

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A Theory Based Introductory Programming Course

Hansen, Michael Reichhardt; Kristensen, Jens Thyge; Rischel, Hans

Published in:
Frontiers in Education

Link to article, DOI:
10.1109/FIE.1999.839230

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hansen, M. R., Kristensen, J. T., & Rischel, H. (1999). A Theory Based Introductory Programming Course. In
Frontiers in Education IEEE. DOI: 10.1109/FIE.1999.839230

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13731812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/FIE.1999.839230
http://orbit.dtu.dk/en/publications/a-theory-based-introductory-programming-course(0130464f-efc1-4eb2-8892-a6c60363146b).html

Session l l b 4

A Thcory-Based Introductory Programming Course

Michael R. Hansen, Jens Thyge Kristensen and Hans Iiischel
Technical University of Denmark, DK-2800 Lpngbjy

{ mrh j tk,riuchel}Qi t .dtu.dk

Abstract - This puper p k e n t s an inatmductop~ pro-
grammirig courssc designed to teracla programming as an
intellectual activity. The course emphasizes undem.8tmd-
able concepts which can be useful an designing progmmg,
while the odditaes of today’s technology are considered of
secondary importance. An important goal is to f ight the
trial-and-error nppmncls to pmgrananaang which is n 9Wt&

of the students batties witli horribly designed and ~ O C U -

mcntcd sustenas and languages prior to their studies at
university. Instead we strive for giving the students a
good esperdence of pragramnii~~g a-5 a sptemntic, intellec-
tual activity whcre the solution of U progmmming problem
can be described in an uoderstmndahle way. The approach
i.7 dktstrated by ian example which is a commented soiu-
lion of a problem p o a d t o thc students in the course.

Keywords - Introductory programming, curriculum

1. Introduction
Wc present the rakionale behind t l w introductory pro-
gramming c ~ u r s c in t,he Informatics Programme at the
Technical University of Denmark. The developmenC of
this coiirsc fitartcd in 1992 and has now resulted in the
hook ‘‘Introduction to Progrmwning using SML” pub
lishcd hy Addison Wesley Longman in 1999 [4].

Students prior experlcnccs with software: Saftware-
controllcd systcms and programmable computers WO

found evcrywhcrc in our daily life. The TV-set and the
video recorder arc controllcd by programs. Programs can
be found on tlm Wcb or created using the PC. However,
softwart! appt!ibrs iLs a niybkriuus and iricompr eheriaillc
technology - despite tho widespread use.

Far example, when adjusting the channels on your TV
you will play with tho buttons on t-he remote control un-
ti1 you succeed - you know by experience that it would
bc waste nf time to try to understand the manual. when
introducctl to programming the high-school students gct
the same kind of cxpcricncc: Programmiilg tools and sys-
tcmR are badIy documented and cvm badly designed, so
it is mwh easier to experiment -. rather than try to got
a systematic undcrstanding.

The corc of thc problem is ihat programs and bystems
are so complicated and strange that analysis is not pos-
sible, and the only way to work is in a trial-and-error
manncr.

0-7803~5643-8/911/$10,00 0 1999 WEE

Thus, many st,udents have sxpericnces with program-
ming systems which can he surri~~iarized as:

The systcmv and the programrning languages are in-
camprehensiblo and their behaviour is unpredictable.

By enough cxpcrirnents one can get them to work -
but there is no point in trying to get a clear understand-
ing of them.

This negative picture reflects the immature and poor
state of todays software technology. In our teaching at
the university wc ham to cope with this fact of life x
it is thc starting point for our students - but we should
strive for an education of our students which could help
improving software technology in the futuro.

The first programming course: W h n students enter
university they have already a lot of experience with pro-
grams and programming as described above. They know
programming as a purely experimental activity, and they
are looking forward to learn more “tricks”. They do riot
expect programming to be a “subjcctl’ (like Mathematics
or Physics) with theories and conccpts of its own, inde-
pendent of todays technology.

The first coursc in R larger computer science curricu-
!urn should in our opinion fight these (mis)conccpt,ionfi
and teach thr! RtltdCntS an in te l lect id approach t,n pro-
gramming right from the beginning. Thc challenge is to
tcacli the students to appreciate and strive for elegant
programs which arc understandable and can hc cornmil-
nicatcd to and discussed with othcr people. Honcc, thc
emphasis should bc on understanding arld thiiiking about
how to solve a programming problcm by using basic, well-
undcrstood concepts.

A mcms to understand a prohlem is to build a data
model and cxpcss the algorithmic idea of the solution in
terms of this model. This puts demands on the program-
ming activity snd the programming language:

Thc result of the programming activity must be a
program reflecting the problem in thc sense that the
main concepts from the problem formulation must ap-
pear clearly in the program. Thus, the programming
language used must provide a collection of cortstructs,
each having B clear and intuitive explanation.

~i l f i l lmcnt of this demand does lint only depend on
subjective qualities such as taste and style. It also de-
pends on the ability to crcatc and select appropriate ab-
stractions for solving a programming problem. We ex-
emplify this point below in tho ncxt section.

November 10 - 13,1999 Sfin Juan, Puerto Hico
2gth ASEEllEEE Frontiers in Education Conference

11b4-25

Session 11 b4

Selection of programming language: The challenge
in designing such a course is to get the right combination
of theory and practice: One should present concepts with
a dear and well-understood meaning, but a t the fiamc
time these concepts should he used in problem solving
to sdiieve succinct and elegant programs and program
designs, i.e. theory must be brought bo practical use. For
this reason we have decidcd to USG Standard MI, as it
offers the following featurcs:
4 The language i s very powerful in expressing structured
data m well as computations on such data.
4 The language is close to common mathematical nota-
tion. This means that it is not too hard for students ta
learn the syntax of programs.

The language has a completc mathematical semantics.
Based on this we give a clear, informrtl explanation of the
programming language constructs, such that the students
can predict the behaviour of their programs.

There is a31 extensive standard library and the students
arc taught good habits in using program libraries.

Current technology (C, C++, Java, etc.) are taught in
later coiirses when a conceptual basis has been created.

11. Example
We illustrate our approach by means of an example which
is actually a solution to onc of the cxerciscs we ask the
students to solve. The focus will be on the following
issues:

Modelling the structure of data in the problem by
means of (composite) data types.

Specifying the interface to a program by means of func-
tion types.

Describing a functional break-down by means of the
types of the auxiliary functions.
These issues state the kinds of sbatractions to be made
in order to achieve an elegant and understandable solu-
tion of the prohlem, and thc SML language provides a
succinct notation for writing them down. Inventing the
right abstrattions is, of course, a creative process which
requires talent and taste.

Sample problem: When a map is coloured, the colours
should be chosen so that neighbouring countries get dif-
ferent colours. The problem is to construct a program
computing such a colouring, A trivial solution where
each country always gets i t s own colour is not accepted.
On the other Band, the solution does not have to tie an
'optimal' one.

A colouring problem i s shown in Figure 1. It comprises
four countries "all, "b", "c", and "d", where tho coun-
try "a" has the npjghbouring countries "b" and 'Idb1, the
country rrb'l has the neighbouring country llall, and so
on. A solution of this colouring problem is to give one

0-7803-5643-8/99/$10.00 0 1999 IEEE

U
Pig. I . CoIouring probIem with 4 countrim

colour to the countries IIa" and " c and another colour
to the countries lib" and "d".

In solving this problem we represent a country by its
name which is a string, where= the raeigglabour relation
is represented by a list of pairs of countries having a
common borricr. For instance, tho list:

defines the colouring problem in Figure 1.
denotc tuple construction

in SML. A pair is a tuple with two components. The
square brackets C.-.1 dcnote list construction, so thc
abovr! neighbour relation is a list containing three p i h .
This list is an example of a composite value. Such values
can be entcretl directly to thc SML system.

and "b". A real application of the program would, of
course, use real country names like "Honduras", l l E l
Salvador" and "Nicaragua", where "Honduraa" and
"EL Salvador" are neighbours while "Nicaragua" and
"El Salvador" are not.

Thc problem is to make a program to colour a map for
a givcn neighbour relation.

The solution: To solvc this problem, we must make a
data model for the relevant concepts mentioned in the
problem formulation. This implies that we must define
the notions colour and colouring. Furthermore, the prob-
lem is so coinplicatcd that one need to break it up into
several simpler problems.

Data modelling: From the problem formulation we al-
ready know that a country i s modelled by a string and a
ncigkbour relation is modelled by a list of pairs of coun-
tries. This is expressed in SML by type declarations:

The round brackets (. .

For convenience we use short country names like

type country = a t r i n g
type neighbourRel = (country * cauntry) list

Hcnce, we use types to name important concepts and to
exprcss the model for these concepts (cf. Figure 2).

For example, neighbourRel is a name for the typo
(country * country) list. This typc contains the
tuple type constructor *. I€ c1 and CQ are values of
type country then the tuple (CI ,cz) is a. value of type
country*country. The list type constructor list is used
in suffix form, so a value of type neighbourRel is a list
of pairs of values of type country.

Novcrnber 10 - 13,1999 San Juan, Pucrto Rico
29Ih ASEE/IEEE Frontiers in Education Conference

11134-26

Session l l b 4

T y p e declaration Sample valua
type country = atring
tvps saiRhbourRe1 = (country * country) list

"a"
[("a","b") I , ("e" "d"),("d",f 'a")]

Meta symbol
C

re1 -
col

r .

t y p colour = country l i a t
type colouring = colour list

Fig. 2. Data modclling for map colouring problem

[[,la" #Ic"] , ["b","d"]]

An obvious choice of data rcpresentation for the con-
cept colour could be a set of fixed names:

datatype colour = Red I Blue 1 ...
bat that woiild not be useful for solving the problem.
The essencc is to express that countries have the same
colour, and it turns out that it is useful to modcl a colour
by a list of the countries having that colour. Continuing
the cxamplc from the problem formulation, the list:

I "cll l
represents a colour wherc the countries #laq7 and r r ~ t t have
this colour. This would Lc meaningful for the neighbour
relation givcn above as IIa" and "c" are not neighbours.

We express this representation by tbc type declaration:

type colour = country list

This type dcclaration capturcs one of the crucial
points: the use of abstractions. Of coursc, a list of coun-
trios is a very abstract notion for a colour. Wc shall see
that this ahtraction is useful for solving the problem.

A colowing is dcscribsd hy a list of colours:

type colouring = colour list

Hence, "expanding" the type dcclmations, a colouring
is a. list of lists of countries, For examplc, a colouring for
I;he abovc neighbour relation is:

[[I la" , llcll] , [llbll lldll]]

whcro the countries 'la" and r r ~ t ' get one colour, while
the countrics Itbl1 and lid" get another colour.

This data modelling is subject t o certain invariant con-
ditions. For exatnplc, the value [(qlaql, "b"] , [lla"]l of
typo colouring is not a proper representation of a map
colouring as it gives two different colours do the country
I la" . Thc invariant for valim of type colouring is: no
country may occur in more than one of thc colours of the
colouring. The solution til thc problem should, of coiirsc,
only produce colourings satisfying this invariant.

The type declarations are collected in Figiiro 2. The
samplc vdut: column contains SML values of the indi-
cated types, whilc the meta symbol column introduces
identifiers to be uscd for parameters of thc indicated type,
so e.g. col, c o l i or tho lilcc are used for parameters de-
noting a co lour .

Interface specificatian: The solution of the problem
should a function computing a colouring for any given

0-7803-5643-8/99/%10.00 Q 1999 WEE

neighbour relation. Wc give the name makeCOlouring to
this function, and using the types in Figure 2 we get the
specification:
makeColouring: naighbourRe1 -> colouring

This specification formalizcs the problem in a succinct
way: Wc must declare a function makeColouring where
the argument has type neighbourRe1 while the value has
type colouring. It also captures the essence that a user
of thc program need t,o know, and we say that it specifies
the interfuce to the program.

Functional break-down: The next step is to construct
a program for the function makeColouring 8pcCifiCd in
the interface. To do so, we need an algorithmic idca.
The idea wc will pursue hcrc is the following: We start
with the empty colouring, i.e. the empty list containing
no colours. Then we will gradually extend the actual
colouring by adding one country at a limc.

We ilitistrate this algorithmic ides on the above ex-
ample, wlterc the neighbour relation contains the four
countries: IIa", "b", llcl' and "d". Thns, thcrc are four
main stcps in the algorithm, one for cach country:

new colouring

[["a"] , ["b"]]
[l"a","c"] , ["VilJ

Fig. 3. Algorithmic idea

We give a brief comment t.o each step:
1. The colouring containing no colours is the empty list.
2. The colour ["aq1] is not extendible by "b" because
the countries "a" and "b" arc Paekghbours. Hence the
colouring is extended by the colour E"b"].
3. The colour ["a"] is extendiblr: by 'IC" bccsiise "a"
and "c'l arc not neighbours.
4. The colour [rrar', t*c"l is not extendible by "d" while
thc colour ["b"] is extendible by rld".

The task is now to make a program wliero the main
concepts of this algorithmic idea are directly rcpresented.
The concepts emphasized in the above commcnt are:

Teest whethcr a colour is extendible by a country for a
given neighbour relation.

Test whcthcr two countries are neighbours in a given
neighbour r clation.
4 Extend a colouring by a country for n given rtciglhour
relation.

November 10 - 13, 1999 San Juan, Piicrto Rico
2gth ASEEIIEEE Frontiers in Education Confcrence

1 1 b4-27

Session l lb4

Function type
areNsighboura! country * country * neighbourRsl -> boo1
extendible: country * colour- I neighbourRel -> boo1
extend: country colouring C neighbourRe1 -> colouring
countriesoi : heighbourRe1 -> country list
colCntrList: country list * naighbourRe1 -> C O l O U E h g

Legend
Ihcidea wliothcr two countries arc neighbours
IhCide8 whether a colour can bc extended by a country
Hxtcndu a colouring by an extra country
Computes a l ist of countries i i i a ncighbour relation
Builds a colouring for thc countriefl in a list of countries

Fig. 4. Flinctionnl break-down for map colouring problem

The function specification of each of the main concepts
documcnts the algorithmic ides. These specifications are
shown in Figure 4. We have added the specification of a
function countriesOP for extracting the list of countries
occurring in a given neighbour relation and the specifica-
tion of a function coLCntrList which gives the colouring
for given country list and neighbour relation,

Let relo denote the neighbour relation in Figure 2:
relo = [(l?afl,tlbll), (lltfl ITdll) (lldll IIaVl

I 13
To get a clear understanding of the spocified functions,
we illustrate the application of each function to some
typical arguments.

Examples for areleighbours:

are#eighbours("d", " c " ,relo) = true
areNeighbaursI"d","b" ,relo) = false

as (I I c ~ ~ , " ~ ") is an element of re10 while neither
(W", 'lbll) nor (tlbll ,"d") is an dement of relo,

Examples for extendible:

extendible("d", ["a1' , ' IC"] ,relo) = false
extendible("d", ["b"] ,relo) = true

as
of %'I.

is a neighbour of "c " while "dll is not a neighbour

Example for extend:

extend("d", [["a11,'1ct13 , ["b"]] ,relo)
ell] , [llbll lldll = Cl"all," 1 13

as the colour ["a", "clll is not extendible by Ild'I while
the colour ['Ibl43 is extendible by l ldll .

Example for countriaaof:

countrieeof re10 = ["arr ,"b" ,"ctl ,"d"]

as the neighbour relation contains these four countrics.
Example for colCntrList:

colCntrList(["aat, lib" , r r ~ t l , l'd"l ,relo)
= [[llail , II c I* 1 , ["b","d"]]

because this function performs thc four main steps as
prcscnted in Figure 3.

Remark: Thc seqiiencc of the countries in a list i s in
this example of no importancc. For example, the lists
[" c " ,'la'l] and [l'a'l, "c"] itrc two different lists rep-
resenting the same colour. It is therefore acceptabb

0-7803-5643-8/99/$10.00 0 1999 IEEE

that an implementation of the specified functions gen-
erate other results than the abovc ones. The solution
given in the appendix will actually generatr! the colour-
ing: [["ell, IIa"] , ["b" ,'Ld"lJ for the ncighbour relation
relO.

A solution of the colouring problem i s obtained by ap-
plying the function colCntrList to the list of countries
in a neighbour relation:

makecolour ing(rel)
= coXntrList(countriesOf(reI), rel)

so we can solve the map colouring problem using the
functions specified in Figure 4. We also say that we have
a functional break-down for this problem.

Thc few specifications given in Figure 4 describes the
program design for our solution to the map colouring
problem in a brief and useful way. Thus, such specifi-
cations constitute useful program documentation, and a
description of the furictional breakdown will bc an im-
portant part of the documentation for any program de-
sign,
In our course we teach students a systematic approach

to program documentation using these concepts.

Function declarations: It remains to provide pro-
grams for thc specificd functions. In this section we will
focus on one function. The full program is in the ap-
pendix. We consider the function:

extendible:
cauntry * colour * neighbourReL -> boo1

In SML this function is declared by:

fun extendible(,, [I,-> = trU8
I extendible(c, cl::co1, rel) =

not (areNeighbours{c, cl, rel))
andalao axtendible(c, col, ra l)

whew we assume that the function areNeighboura is
alrcady declared, The declxation contains two cIau$es.

The first clausc

extendible(-, [I , -1 = true

expresses that the colour (1 containing no countries is
extendible by any country For any given neighbour rela-
tion. The symbol - occurring in tho clause is a "don't
care" symbol for argutnents.

November 10 - 13,1999 San Juan, Puerto Rico
29"' ASEEIIEEIC Frontiers in Education Confcrence

1 1 b4-28

Session l l b 4

The second clause

extendible(c, cl::col, rel) = 4 ' .

expresses whcthcr or not the colour c l : :col is extendible
by the country c for the neighhour relation re l . The
notion c l : : col is a rncam of decomposing a list, where
the first element in the list is named cl and thc rest of
the list is named col.

The right hand side of the cImse says that the colour
c l : :col is extendible by c when c and c l are not neigh-
bours in rel, and, furthermore, the colour COL is ox-
tendiblc by c for a given neighbour relation rel.

Thc dcclaration for extendible is an example of
a recursive function declaration bccaiific the idcntifier
extendible occurs on the right hand side of the second
cIausc.
Meaning of functions: We only need a few basic con-
cepts to explain thc moaning of function declarations.
The key point is to explain the meaning of identifiers
during a computation of function values. The notions of
binding and envimnment are introduced to explain the
meaning of identifiers, arid the notion nf evaluation is
introduced to explain the step by step computation of
function values.

A hinding has the form id t+ U and it assnciatrs the
vahic U with the identifier i d . An environment is a col-
lection of bindings like the environment env shown in
Figure 5.

The meaning oF afunction apphcation can bo dcscrikcd
using step ky step evahnlion of expressions. We use the
notation:

r c H "d" 1

(e v 1 , enu1) - (e v : p , , e m z)

where (expi, erieri) is a pair cnnsisting of an expression
expi arid an onvironment envi. The symbol - reads
"cvaliiatcs to", We omit the environments when they
arc not ncedcrl.

The function application:

extendible(l ld l l , ["b"] ,relO)

can now be explained by a scqucnco of evaluation steps.
Thc evaluation starts in an environrnent containing a
binding of thc idcntificr relo:

[r-10~ [(tlall ltbl7) (lfct! I 7 I ! , I , d) , (l ld" , ' la l t) l]

The firsl cvalnation step is:

(extendibla("d" I ["b"] ,relo), [re10 F+ - +])

not (areNeighbours (c , cl, r e l)) ,) 4 andalso extendible(c, col, rel)
whcrc en# is given in Figure 5. In this step the evalua-

0-7803-5643-8/99/$10~00 0 1999 IEEE

L re1 H C("a","b"),("c" I , "d") (' 'd" , ' la l '~ l 1
Fig. 5. Environment with bindirigA of c, c l , col and r e l .

tion uses thc second ciause of the dcclaration because the
colour ['lb"l is not the empty list. The main part of this
step is to build thc environment e m for the identifiers c ,
c l , c o l and re1 occurring in the second clause.

The further evaluation uses that the lcft hand side of
the above andalso expression evaluates to true:

(not (areNeighboura(c, cl, rei)), env) - true
as "d" and "b'l arc not neighbours in the valw:

[(llall, llbll) , (l lcl l 4' I 1 , d > , (" d ' t , " a 7 1) l

associated with rel. Thus, the evaluation progresses iu
follows:

no t (areNeighbours(c, cl, rei>>
andalso extendible(c, c o l , rel) - (exfendible(c, c o l , re l) , env) -

-..+ true

ext;andible("dl', [I , C("a","b"), . . -1)

where the last step iiscs the first clause of tho declaration
of extendible.

The introduction of the notions of hinding, environ-
ment and cvduation gives the introductory programming
course a theoretical flavour; but the theory is used to give
a decent explanation of the meaning of programs.

Other solutions to the map colouring problem:
There are many other solutions to the map colouring
probhm than the one presented here.

An imrncdiata idea is to use a set of coiint!ries to model
a colour rather khan a list of countries, becausc there is no
ordering among the countries in a colour. An advantagt?
of using sets is that the nccd for invariants disappears.
The use of sets makes the solution a little more abstract,
but we have experienced that many studcnts can cope
with such abstractions.

The most elegant solution we have considered is even
mort! ahstract, as it iises library programs for both sets
and binary relations. T h o idea is to represent the neigh-
bour relation by a binary relation, while a colouring is
represented by a partition of the countries occurring in
the neighbour relation. Although this solution can be
elegantly formulated in SML, we have, not surprisingly,
experienced that it was too abstract for most of our stu-
clcnts on this introductory level.

Novcmbcr 10 - 13,1999 San Juan, Puerto Rico
2gth ASEEflEEE Frontiers in Education Conference

11 b4-29

Session l l b 4

III. Course Contents
The contents of the first semester course covers several
aspects:
Fundamental data structures: We introduce the funda-
mental data structurcs: numbers, characters, st-rings, tu-
ples, records, lists, trees, sets, tsblos, functions, and their
applications.
Prognsmmirag paradigms: The functiorial paradigm has
rnqjor attention in the first part of the semester. The
imperative programming paradigm has 80Me attention
in the last pstt of the semester. An advantage of SML
is that it supports both Functional and imperative pro-
gramming. So we nccd not consider more than one pro-
gramming language in the first semester.
SemanticaE concepts: The notions of hinding, environ-
ment and evaluation are introduced to explain the mean-
ing of functional programs and the notion of store is in-
troduced to explain thc meaning of imperative programs.
Problem solving and program design: We introduce a
standard way of documenting a programming solution.

Thus, we introduce some concepts which will exist
beyond the next generation of programming languages.
Other durable concepts c.g, from object oriented pro-
gramming languages are introduced in later courses.

IV. Educational Issues
Teaching programming to university hcshmen is a

challenging task: 1) The students should solve interesting
problems using a computer, and 2) Programming must
be taught as an intellectual activity.

Tho first part relates directly to what is achievable
using existing progrcunming languages. The second part
relates to the students attitude towards the programming
activity and programming languages. In this respect it is
of great importance to teach basic, well-understood con-
cepts to create a solid foundation for further education
in computer science.

The book by Abdson and Sussman [l] use8 the Scheme
language to present solutions for a large variety of pro-
gramming problems, and they explain the meaning of
programs in terms of a few basic concepts. The main
difference to our approach is that Schemc is an untypod
language while we have a systematic use of types for mod-
elling md documentation as illustrated above.

Many “customers” of B computcr science education ask
for the students ability to design programs and concepts
rather than proficicncy in a particular pragramming lan-
guage. Since 1992 we have heen giving a course as dc-
scribed in this papcr. The reactions we have received so
far indicate that we are milch closer to reaching this goal
with our current course than with the previous Pascal
course.

0-7803-5643-8/98/%10.00 8 1999 IEEE

Acknowledgements: We are grateful far comments
from F. Nielson, A.P. Ravn arid J. Steensgaard-Madsen.

References
[l] Abelson, H., Sussman, J . , Structure and Xaterpreta-
tion of Computer Pmgrcsms, MIT Press, 1985.
[Z] Tucker, A.B. (Ed.), Computing Curricula 1991, Com-
munications of the AGM, 34, June, pp. 69-84, 1991.
(31 Deimcl, L.E. (Ed.), 5’0fkwm-e Engineering Education,
LNCS, vol. 423, Springer-Verlag, 1990.
[4] Wa.nsen, M.R., Rischcl, B., Introduction t o Program-
ming lasang SML, Addison-Wesley, 1999.
151 ScstoA, P., Kristensen, J.T., Ravn, A.P., Rischel, El.,
From Functional to Imperative Programming, Les lan-
guages applicatifs d a m t’epaseignement de I’infomatique,
pp. 26-33, Actes des 28mes journ6es de travail, IFSIC-
IRISA, Rennes 1993.

Appendix

infix member;
fun member [I fi false

I I member (y::ys) = x q orelse x membar ya;

f u n insert(x, xe) = if x member x s then XB else x::xa;

lun areNeighbours(c1, c2, r e l)
(c l , c 2) member re1 orelse (c2,cl) member re i ;

fun extendible as in the main text

fun extend(c, C 1 , -1 = CCCll
I extend(c, col::colr, re l) =

i f extendible(c, col, rsl) then (c::co~)::co~T
else c o l : :extend(c, colr, rsl)

fun cauntriedf C1 = c 3
I countriesl)f((ci,c2)::rel) =

ineert(c1, insert(c2, comtriesof rel)):

fun colCntrList(l1. - 1 = C1
I colCntrtist(c::ce, rall =
extend(c, colCntrLirt(ca, re l) , re11

fun makaColouring re1 =
colCntrLiat(countries0f rel , re l) ;

rig. 6. Complete solution to colouring problem

Suppose that the declarations in Figure 6 has been edited
into a text file named colouring.sm1. The colorhg of
the four countries in Figure 1 can then bo obtained by
the following dialogue with SML:

November 10 - 13.1999 San Juan. Puerto Rico
2gih ASEE/IEEE Frontiers in Education Conferencc

llb4-30

