View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

A Theory Based Introductory Programming Course

Hansen, Michael Reichhardt; Kristensen, Jens Thyge; Rischel, Hans

Published in:
Frontiers in Education

Link to article, DOI:
10.1109/FIE.1999.839230

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hansen, M. R., Kristensen, J. T., & Rischel, H. (1999). A Theory Based Introductory Programming Course. In
Frontiers in Education IEEE. DOI: 10.1109/FIE.1999.839230

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13731812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/FIE.1999.839230
http://orbit.dtu.dk/en/publications/a-theory-based-introductory-programming-course(0130464f-efc1-4eb2-8892-a6c60363146b).html

Session 11b4

A Theory-Based Introductory Programming Course

Michael R. Hansen, Jens Thyge Kristensen and Hans Rischel
Technical University of Denmark, DK-2800 Lyngby

{mrh,jtk,rischel }@it.dtu.dk

Abstract - This paper presents an introductory pro-
gramming course designed to tesch progremming as an
intellectual activity, The course emphasizes understond-
able concepts which can be useful in designing programs,
while the oddities of today’s technology ore considered of
secondery importance. An important goal is to fight the
trial-and-error approach te programming which is a reqult
of the students battles with horribly designed and docu-
mented systems and languages prior to their studies at
university. JInstead we strive for giving the students e
good expervience of programming as a systematic, intellee-
tual activity where the solution of a programming problem
can be deseribed in an understandable way. The approach
is dlustrated by an ezample which is o commented solu-
tion of a problem posed to the students in the course,

Keywords - Introductory programming, curriculum

1. Introduction

We present the rationale behind the introductory pro-
gramming course in the Informatics Programme at the
Technical University of Denmark. The development of
this course started in 1992 and has now resulted in the
book “Introduction to Programming using SML” pub.
lished by Addison Wesley Longman in 1999 [4].

Students prior experiences with software: Software-
controlled systems and programmable computers are
found everywhere in our daily life. The TV-set and the
video recorder are controlled by programs. Programs can
be found on the Web or created using the PC. However,
software appears as a mysterious and Incomprehensilile
technolopy - despite the widespread use,

For example, when adjusting the channels on your TV
you will play with the buttons an the remote control un-
til you succeed - you know by experience that it would
be wasto of time to try to understand the manual. When
introduced to programming the high-schoel students get
the same kind of experience: Programming tocls and sys-
tems are badly documented and even badly designed, so
it is much easier to experiment - rather than try to get
a systematic understanding.

The corc of the problem ig that programs and systems
are so complicated and strange that analysis is not pos-
sible, and the only way to work is in a trial-and-error
manmnoer.

0-7803-5643-8/99/$10,00 © 1999 IEEE

Thus, many students have expericnces with program-
ming systems which can be surmmarized as:

« The systems and the programming languages are in-
comprehensible and their behavionr is unpredictable.

» By enough experiments one can get them to work —
but there is no point in trying to get a clear understand-
ing of them.

This negative picture reflects the immature and poor
state of todays software technology. In our teaching at
the university we have to cope with this fact of life as
it is the starting point for our students — but we should
strive for an education of our students which could help
improving software technology in the future.

The first programming eourse: When students enter
university they have already a lot of experience with pro-
grams and programming as described above, They know
programming as a purely experimental activity, and they
are looking forward to learn more “tricks”. They do not
expect programming to be a “subject” (like Mathematics
or Physics) with theories and concepts of its own, inde-
pendent of todays technology.

The first course in a larger computer science curricu-
lum should in our opinion fight these (mis)conceptions
and teach the students an intellectunl approach to pro-
gramming right from the heginning. The challenge is to
teach the students to appreciate and strive for elegant
programs which are nnderstandable and can be commu-
nicated to and discussed with other people. Henee, the
emphasis should be on understanding and thinking about
how to solve a programming problem by using basic, well-
understood concepts.

A means to understand a problem is to build a data

model and express the algorithmice idea of the solution in

terms of this model. This puts demands on the program-
ming activity and the programming language:

The result of the programming activity must be a
program reflecting the problem in the sense that the
main concepts from the problem formulation must ap-
pear clearly in the program. Thus, the programming
language uscd must provide a collection of constructs,
each having a clear and intuitive explanation.

Fulfillment of this demand does not only depend on
subjective qualities such as taste and style. It also de-
pends on the ahility to create and select appropriate ab-
stractions for solving a programming problem. We ex-
emplify this point below in the next section.

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEE/ALEE Frontiers in Education Conference
11h4-25

Selection of programming language: The challenge
in designing such a course I8 to get the right combination
of theory and practice: One should present concepts with
a clear and well-understood meaning, but at the same
time these concepts should be used in problem solving
to achieve succinct and elegant programs and program
designs, i.e. theory must be brought to practical use. For
this reason we have deciddd to use Standard ML as it
offers the following features:
« The language is very powerful in expressing structured
data as well as computations on such data.
« The language is close to common mathematical nota-
tion. This means that it is not too hard for students to
learn the syntax of programs.
» The language has a complete mathematical semantics.
Based on this we give a clear, informal explanation of the
programming language constructs, such that the students
can predict the behaviour of their programs.
¢ There is an extensive standard hbrary and the students
are taught good habits in using program librarics.
Current technology (C, C++, Java, ete.) are taught in
later courses when a conceptual basis has been created.

1I. Example

We illustrate our approach by means of an example which
is actually a solution to one of the exercises we ask the
students to solve. The focus will be on the following
issues;

e Modelling the stracture of data in the problem by
means of (composite) data types.

o 3pecifying the interface to a program by means of func-
tion types.

e Describing a functional break-down by means of the
types of the auxiliary functions.

These jsgues state the kinds of abstractions to be made
in order to achieve an elegant and understandable solu-
tion of the problem, and the SML language provides a
succinct notation for writing them down. Inventing the
right abstractions is, of course, a creative process which
requires talent and taste.

Sample problem: When a map is coloured, the colours
should be chosen so that neighbouring countries get dif-
ferent colours. The problem is to construct a program
computing such a colouring. A trivial solution where
cach country always gets its own colour is not accepted.
On the other hand, the solution does not have to be an
‘optimal’ one,

A colouring problem is shown in Figure 1. It comprises
four countries "a", "p", "e¢", and "4", where the coun-
try "a" has the neighbouring countries "b" and "q", the
country "b" has the neighbouring country "a", and so
on. A solution of this colouting problem is to give one

0-7803-5643-8/99/$10.00 © 1599 IEEE

Session 11b4

It .

san

ig. 1. Colouring probiens with 4 countries

colour to the countries "a" and "c¢" and another ¢olour
to the countries "b" and "dv.

In solving this problem we represent a country by its
name which is a string, whereas the neighbour relation
is represented by a list of pairs of countries having a
common border. For ingtance, the list:

[(llall,llb'l) ,("C","d") s (Ildl],"a")]

defines the colouring problem in Figure 1.

The round brackets (---) denote tuple construction
in SML. A pair is a tuple with two components. The
square brackets [--.] denote list construction, so the
above neighbouy relation is a list containing three pairs.
This list is an example of a composite value. Such values
can he entered directly to the SML system.

For convenience we use short country names like "a"
and "b". A real application of the program would, of
course, use real country names like "Honduras", "El
Salvador" and "Nicaragua", where "Honduras" and
YEl Salvador" arc neighbours while "Nicaragua" and
"El Salwvador" ate noi.

The problem is to make a program to colour a map for
a given neighbour relation.

The solution: To solve this problem, we must make a
data model for the relevant concepts mentioned in the
problem formulation. This implies that we must define
the notions colour and colouring. Furthermore, the prob-
lem is so complicated that one need to break it up into
several simpler problems.

Data modelling: From the problem formulation we al-
ready know that a country is modelled by a string and a
neighbour relation is modelied by a list of pairs of coun-
tries. This is expressed in SML by fype declarations:

type country = string
type neighbourRel = (country * country) list

Hence, we uge types to name important concepts and to
expross the model for these concepts (cf. Figure 2).

For example, neighbourRel is a name for the type
(country * country) list. This type contains the
tuple type constructor . If ¢ and ¢y are values of
type country then the tuple (e1,c2) is & value of type
country*country. The list type constructor 1ist is used
in suffix form, so a value of type neighbourRel is a list
of pairs of values of type country,

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEE/IEEE Frontiers in Education Conference

11b4-26

Type declaration

| Bample valua

Session 11b4

| Meta symbol

type country = string "a =
type neighbourfliel = (countTy * country) list C{"a™,"p"y, (e, "d"), {"d","a")] | rel
typa colour = country list ["a®,"c"] col

type colouring colour list

[[Mam,ven] , [y, 4]

colr

Fig. 2. Data modelling for map colouring preblem

An obvious choice of data representation for the con-
cept colour could be a set of fixed names:

datatype colour = Red | Blus |

but that would not be useful for solving the problem.
The essence is to express that countries have the same
colour, and it turns out that it is useful to model a colour
by a list of the countries having that colour. Centinuing
the example from the problem farmulation, the list:

['Iall R IICII]
represents a colour where the countries "a" and "c" have
this colour. This wounld be meaningful for the neighbour

relation given above as "a" and "c¢" are not neighbours.
We express this representation by the type declaration:

type colour = country list

This type declaration capturcs one of the crueial
points: the usge of abstractions. Of course, a list of coun-
tries is a very abstract notion for a colour. We shall see
that this abstraction is useful for solving the problem.

A colouring is described by a list of colours:

type colouring = colour list

Hence, “oxpanding” the type declarations, a colouring
is a list of lists of countries. For example, a colouring for
the above neighbour relation is:

[["5." . Ilc"] . [llbll s "d."]]
where the countries "a" and "¢" get ane colour, while
the countrios "b" and "d" get another colour.

This data modelling is subject to certain invarient con-
ditions. For example, the value [["a”,"b"], ["a"]] of
type colouring is not a proper representation of a map
colouring as it gives two different colours to the country
na", The invariant for values of type celouring is: no
country may oceur in more than one of the colours of the
colouring, The solution to the problem should, of course,
only produce colourings satisfying this invariant.

The type declarations are collected in Figure 2. The
sample value column containg SML values of the indi-
cated types, while the meta symhol column introduces
identifiers to be used for parameters of the indicated type,
s0 e.g. col, coll or the like are used for parameters de-
noting a colour.

Interface specification: The solution of the problem
should be a function computing a colouring for any given

0-7803-5643-8/99/$10.00 © 1999 IEEE

neighbour relation. We give the name makeColouring to
this function, and using the types in Figure 2 we get the
specification:

makeColouring: neighbourRel -> colouring

This specification formalizes the problem in a succinet
way: We must declare a function makeColouring where
the argument has type neighbourRel while the value has
type colouring, It also captures the essonce that a user
of the program need fo know, and we say that it specifies
the interface to the program.

Functional break-down: The next step is to construct
a program for the function makeColouring specified in
the interface. To do 80, we need an algorithmic idea.
The idea we will pursue here is the following: We start
with the empty colouring, i.e, the empty list containing
no colours. Then we will gradually extend the actual
colouring hy adding one country at a time.

We iliustrate this algorithmic idea on the above ex-
ample, where the neighbour relation contains the four
countries: "a", "b", "c" and "d". Thus, there are four
main steps in the algorithm, one for cach country:

| country | old colouring | new colouring

1, Iy [] . [—[llan]]

2. ngn [L"a"1] [ra"], ["u"1]

3, net [rra"y, ["v"11 [va",e"], ["p"1]

4, ngn [[a*,"s"], ["e"1] "a","e"], ["p","d"]]

Fig. 3. Algorithmic idea

We give a brief comment to each step:

L. The colouring containing no colours is the empty list.
2. The colour ["a"] is not extendible by "b" because
the countries "a" and "b" are neighbours. Hence the
colouring is extended by the colour ['b"].

3. The colour ["a"] is extendible by "e" becausc "a"
and "e¢" are not neighbours.

4. The colour [Ya”,"c"] i8 not extendible by "d" while
the colour ["b"] is extendible by "d".

The task is now to make a program where the main
concepts of this algorithmic idea are directly represented.
The concepts emphasized in the above comment are:

o Test whethor a colour is extendible by a country for a
given neighbour relation.

» Test whether two countries are neighbours in a given
neighbour relation. :

« Ixtend a colouring by a country for a given neighbour
relation.

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEE/IEEE Frontiers in Education Conference

11b4-27

Function type

Session 11b4

| Legend

arefeighboura: country * country * neighbourRel -> boel Docides whether two countries are neighboura
extendible: country * ¢olour * neighbourRel -> boual Decides whether a colour can be extended by a country
extend: country * colouring ¥ neighbourRel -> colouring Extends a colouring by an extra country

countrigs0f: peighhourfel -> country list | Computes a list of countries in a neighbour relation
colfntrlist: gountry list * neighbourfel -> colouring Builds a colouring for the countries in a list of countries

Fig. 4, PFunctional break-down for map colouring problem

The function specification of each of the main concepts
documents the algorithmic idea. These specifications are
shown in Figure 4. We have added the specification: of a
function countriesQf for extracting the list of countries
oceurring in a given neighbour relation and the specifica-
tion of a function colCntrList which gives the colouring
for given country list and neighbour relation.

Let rel0 denote the neighbour relation in Figure 2;

val relo = [("a","b"),(“c","d"),("d","a")]

To get a clear understanding of the specified functions,
we illustrate the application of each function to some
typical arguments.

Examples for areNaighhbours:

= Ltrue
false

areNeighbours("d","c",rel0)
areNaighbours("d","b",xel0)

as ("e¢”,"d") is an element of rel® while neither
("a","b") nor ("b","d") is an clement of rel0,
Examples for extendible:

extendibls("d", ["a","c"],rell) = false
extendible("d", ["b"1,rel0) = true

as "4" is a neighbour of "c" while "d" is not a neighbour
Of |Ib!l'
Example for extend:
extend{"d",[["a","c"], ["b"]],ral0)
= [[Ilall s “C”] . [Ilbll R IId'll:l:]

as the colour ["a","c"3 is not extendible by "d" while
the colour ["b"} is extendible by "a".
Example for countriesQf:

countries0f rell = [“a® LB, e, ngit]

ag the neighbour relation contains these four countries.
Example for colCntrList:

¢olCntrList{["a","p","c","d"],rell)
= [[uan s ”c"] . ["b" . "d"]]
because this function performs the four main steps as
presented in Figure 3.

Remark: The sequence of the countries in a list is in
this example of no importance. For example, the lists
["c","a"] and ("a","c"] arc two different lists rep-
regenting the same colour. It is thercfore acceptable

0-7803-5643-8/99/$10.00 © 1999 IEEE

that an implementation of the specified functions gen-
erate other results than the above ones. The solution
given in the appendix will actvally generate the colour-
ing: [["e","a"], "b”,"d"]] for the neighbour relation
relC.

A solution of the colouring problem is obtained by ap-
plying the function colCntrList to the list of countries
in a neighbour relation:

makeColouring(rel)
= colCutrList(countries0f(rel), ref)

so we can solve the map colouring problem using the
functions specified in Figure 4. We also say that, we have
a functional break-down for this problem.

The few specifications given in Figure 4 describes the
program design for cur solution to the map colouring
problem in a brief and useful way. Thus, such specifi-
cations constitute useful program documentation, and a
description of the functional break-down will be an im-
portant part of the documentation for any program de-
sign.

In our course we teach students a systematic approach
to program documentation using these concepts.

Function declarations: It remains to provide pro-
grams for the specificd functions. In this section we will
focus on one function. The full program is in the ap-
pendix. We consider the function:

extendible:
country ¥ celour * neighbourRel -> hool

In SML this function is declared hy:

true

1

fun extendiblse(_.,[],_)
| extendible(e, cl::col, rel)
not (areleighbours{c, cl, rel))
andalso extendiblelc, col, rel)

where we assume that the function areNeighbours is
alrcady declared, The declaration contains two elauses.
The first clause

extendible(_,[1,_) = true

expresses that the colour [] containing no countries is
extendible by any country for any given neighbour rela-
tion. The symbol _ occurring in the clause iz a “don’t
car¢” symbol for arguments,

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEE/IEEE Frontiers in Education Conference

11h4-28

The second clanse
sxtendible(c, cl::col, rel) =

expresses whethor or not the colour cl: : col is extendible
by the country c for the neighbour relation rel. The
notion ¢l::col is a means of decomposing a list, where
the first element in the list is named c1 and the rest of
the list is named col.

The right hand side of the clause says that the colour
cl::col is extendible by ¢ when ¢ and ¢1 are not neigh-
bours in rel, and, furthermore, the colour col is ox-
tendible by ¢ for a given neighbour relation rel.

The declaration for extendible is an example of
a recursive function declaration beecause the identifier
extendible occurs on the right hand side of the sccond
clause.

Meaning of fimctions: We only need a few basic con-
cepts to explain the meaning of function declarations.
The key point is to explain the meaning of ideniifiers
during a computation of function values. The notions of
binding and environment are introduced to explain the
meaning of identifiers, and the notion of evaluation is
introduced to explain the step by step computation of
function values.

A binding has the form id — v and it associates the
value v with the identifier id. An envirenment is a col-
lection of bindings like the environment env shown in
Figuro 5.

The meaning of a function application can be described
using step by step evaluation of expressions. We use the
notation:

{exp,,env;) ~ (exp,,envg)

where (exp,;, eny;) 18 a pair consisting of an expression
exp; and an onvironment enw;. The symbol ~» reads
“evaluates to”. We omit the environments when they
are not needod.

The function application:

extendible("d", ["b"],rel0)

can now be explained by a scquence of evaluation steps.
The evaluation starts in - -an environment containing a
binding of the identifior relt:

[rell — {("a","b"),("c","d”),("d","a")] }
The first evaluation step-is:
{extendible("a", ["b"],rel0), [rel0 s -+ -])

not (areNeighbours(c, c1, rel)) ent
andalzo extendible{c, ceol, rel) '’

where env is given in Figure 5. In this step the evalna~

0-7803-5643-8/99/510,00 © 1999 IEEE

Session 11b4

C H Ildll
I B RS
M= el 1
rel '_> [(I\all.ll'hll),(llc"’lldll) ’(lldll’llall)]

Fig. 3. Environment with bindings of <, c¢1, cel and rel.

tion uses the second clause of the declaration because the
eolour ["b"] is not the empty list. The main part of this
step is to build the environment eny for the identifiers ¢,
cl, col and rel occurring in the second clause.

The further evaluation uses that the loft hand side of
the above andalso expression evaluates to true:

(not (areNeighbours(c, cl, rel)},env) ~ true

as "d" and "b" are not neighbours in the value:
[("a","b"),("c","d"),("d","a")]

associated with rel. Thus, the evaluation progresses as
follows:

not (areNeighbours(c, cl, rel))
andalso extendible(c, col, rel) ' v

~+ (extendible(e, col, rel),env)
~+ extendible("d",[1,[("a","b"),...]1)

~+ Lrue

where the last step uses the first clause of the declaration
of extendible.

The introduction of the notions of binding, environ-
ment and evaluation gives the introductory programming
course a theoretical favour; but the theory is used to give
a decent explanation of the meaning of programa.

Other solutions te the map colouring problem:
There are many other solutions to the map colouring
problem than the one presented here.

An immeodiate idea is to use a set of countries to model
a colour rather than a list of countries, because there is no
ordering among the countries in a colour. An advantage
of using sets is that the neced for invariants disappears.
The use of sets makes the solution a little more abstract,
but we have experienced that many students can cope
with such abstractions.

The most elegant solution we have considered is even
more ahstract, as it uses library programs for both sets
and binary relations. Tho idea is to represent the neigh-
bour relation by a binary relation, while a colouring is
represented by a partition of the countries occurring in
the neighbour relation. Although this solution can be
elegantly formulated in SML, we have, not surprisingly,
experienced that it was too abstract for most of our stu-
dents on this introductory level.

November 10 - 13, 1999 San Juan, Puerto Rico

20" ASEE/IEEE Frontiers in Education Conference :

11b4-29

II11. Course Contents

The contents of the first semester course covers several
aspects:
Fundamental date structures: We introduce the funda-
mental data struetures: numbers, characters, strings, tu-
ples, records, lists, trees, sets, tablos, functions, and their
applications, ‘
Programming peradigms: The functional paradigm has
major attention in the fivst part of the semester. The
imperative programming paradigm has some attention
in the last part of the semester. An advantage of SML
is that it supports both functional and imperative pro-
gramming, So we need not consider more than one pro-
gramming langnage in the first semester.
Semantical concepts: The notions of binding, environ-
ment and evaluation are introduced to explain the mean-
ing of functional programs and the notion of store i in-
troduced to explain the meaning of imperative programs,
Problem solving and program design: We introduce a
standard way of documenting a programming solution.
Thus, we introduce some concepts which will exist
beyond the next generation of programming languages.
Other durable concepts c.g. from object oriented pro-
gramming languages are introduced in later courses.

IV. Educational Issues

Teaching programming to university freshmen is a
challenging task: 1) The students should solve interesting
problems using a computer, and 2} Programming must
be taught as an intellectual activity.

The first part relates directly to what is achievable
using existing programming languages. The second part
relates to the students attitude towards the programming
activity and programming languages. In this respect it is
of great importance to teach basic, well-understood con-
cepts to create a solid foundation for further education
in computer science.

The book by Abelson and Sussman [1] uses the Scheme
language to present solutions for a large variety of pro-
gramming problems, and they explain the meaning of
programs in terms of a few basic concepts. The main
difference to our approach is that Scheme is an untyped
language while we have a systematic use of types for mod-
elling and documentation as illustrated ahove.

Many “customers” of a computer science education ask
for the students ability to desigh programs and concepts
rather than proficieney in a particular programming lan-
guage. Since 1992 we have been giving a course as de-
scribed in this papor. The reactions we have received so
far indicate that we are much closer to reaching this goal
with our current course than with the previous Pascal
course.

0-7803-5643-8/99/310.00 © 1999 IEEE

Session 11b4

Acknowledgements: We are grateful for comments
from F. Nielson, A P. Ravn and J. Steensgaard-Madsen.

References

[1] Abelson, H., Sussman, J., Siructure and Interpreta-
tion of Compuier Programs, MIT Press, 1985.

(2] Tucker, A.B. (Ed.), Computing Curricula 1991, Com-
maunscations of the ACM, 34, June, pp. 69-84, 1991.

(3] Deimel, L.E. (Ed.), Software Fngineering Education,
LNCS, vol. 423, Springer-Verlag, 1990,

[4] Hansen, M.R., Rischel, H., Introduction to Program-
ming using SML, Addison-Wesley, 1999.

(5] Scstoft, P., Kristensen, J.T., Ravn, A.P., Rischel, H.,
From Functional to Imperative Programming, Les lan-
guages applicatifs dans Uenseignement de UVinformatique,
pp. 26-33, Actes des 2emes journdes de travail, IFSIC-
IRISA, Rennes 1993.

Appendix

infix member;
fun . member (] u false
| x member (y::ys) = x=y orelse X member ya;

fun insert{z, x8) = if x member xs then xa alse x::xa;

fun areNeighbours{cl, €2, rel) B
(cl,c2) momber ral orelaa (¢2,cl) member rel;

fun extendible as in the main text

fun extend(c, (1, _) = [[]]
| extend(s, col::colr, rel) =
it extendible{c, col, rel} then {c::cel);:colr
else col:!extend(c, colr, rel)

fun countriesOf []
| countriealf{{c1,c2)::rel)
ingert(cl, insert(c2, countriesOf rel));

=0

fun celCnerList([], _) (W]
| colCntrList{c::cs, rell

extend(c, collntrLiet{ce, ral), rel)

fun makeColouring rel =
collntrList (countrisalf rel, rel);

IMig. 6. Complete solution to colouring problem

Suppose that the declarations in Figure 6 has been edited
into a text file named colouring.sml. The coloring of
the four countries in Figure 1 can then be obtained by
the foliowing dialogue with SML:

- usae "colouring.sml®; (* compile fila #)
- val relQ = [("a“,"b“),(“c","d"),("d","a")];
makeColonring rel0;

[[uclr’ nan], [IIbII’ IIdII]]

]

v

¢ string list list

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEE/IEEE Frontiers in Education Conference

11b4-30

