes.
The task schedule of all nodes is synchronized via a global time
base established with the time-triggered communication. This sched-
ule is generated using a heuristic algorithm [14]. Pop et. al use a
simulated annealing algorithm to find a schedule when an exhaus-
tive search is too expensive [13].

Besides using heuristics to solve the NP-hard scheduling prob-
lem, there exist approaches to use an exhaustive search for a sched-
ule generation. Yovine and associates have used their KKONOS
real-time model checker for such purposes in a similar way to ours,
see for instance [1] for a recent result. Also Metzner at. al solve
the task allocation problem for distributed real-time systems with a
SAT solver [11]. Realistic problem sizes (several computing nodes
and up to 50 tasks) can be solved within an hour. The scheduling
problem is transformed into a nonlinear integer optimization prob-
lem. The bounded integer values are replaced by boolean expres-
sions of the 2’s complement representation for the SAT solver. In
our approach with model checking, bounded integer variables and
the notation of time is directly supported by the timed-automata
model checker, UppAal.

Finally we have the Giotto framework [6] which uses static schedul-
ing within frames. However, this is primarily to prevent I/O-jitter.
In our approach, we see limitation of jitter as an additional con-
straint that may be added to the schedule generation algorithm.

2.1 Real-Time and Safety-Critical Java
Under the Java community process a new standard of Java for

safety-critical systems evolves [5]. Knowing that safety-critical
systems, and the certification effort, covers a broad range of dif-
ferent criticality levels, the standard defines three levels of compli-
ance: level 0 defines a cyclic executive, level 1 a single mission
under the regime of a preemptive scheduler, and level 2 supports
nested missions for more dynamic systems. It is perceived that a
higher level, supporting more dynamic systems, is either more ex-
pensive to certify or will be certified to a lower safety-critical level.

The Safety-Critical Java (SCJ) specification is a subset of the

Real-Time Specification for Java (RTSJ) [3]. The original RTSJ de-
fers the issue of several processors to the Java programming model
for thread scheduling. The SCJ expert group has pushed the con-
sideration of CMPs within the RTSJ. Wellings presented the first
proposal to adapt the RTSJ for multi-processors [18]. In the next
release of the RTSJ (JSR 282) each schedulable object can be as-
signed an affinity set to guide the real-time scheduler on which pro-
cessor cores the thread is eligible to execute. SCJ, as it is based on
the RTSJ, provides the same mechanism of affinity sets. In the cur-
rent version of the SCJ specification chip-multiprocessing is only
available for level 1 and 2. The expert group has decided to keep
level 0 as simple as possible and to avoid the complexity of true
concurrency. As already mentioned, Doug Locke compares the
cyclic executive with the preemptive tasking model [10]. He argues
for the preemptive tasking model even in safety-critical systems to
gain more flexibility and still be predictable. Despite his strong
opinion on preemptive scheduling, he suggested within the safety-
critical Java expert group to use a uniprocessor cyclic executive for
level 0.1

In summary, as the result by Horn suggests, and as the expe-
riences with TTA and Giotto indicate, there is no reason to con-
sider cyclic executives uninteresting or impractical. Also, modern
tools like model-checkers and SAT-solvers offer opportunities that
go much beyond a hand crafted minor-cycle/major-cycle schedule.

3. THE EXECUTION MODEL
The systems that we consider are in the classification of Davis

and Burns [4] called homogenous systems, because we consider M
identical processors.

The application consists of N periodic tasks τi with a period Ti
and a worst-case execution time (cost) Ci. Each release k of a task
can run on one of the M processor cores. The allocation aik of
release k of task τi is

aik ∈ P = {1 . . .M}
Note that this permits job-level migration. Disallowing migration
(aik = ail for all k, l) is an addtional option that reduces the set of
feasible schedules.

Compared to distributed or loosely coupled systems, task migra-
tion between cores on the same chip is cheap. And it offers some
flexibility. A minimal example of a task set that is schedulable with
task migration, but not without is as follows: Task A and B run 2
time units and have to be scheduled once every three time units.
Task C needs one time unit and has to be scheduled once every 1.5
time units. The schedule is:

core 0: C A A
core 1: B B C

This is different to the Giotto [6] model of computation, where each
task is bound to a host. However, Giotto’s main focus is on mode
switches, where mode changes are more loosely defined in SCJ.

Note that migration assumes that the processor clocks are syn-
chronized, because unsynchronized clocks would violate period
constraints of migrating tasks. However, to use scheduling con-
straints for task communication the same assumption is needed.
For CMPs this synchronization comes for almost free, because the
individual clocks can be driven from the same oscillator.

In the following, we consider a set of N periodic tasks, where
each task is characterized by its period T , its deadline, D and its
1Although one author is member of the SCJ expert group, this pa-
per does not reflect the current opinion of the expert group. It is
intended as a base for further discussions within the group.

WCET, C. Tasks are distinguished by indexes i and j in the follow-
ing, and k and l denote release instances and range over the natural
numbers.

A schedule is fully defined by: 1) the start times sik of the re-
leases of all tasks, with k = 0, . . . ,SCM1≤i≤N(Ti), where SCM is a
function that computes the smallest common multiple of its argu-
ments; and a processor assignment aik for a task for a given release.
Since the schedule is static and non-preemptive each processor has
to run an assigned task to completion, thus tasks assigned to a pro-
cessor cannot overlap:

i 6= j∧aik = a jl =⇒ [sik,sik +Ci]∩ [s jl ,s jl +Ci] = /0

A feasible schedule will allow computations to complete within
their deadlines, therefore the start times are further constrained by

kTi ≤ sik +Ci ≤ kTi +Di

Release jitter for task i may be bounded by bounding si(k+1)−
sik−Ti for all k.

3.1 Shared Resources
Resource sharing between tasks on a uniprocessor with a cyclic

executive is trivial: the whole task is a non-interruptible critical
section. On a multiprocessor system this assumption does not hold
anymore. There are following options:

• Use precedence constraints between tasks in generating the
schedule

• Use the simple task model, read - execute - write , and con-
strain only the presumably short read and write sections.

• Use non-blocking queues between individual tasks

• Implement a transaction model, which is far from simple

• Implement dynamic locks (Java synchronized). However then
the schedule is disturbed and there is not much win compared
to preemptive multitasking

In our implementation, we use constraints when generating the
schedule. Resources are modelled by boolean values Rv, v∈ 0, . . . ,V .
When a task i is executing, it has a given set of used resources
CLAIMi which does not vary between releases. Two tasks interfere
if they use the same resources, e.g. one of them writes and the sec-
ond either reads or writes to the same data structure. If two tasks
interfere, they are not allowed to execute in parallel

i 6= j∧CLAIMi∩CLAIM j =⇒ [sik,sik +Ci]∩ [s jl ,s jl +Ci] = /0

We have also included a schedule generation for the simple task
model which essentially implements a readers-writers algorithm for
access to the global shared resource.

4. FINDING A SCHEDULE
To find a schedule with model checking, each task is represented

by an automaton. Figure 1 shows a simple version of the task
model. The task model is not application specific; it represents
each task of the application automaton for task τi is parameterized
with the period Ti, the execution time Ci. and the deadline D.

The model uses two local clocks: t represents the real time elaps-
ing during one period T of the task and r represents the execution
time; both are initially 0. All tasks start at location Start. In this
simple model all tasks become ready at the start of the schedule.
Start offsets can be introduced in a transition from the location

Figure 1: Simple model of a task

Start, if needed. Here, they start immediately, as Start is marked
with a C for committed. It means that it will take an atomic step to
the next location, Ready.

A task must transit from Ready to Running at the latest when the
remaining time corresponds to the deadline minus the cost. This is
given by the invariant t <= D-C. In order to leave, the task needs a
processor, and as the number of free processors is modelled by a
global counter p, the transition to running has the guard p > 0. If
the transition is taken, p is updated and r is reset.

The task stays in state Running for the full execution time, the
invariant r <= C and the guard t <= D && r == C on the transition to
Idle, unless its deadline is violated, the guard t > D on the transition
to Fail. In case of a deadline miss, the global variable failed is set.

If the schedule is still good, the number of free processors is
increased on the transition to Idle, where the task waits for the next
release, due to the invariant t <= T and the guard t == T.

When a number of task automata are put in parallel, they spec-
ify a given task set. But notice that there is no scheduler, they are
free to move between Ready and Running as long as the guards
and invariants are satisfied. The model checker needs this benefi-
cial non-determinism to check whether there is a feasible schedule.
With UppAal a schedule is generated by verifying that there exists
a sequence of transitions (the modality E) that includes a state (the
modality <>) such that a running global clock gt has advanced to
the hypercycle (HC = SCM(Ti)) and failed is never set.

E<> gt = HC() and not failed

UppAal can generate a trace for one possible schedule during the
verification of this property. This trace is the static schedule and
can be run by the simulator or read out by other tools.

As an example for a generated schedule we use the task set of
three tasks that need task migration between two processors to be
schedulable. For this we set up the parameters as follows:

/* Processor configuration */
const int M =2; // Number of processors
typedef int[0,M] Processors;
Processors p = M; // Number of free processors

/* Task Configuration */
typedef struct{int T; int D; int C;} ReleaseParameters;

const int N = 3; // Number of tasks
typedef int[0,N-1] Id;

Time Processor 1 Processor 2

0 τ0 τ1
1 τ2 . . .
2
3 . . . τ0

Table 1: Schedule for the example task set

typedef ReleaseParameters TaskSet[N];

const TaskSet TS = {
{ 2, 2, 1},
{ 4, 4, 3},
{ 4, 4, 3} };

The example is then instantiated by

Task(const Id id) = SimpleProcess(id, TS[id].T,
TS[id].D, TS[id].C);

system Task;

where the system Task statement defines the network by iterating
over the set of possible ID’s.

The model checker can be called with several options that deter-
mines the strategy and the result. In general, for these experiments,
we use a search strategy which is randomized, depth first. It will
return the schedule given in Table 1. It turns out that the deadline
for one, and just one, of the long running tasks can be lowered to 3,
thus requiring it to run immediately when released.

4.1 Constraints on Shared Resources
Shared resources are in this model represented by a global bit

vector free and each task has its bit vector CLAIM. In the automaton,
the guard on the transition from Ready to Running is strengthened
with (CLAIM & free) == CLAIM, which ensures that the resources
are available, and the update free -= CLAIM to claim them. When
leaving for Idle, they are released by the update free += CLAIM.

Adding resource constraints reduces the possible parallelism of
the task set. Especially when the main execution time of a task is
spent without accessing shared resources. To increase parallelism a
task can be structured to represent a simple task [8]. A simple task
has three phases: (1) read global state, (2) execute, and (3) write
global state. If the former cyclic task is split into three subtasks,
the individual tasks are less constrained relative to other tasks. The
read task interferes only with tasks that write data, only the write
task needs mutual exclusion. In essence, a readers-writers synchro-
nization can be used. A simple version is shown in Figure 2

In this simple model, we assume that there is only one global
resource. The number of readers is counted in rd and a write is
counted in wr. There are now two additional locations P1 and P2
where a tasks is ready, but may be blocked waiting for access. The
time for reding is given by a global constant RC and the time for
writing is another constant WC.

The splitting of tasks into the read-execute-write subtasks can
be combined with the resource control with the resource vector
CLAIM. Using individual resource flags of CLAIM for the read and
write tasks increases the schedulability of the tasks compared to a
single global resource.

4.2 Controlling Jitter
A concern with the generated schedule could be that, the release

jitter is too large. This can be controlled by constraining the run-
ning clock r <= T+J on the transition from Ready to Running. That

Figure 2: A task model with read, execute, and write phases

will keep the release jitter, the time spent in Ready below a con-
stant J except for the first release. Jitter at the first release can be
controlled by adding a release offset on the transition from Start to
Ready.

4.3 Further Constraints
The models can be further specialized in several directions. One

could introduce processor pinning, by replacing the simple counter
p with a bit vector analogous to the encoding of resource constraints
in a claim. Task communication or event triggering can be mod-
elled by introducing synchronization channels.

Constraints are in general beneficial, because they constrain the
search space for the model checker, but they complicate applica-
tions. A further danger is that they may introduce deadlocks among
the tasks. Here one could use the model checker to check for ab-
sence of deadlocks. This is not necessary for the models introduced
here. They will deadlock or more precisely time-lock just when
given incompatible parameter values: D < C , T < C, or T < D.

However, we will leave these modifications for future users and
proceed to implementation of the executive and experiments with
realistic task sets.

5. UPPAAL RUNTIME EXPERIMENTS
In order to see whether the schedule generation approach will

work in practice, we have taken a 16 task workload from the real-
time control of an outdoor autonomous vehicle that was developed
some years ago. The parameters are as follows:

const TaskSet TS = {
/* T D C */
{ 100, 100, 3}, // FO Gyro
{ 50, 50, 2}, // Magnetometer
{1000, 200, 8}, // GPS
{ 500, 200, 6}, // Sonar
{ 50, 50, 10}, // Vision
{ 50, 50, 2}, // Operator Input
{ 500, 500, 10}, // Log
{ 20, 20, 3}, // Supervisor
{ 50, 50, 2}, // Wheel drive 1
{ 50, 50, 2}, // Wheel steer
{ 50, 50, 2}, // Wheel drive 2
{ 50, 50, 2}, // Wheel steer
{ 50, 50, 2}, // Wheel drive 3
{ 50, 50, 2}, // Wheel steer
{ 50, 50, 2}, // Wheel drive 4
{ 50, 50, 2} /* Wheel steer */ };

The utilization is 0.82 and a schedule for it is found in seconds.
A variant, to check the behaviour when the minor cycle is exceeded
is given by changing C = 8 to C = 17 for the GPS task. Again a
feasible schedule is found in a short time. Additionally, one can do
the same for the Log task, and increase from C = 10 to C = 17. A
feasible schedule is found within minutes. To see, which load can
be accommodated, the cost C of the supervisor is increased - for C
= 6 (utilization 0.97) the task set is still feasible! But then UppAal
runs for about 10 minutes on a lap-top.

In order to check a dual processor solution, we used the follow-
ing modified version

const TaskSet TS = {
/* T D C */
{ 100, 100, 3+3}, // FO Gyro
{ 50, 50, 3}, // Magnetometer
{ 400, 200, 8}, // GPS was T = 1000
{ 400, 200, 6}, // Sonar was T = 500
{ 50, 50, 10}, // Vision was T = 500
{ 50, 50, 2}, // Operator Input
{ 400, 400, 10}, // Log
{ 20, 20, 3}, // Supervisor
{ 40, 40, 5}, // Wheel drive 1
{ 40, 40, 3}, // Wheel steer
{ 40, 40, 5}, // Wheel drive 2
{ 40, 40, 3}, // Wheel steer
{ 40, 40, 5}, // Wheel drive 3
{ 40, 40, 3}, // Wheel steer
{ 40, 40, 5}, // Wheel drive 4
{ 40, 40, 3} /* Wheel steer */ };

It has an utilization of 1.34. By mistake, the set was checked
with one processor only, and that ran for hours without termination.
This gives an indication of the huge state space that may have to be
searched if there is no feasible solution. With two processors, a
schedule is generated within seconds. However, it is unrealistic
that there are no shared resources. Thus we added the following
plausible resource constraints:

/* Resources
0 SensorReadings
1 GPS
2 Vision
3 Log
4 Drives and Steer
*/
const ResourceSet CLAIM[N] = {
(1<<0)+(0<<1)+(0<<2)+(0<<3)+(0<<4), // FO Gyro
(1<<0)+(0<<1)+(0<<2)+(0<<3)+(0<<4), // Magnetometer
(0<<0)+(1<<1)+(0<<2)+(0<<3)+(0<<4), // GPS
(1<<0)+(0<<1)+(0<<2)+(0<<3)+(0<<4), // Sonar
(0<<0)+(0<<1)+(1<<2)+(0<<3)+(0<<4), // Vision
(0<<0)+(0<<1)+(0<<2)+(1<<3)+(0<<4), // Log
(1<<0)+(1<<1)+(1<<2)+(1<<3)+(1<<4), // Supervisor

(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4), // Wheel drive 1
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4), // Wheel steer
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4),
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4),
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4),
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4),
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4),
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4),
(0<<0)+(0<<1)+(0<<2)+(0<<3)+(1<<4) ;

Here it takes about 15 minutes to generate a schedule. An at-
tempt to increase the interference even more by increasing the run
time for the Supervisor to 7 did not give any result after an hour.

The test case was also used, without the claims, in an experiment
with the simple process model with a single region guarded by the
readers-writers algorithm. Here it took about 30 minutes to find a
feasible schedule.

6. IMPLEMENTATION
To verify that the proposed CMP cyclic executive results in a

simple, easy to analyze system we have implemented the CMP
cyclic executive on a Java processor.

6.1 System Prerequisites
One attractive property of a cyclic executive is that it does not

need to deal with preemption and needs no interrupt from a timer.
Only access to a passive clock is needed to release the individual
tasks at the preplanned points in time. The more fine grain the clock
resolution is the more flexibility is available for generation of the
schedule. Former use of minor frames as basis for the static sched-
ule where probably also motivated by the course grain granularity
of the available clock (besides simplification of manually generated
schedules).

A passive clock that ticks with the processor frequency is usually
available in modern processors for embedded systems. On CMP ar-
chitectures the individual clocks are driven by the same oscillator
and they will not drift in relation to each other. We assume that
frequency scaling is not used in a safety-critical system. On re-
maining issue is that the individual processor clock may not start
at the same tie instant, due to the processor startup sequence. In
that case a clock synchronization algorithm to measure the offsets
of the individual ticks needs to be performed before mission start.

6.2 Implementation on JOP
We have implemented the proposed CMP cyclic executive sched-

uler in the context of SCJ on a CMP version of JOP [15, 12].
The scheduler is implemented in plain Java. All access to system
level I/O devices are performed via hardware objects [16]. For the
scheduling of the tasks only a passive, for all cores synchronous
time base is needed. In the case of JOP, all cores have a local clock
that ticks at 1 MHz for the scheduling decisions. The clocks start
synchronous and are based on the same clock input.

If we want to achieve a tighter release jitter we can use the clock
tick counter on JOP. For an extreme low jitter on the release (single
cycle) a deadline instruction, which is available on JOP [17], can
be used. A deadline instruction performs a busy wait in hardware
until a programmed clock tick. With this hardware supported wait
operations can be timed with processor clock resolution.

The CMP version of JOP boots with a single core that executes
the main method. The other cores are running idle till enabled. The
method that will be executed by the other cores is a Runnable that is
set via a system function. Those Runnables contain the core local
schedulers. At mission start the other cores are enabled and will
start their schedules.

Runnable r1 = new Task(1, new RelativeTime(100, 0));
Runnable r2 = new Task(2, new RelativeTime(300, 0));
Runnable r3 = new Task(3, new RelativeTime(300, 0));

CyclicSchedule.Frame frame0[] = {
new CyclicSchedule.Frame(

new RelativeTime(50, 0), printer),
};

CyclicSchedule.Frame frame1[] = {
new CyclicSchedule.Frame(

new RelativeTime(100, 0), r1),
new CyclicSchedule.Frame(

new RelativeTime(300, 0), r3),
};

CyclicSchedule.Frame frame2[] = {
new CyclicSchedule.Frame(

new RelativeTime(300, 0), r2),
new CyclicSchedule.Frame(

new RelativeTime(100, 0), r1),
};

CyclicSchedule.Frame cmpSchedule[][] =
{frame0, frame1, frame2};

CyclicSchedule sch = new CyclicSchedule(cmpSchedule);

Figure 3: Schedule definition of 4 tasks on 3 CPUs

The actual scheduler for the static cyclic executive is just a few
tens lines of Java code and therefore too trivial to be described in
the paper. However, the triviality of such a scheduler is a good
argument for a cyclic executive for safety-critical systems. The
complex part of generating the schedule is done offline, which will
simplify the certification process.

The scheduler also contains detection of deadline overrun. On
a overrun no task is interrupted, but the fact can be queried by the
application.

In order to have a coherent view of the main memory, it must
be ensured that the content of the main memory is updated. In
standard Java, with properly synchronized code, this update may
be performed on access to volatile variables and at synchronized
blocks and methods. In our implementation we enforce the co-
herence by accessing a volatile variable before each task release.
Therefore, the handling of synchronized methods and code blocks
can be simplified in the JVM implementation.

6.3 A Simple Example
Figure 3 shows the usage of the cyclic executive framework. The

tasks r1, r2, and r3 represent the example from Table 1, where one
task needs to migrate between two CPUs. The tasks just add a Hello
message to a output queue and simulate execution by a busy wait
for their actual cost (100 and 300 ms). Additionally to this task set
a printout task (printer) executes on core 0 and takes the messages
from the queue and prints them to the console. In the current JOP
CMP system only core 0, which also performs the system startup,
is connected to I/O devices.

Figure 4 shows the output from the run of the example. Each
tasks prints a message containing it’s ID and on which processor it
is actually running. From the output we can see that task t1 alter-
nates between CPU 1 and CPU 2.

The example shows also a possible optimization to save space in
the scheduling table. The individual cyclic schedules do not need
to be all the same length. Just the longest schedule has to be a
multiple of all other schedules. In the example the major period is

JOP start V 20091128
60 MHz, 1024 KB RAM, 1024 Byte on-chip RAM, 3 CPUs
A CPM cyclic executive scheduler example:
Hello from task t2 on CPU 2
Hello from task t1 on CPU 1
Hello from task t3 on CPU 1
Hello from task t1 on CPU 2
Hello from task t2 on CPU 2
Hello from task t1 on CPU 1
Hello from task t3 on CPU 1
Hello from task t1 on CPU 2
Hello from task t1 on CPU 1
Hello from task t2 on CPU 2
...

Figure 4: Console output of the example

400 ms, but the scheduler for CPU 0 contains only a single task that
is executed every 50 ms. The longer schedule is a multiple of the
CPU 0 schedule.

6.4 Departures From the SCJ Specification
The proposed cyclic executive API departs from the actual SCJ

specification level 0 in following points:

CMP Chip-multiprocessors are not considered for level 0 of SCJ.
Relaxing this restriction is the topic of the paper. To avoid
multi-processing at SCJ level 0, the application just has to
use a uniprocessor or use only one available processor in the
static schedule.

Runnable In SCJ all tasks are represented as bound asynchronous
event handlers with a period and a priority. In level 0 those
two parameters are simply ignored as the schedule is given
explicitly. In our implementation we used simple Runnables,
a standard Java interface, for the application tasks. We argue
that information that is not used represents dead code, which
shall be avoided in certifiable applications. The Runnables
of a level o application can easily be used at level 1 or 2 by
invoking run() from a handler with the proper release param-
eters.

Task migration SCJ disallows task migration in level 1 to sim-
plify the scheduling analysis and the scheduler itself. For
a cyclic executive task migration can be handled easily and
gives more freedom in the generation of the static schedule.

Frame data structure In SCJ a frame contains an array of han-
dlers that are released in sequence within one time frame. In
our definition of a Frame only a single Runnable can be de-
fined. The argument for a set of handlers is to allow more
flexibility in the task scheduling when it is known that tasks
need different execution times in different application modes.
However, this array of handlers just clutters the code to define
the cyclic executive schedule. If this flexibility is needed, it
can be easily implemented by defining a single handles that
invokes the array of handlers that shall be executed in a single
frame.

Overrun Even if WCET analysis shall be used to avoid any dead-
line misses the detection of overruns is usually part of cyclic
executives. Therefore, we support the (late) detection of over-
runs. It can be queried from the application by a static method
in the scheduler.

Current processor For testing it might be interesting that a task
knows on which CPU it is running. Therefore, we have
added a static method getCurrentProcessor() to the sched-
uler.

7. DISCUSSION AND CONCLUSION
We have presented an implementation of cyclic executives for

chip-multiprocessors targeted for safety-critical applications where
simplicity and predictability is of utmost importance. Schedules are
generated using the facilities of the model checker Uppaal, where
tasks are modelled by simple timed automata. Two extended mod-
els that handle resource constraints through static schedules are pre-
sented as well. Experiments with a realistic case of 16 tasks shows
that the approach is feasible.

There is some indication that resource constraints makes it clearly
more difficult to find schedules. Thus, for short critical sections, it
may be more advantageous to use a spin-lock and increase the cost
with a busy wait time corresponding to the cost of the critical sec-
tion times the M−1, recall that M is the number of processors.

Further work include more systematic experiments to compare
with uniprocessor preemptive scheduling, and preemptive schedul-
ing on a multi-processor with static task partitioning and global
scheduling. For that purpose, we intend to develop a parameterized
version of the case study used in these experiments. Hopefully it
can be reused as a benchmark for the kind of small to moderately
large applications that are found in industry.

Acknowledgement
The comments of the reviewers have been very helpful in prepar-
ing the final version of the paper. This research has received partial
funding from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement number 216682
(JEOPARD).

8. REFERENCES
[1] Ismail Assayad and Sergio Yovine. Modelling and

exploration environment for application specific
multiprocessor systems. High-Assurance Systems
Engineering, IEEE International Symposium on, 0:433–434,
2007.

[2] Theodore P. Baker and Alan C. Shaw. The cyclic executive
model and Ada. Real-Time Systems, 1(1):7–25, 1989.

[3] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The Real-Time
Specification for Java. Java Series. Addison-Wesley, June
2000.

[4] Robert I. Davis and Alan Burns. A survey of hard real-time
scheduling algorithms and schedulability analysis techniques
for multiprocessor systems. Technical report, University of
York, 2009.

[5] Thomas Henties, James J. Hunt, Doug Locke, Kelvin Nilsen,
Martin Schoeberl, and Jan Vitek. Java for safety-critical
applications. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled Systems
(SafeCert 2009), York, United Kingdom, Mar. 2009.

[6] Thomas A. Henzinger, Benjamin Horowitz, and
Christoph M. Kirsch. Giotto: A time-triggered language for
embedded programming. Proceedings of the IEEE,
91(1):84–99, 2003.

[7] W. A. Horn. Some simple scheduling algorithms. Naval
Research Logistics Quarterly, 21:177–185, 1974.

[8] Herman Kopetz. Real-Time Systems. Kluwer Academic,
Boston, MA, USA, 1997.

[9] Hermann Kopetz and Günther Bauer. The time-triggered
architecture. Proceedings of the IEEE, 91(1):112–126, 2003.

[10] C. Douglas Locke. Software architecture for hard real-time
applications: Cyclic executives vs. fixed priority executives.
Real-Time Systems, 4(1):37–53, 1992.

[11] A. Metzner, M. Franzle, C. Herde, and I. Stierand.
Scheduling distributed real-time systems by satisfiability
checking. In Embedded and Real-Time Computing Systems
and Applications, 2005. Proceedings. 11th IEEE
International Conference on, pages 409 – 415, 17-19 2005.

[12] Christof Pitter and Martin Schoeberl. A real-time Java
chip-multiprocessor. Trans. on Embedded Computing Sys.,
accepted for publication, 2010.

[13] P. Pop, P. Eles, and Z. Peng. Scheduling with optimized
communication for time-triggered embedded systems. In
Proceedings of the 7th International Workshop on
Hardware/Software Codesign (CODES99), pages 178–182,
New York, May 3–5 1999. ACM Press.

[14] Klaus Schild and Jörg Würtz. Off-line scheduling of a
real-time system. In SAC ’98: Proceedings of the 1998 ACM
symposium on Applied Computing, pages 29–38, New York,
NY, USA, 1998. ACM.

[15] Martin Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[16] Martin Schoeberl, Stephan Korsholm, Tomas Kalibera, and
Anders P. Ravn. A hardware abstraction layer in Java. Trans.
on Embedded Computing Sys., accepted, 2010.

[17] Martin Schoeberl, Hiren D. Patel, and Edward A. Lee. Fun
with a deadline instruction. Technical Report
UCB/EECS-2009-149, EECS Department, University of
California, Berkeley, October 2009.

[18] Andy J. Wellings. Multiprocessors and the real-time
specification for java. In Proceedings of the 11th IEEE
International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing ISORC-2008, pages 255–261. Computer Society,
IEEE, IEEE, May 2008.

