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Forward Scattering  from  Square  Cylinders  in the 
Resonance  Region  with  Application to 

Aperture Blockage 
W.  V. T. RUSCH, SENIOR MEMBER, IEEE, J0RGEN APPEL-HANSEN, MEMBER, IEEE, CHARLES A. KLEIN, 

AND RAJ MITTRA, FELLOW, IEEE 

Abstmcf-The  relationship  between  the  induced  field ratio (IFR) of a 
cylinder  and  aperture  blocking  of a  constant-phase  aperture  by  cylindrical 
struts is discussed. An analytical  technique is presented  whereby  the IFR 
of rectan,oular  cylinders can be  calculated  using  the  method-of-moments 
with internal  constraint points. An experimental  technique  using a 
forward-scattering  range is used to measure the IFR’s of square  and 
circular  cylinders  in an anechoic  chamber.  These  experimental  results are 
compared  with  the  theory,  and  their  implications on aperture  blocking 
losses and  boresight cross polarization  are  discussed. 

I. INTRODUCTION 

T HE PRESENCE of long  thin  mechanical  support 
structures  in front of a  constant-phase  aperture,  such 

as  that of a focused paraboloid,  has generally defied 
rigorous  attempts to analyze  their effects upon  the RF 
performance of the  aperture. However, as a good first 
approximation,  it  has been proposed [l]-[4] that the  strut 
currents  are  the same currents that would  flow on an infinite 
cylindrical structure of the same cross section in free-space 
immersed in an infinite linearly polarized plane wave with 
the same polarization  and  direction of incidence as the 
local geometrical ray  incident  upon  that  part of the  strut 
as  it emerges from  the  aperture  (transmit mode). This 
approximation is known as the  “IFR-hypothesis.” 

When an infinite cylinder is immersed in  an  incident  plane 
wave (Fig. l), its induced field ratio  (IFR) is defined as the 
ratio of the  forward-scattered field to the  hypothetical field 
radiated in the  forward  direction by the  plane wave in the 
reference aperture of width  equal to the  shadow of the 
geometrical cross section of the cylinder on  the  incident 
wavefront [l]. Thus  for  the E-vector of the incident plane 
wave parallel to the cylinder axis 

IFR, = - ’0 / Jszejkkp’Sin 4‘ dl  (la) 
x 5 2  - C I W O  SI 

where Eo is  the electric intensity of the  plane wave, 2, 
is the  intrinsic  impedance of free space, Jsz is the  axial 
component of surface-current density, and SI is the line 
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Fig. 1. IFR geometry. 

contour defining the cylinder’s periphery. Similarly, for 
the  H-vector  parallel  to  the cylinder axis 

IFRH = / Hz(u, n)$kp’sinO’ dl (lb) 
a 5 2  - t w o  SI 

where Ho is the magnetic field  of the  incident wave, Hz 
is the  total  magnetic field in the  axial  direction at the  surface 
of the cylinder, and  the  unit vectors u,, and n are defined in 
the figure. The  IFR,  and  IFR,  for  a  right-circular cylinder 
of radius a are given by [2] 

IFR, = - ~ Jn(ka cos a)/H,’2)(ka cos E )  
ka COS E n=-(o 

1 IFRH = -- E J,’(ka cos a)/H,’2y(ka cos a) 
ka COS n= - m  

(2b) 

where J, and HL2) are, respectively, the Bessel and outgoing 
Hankel  function,  and  the  prime  indicates  the  derivative 
with respect to the  argument. These formulas have also 
included the effects  of a  tilt angle a between the  incident 
wavefront and  the cylinder axis. Thus for  the  nonnormal 
incidence the IFR is determined  for an equivalent cylinder 
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Fig. 2. Complex IFRs and IFRB for circular cylinder. 

with linear dimensions of the cross section reduced by the 
factor cos (a). This principle applies equally well to other 
cross sections in general. The IFRs  for  the  right-circular 
cylinder are plotted  on  the complex plane in Fig. 2. In 
general,  the  IFR, is larger  in  magnitude  than  the IFR, 
and  has  a positive phase angle  compared to  a negative 
phase angle  for  the H polarization. Both IFR’s  approach 
the value - 1.0 + jO.0 as  the  radius increases, one  from 
below and the  other  from above. 

Using the  IFR-hypothesis in a  practical  application,  the 
loss in boresight gain  due  to  central blockage and  the  plane- 
wave component of strut  current  for  a linearly polarized 
aperture is 

LOSS (dB) Ioz” s,” F(t,4)t  d t  d 4  
= -20 log,, 1 - 

number / 

normalized  radial  aperture  coordinate, 
azimuthal  aperture  coordinate, 
aperture  distribution  function, 
fractional  diameter blocking by central blockage, 
width of ith  strut, 
aperture  diameter, 
fractional  radius blocking by ith  strut, 
angle between electric vector  and ith  strut, 
angle between ith strut  and  aperture  plane, 
IFRE for  ith  strut cross section with  linear 
dimensions reduced by cos cli, 
IFR, for  ith  strut  cross  section  with  linear 
dimensions  reduced by cos ai. 

The second term  represents  the  “optical”  approximation to 
axially symmetric blockage. The  third  term  represents  a 
summation over the plane-wave component of strut  currents 
on each strut.  For  a uniformly illuminated  aperture, (3) 
reduces to 

LOSS (dB) 

where A i  is the projected area of the  ith  strut  on  the  aperture 
plane. 

In addition to degrading boresight gain, a feed-support 
strut will generate boresight cross  polarization if it is not 
aligned parallel to  or perpendicular  to  the electric field in 
the  aperture.  The boresight cross  polarization level due to 
the plane-wave component of strut  currents is 

CP (dB) 

Clearly, if sin y i  cos yi is zero (e.g., principal-plane  struts), 
cross  polarization is not generated by the  ith  strut.  Other 
strut  configurations, e.g., an equiangular  tripod, will also 
not  generate boresight cross  polarization because of 
cancellation  properties of the  total geometry, although 
each  strut individually may generate  a  cross  polarized 
component. 

Because  of its relatively high radius of gyration, a square 
cross section strut is attractive  from  a mechanical point of 
view. Determination of its IFR values using (la)  dan  (lb) 
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Fig. 3. IFR magnitudes for rectangular  cylinders. 

must be carried out using integral-equation techniques. 
However, standard moment-method  techniques  yield the 
IFR magnitudes  plotted in Fig. 3. Internal resonances in 
the  structure cause the numerical  procedures to become 
unstable, yielding the  remarkable,  but  spurious  resonant 
peaks shown  in the figure for H polarization  (corresponding 
to the TM waveguide frequencies at cutoff). Although these 
resonances also occur in the  Epolarization  current  solutions, 
they are nonradiative  components which do not cause 
erroneous scattered fields  except in very narrow regions in 
which the  matrix is too ill-conditioned to be accurately 
inverted. It is the  purpose of this  paper to present both 
numerical and experimental  techniques  whereby the I F R s  
of square, perfectly conducting cylinders can be correctly 
determined, and  to discuss the consequences  of the results 
on  aperture blocking. (Although  the  paper is restricted to 
perfect conductors,  the IFR method  can  also be  applied 
to dielectric struts.) 

11. NUMERICAL TECHNTQUES FOR EVALUATING THE IFR 
OF A RECTANGULAR CYLINDER 

The problem  of scattering by rectangular cylinders has 
been discussed by several authors [SI-[7]. However, as 
mentioned in the introduction,  the  standard method-of- 
moments  solution exhibited serious instabilities at fre- 
quencies associated with internal resonances. In a previous 
account [SI it was  shown  how the  condition  number could 
be  used to detect these unwanted resonances and  evaluate 
various  methods used for removing their effect. This section 
of this  paper will discuss how internal  constraints can  be 
used  in the method-of-moment calculations to obtain 
correct values for IFR  at the  resonant frequencies. 

The results for  each  polarization are usually calculated 
using different formulations. The usual  formulation  for  the 
E-wave polarization is the following  E-field integral 
equation which  enforces the  condition that the  total  tan- 

I J2t t 
Interior  constraint  points J" 

4 
- - - 

. \IMAGE OF 

Fig. 4. Cross section of rectangle  showing  segmentation  and position 
of internal  constraint points. 

gential E-field  be zero  along  the surface of the  cylinder: 

4 J S l  

After the  current  has been determined,  IFR,  can be cal- 
culated by (la).  For the H-wave polarization an H-field 
integral  equation is often used. Recalling that  Hz, the  total 
z-directed H-field just  external to the cylinder, is equal to 
J,,, the circumferential current density, one  can derive 

HZ(ps) + 7 (a  . n)H,'2'(kl~ - psl)H,(p) dl  = HP.&. 

(7) 
j k  s,, 

Here HI(')  is the Hankel  function of the first order, second 
kind, n is the  outward  normal vector from  the cylinder, a 
is a  unit vector pointing  from  the  source  point to the observa- 
tion  point, p and p s  are vectors to the  source  and observation 
points, respectively, and  IFR,  can be calculated from Hz 
by (Ib). 

For  both polarizations  the  integral  equations  obtained 
can be  easily discretized by the method-of-moments in the 
standard way. The discretization may  be done by dividing 
the perimeter  of the cross section into  equal  length segments 
and solving for  currents Ji that  are uniform over these 
segments  (see Fig. 4). Applying the technique  of point 
matching, we  will  specify the value  of the field at the mid- 
points of  each segnent. Since the  incident wave has been 
restricted to be normal to the  front face, one  can use the 
resulting symmetry to half the  order of the  matrix while 
keeping the same number of se-gnents. Applying the sym- 
metry consideration, therefore, is  equivalent to using pairs 
of  rectangular  currents as the expansion functions.  In 
calculating the matrix elements, one  must use a small 
argument expansion  of the kernel for  the self elements;  for 
all  the  other elements, the  approximation that all  the  current 
over a segment  is concentrated at its midpoint is usually 
sufficient.  An  easy  way to improve  this last approximation 
is to calculate the fields at the testing point  due to currents 
at the midpoint and the  two  endpoints of the source seg- 
ment weighted  by the  proper Simpson rule coefficients. 

However,  when the  method of moments is  applied in  the 
usual  way,  resonances can  produce  erroneous results at 
certain frequencies which correspond to waveguide  modes 
at cutoff in the  interior of the cylinder. First  one  should 
note  that assumed  symmetry of  the problem eliminates any 
potentially troublesome asymmetric  resonances. The way 
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to eliminate all interior resonances is the use  of  extended 
boundary conditions [SI.  Since one  can fill the interior 
region  of the cylinder with a perfect  electric. conductor 
without changing currents or scattered fields, restricting 
the  total field to zero at specified interior points is a valid 
condition for the fields to satisfy. The matrix equation is 
modified  by  using  these internal points as additional 
testing points in the method of  moments. The resulting 
overdetermined matrix equation can be solved  by  multiply- 
ing both sides  of the  equation by the transpose-conjugate 
of the matrix yielding a new equation with a square matrix. 
In a formal sense  this  is applying the Moore-Penrose 
pseudoinverse for which theory guarantees the minimum- 
norm least squares solution [lo].  Varying the number of 
internal points from  one to six does not significantly change 
results. For the distribution of interior points it  is important 
that they are not all on the  nodal lines of a modal field or 
else the problem will  be as ill-conditioned as before. The 
four interior points used for calculations in this paper (see 
Fig. 4) were  chosen to be as independent as possible. 

111. EXPERIMEMALLY DETER~QFNED IFR’s FOR SQUARE 
CYLINDERS 

A .  Theory of Experiment 

Parallel plate waveguides  have frequently been  used to 
measure two-dimensional scattering properties. However, 
these measurements are difficult to carry out  for  the H 
polarization. Consequently a three-dimensional scattering 
range was  used for the measurements of  this paper (Fig. 
5(a)). H I  is an S band transmitting horn, and H2 is an S 
band receiving horn. 

Neglecting currents on the top  and bottom of the cylinder 

~ , c , , ( O , v o , O )  = - j op  - 1”” i ,  (Js  . r) d l  dz (8) 
4n - L / 2  

p = &2 + (vo’ + v ) 2  + z2 = Jp02 + z2 

r = J r 2  + (qo - r?)’ + z2 = y’ro2 + z2 

where, in terms of  Fig.  5(a), 

Now define 

where the phase of (as . i=)’ varies  only  very  slowly  in z. 
Evaluating the z-integral  using saddle-point techniques 
[ 111 yields  (assuming the cylinders to be long in terms of 
wavelengths and the  horn illumination of the  ends to be 
relatively  low) 

Fig. 5. 
(b) 

section geometry. 
(a) Geometry of two-horn forward-scattering range. (b) Cross 

Fig. 6.  Forward-scattering range in anechoic chamber of Technical 
University of Denmark. 

where (Js . P)b = Jsza,/(e-jkPo/po). If the cylinder  is in the 
far-field  of the  horns and vice  versa  (with  respect to maxi- 
mum width) then the following approximations are justified 
in phase expressions  (see  Fig.  5(b)): 

P o  + yo v o  + v o ‘  (1 la) 

Po 2 vo‘ f VI (1lb) 
and in amplitude expressions 

ro 2 ylo (1 2 4  

Po = vel. ( 12b) 
Then 
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Fig. 7. IFRE magnitude  for  square and  circdar cylinders. 

and the total field at P in the presence of the cylinder  is 

1 + ~ v e j ( * / ~ )  IFRE J ' lo  
-I- ','I (14) 

Ar lOr lO '  

where 

is the incident field from HI to Hz in the absence of the 
cylinder. 

As described  in the next  section the  amplitude change Acx 
and  the phase change A$ in the field  incident on H2 is 
measured  when the cylinder  is  inserted  between H I  and H 2 .  
Thus, Ei,,(O,qo,O)e-he-iA~ denotes the total field 
E,ota,(O,~O,O) which is then inverted to yield 

An identical expression,  used in 
determined IFR values, may 
polarization. 

calculating experimentally 
be  derived for  the H 

B. Experimental Setup 
The measurements were carried out in a radio anechoic 

chamber as shown  in  Fig.  6. The IFR was determined at 
2.6,3.0,3.4, and 3.8 GHz  for cylinders  of square and circular 
cross section. In  order to obtain nearly a decade variation 
in  the  ratio w / i  from about 0.15 to 1.3, the IFRE and IFR, 
were measured at the above frequencies for cylinders  of 
widths of about 1.5,  2.5,  5,  6.35, and 10 cm. Circular and 
square cylinders  were  used for  all values  of the width, 

except for w = 10  cm, for which  only a square cylinder was 
available. The length of all  cylinders  was about 6 m. The 
distance between the apertures of the transmitting and 
receiving horns was 7.50 m.  The 3 dB beamwidths of the 
horns were 9" in the E- and H-planes, and the horn radiation 
was 20-30 dB below the peak level in the direction of the 
ends of the cylinder. A special support  for the cylinders  was 
arranged approximately halfway  between the horns in such 
a manner that  the different  cylinders could be easily inserted 
and removed. Furthermore,  the  support was mounted on 
an automated rolling cart so that  the influence of disturbing 
reflections  between the cylinders and  the horns could be 
reduced  by averaging the recorded interference patterns. 

The amplitude changes AM and phase changes A$ of 
the received  signal due to insertion of  cylinders  between the 
horns were detected using a microwave  bridge which 
included a transmission test unit and a netyork analyzer. 
The transmitted signal  was frequency stabilized in order to 
obtain an accuracy of a few hundredths of a decibel in the 
measurements  of amplitude changes and a few hundredths 
of a degree in the measurements of phase changes. 

C. Results 
The experimentally measured IFR, magnitudes, based on 

(16) and the measured Acx and A$ values, are compared in 
Fig. 7 with the theoretical values  (solid  curves) for  both 
square and circular cross  sections. The  error flags are based 
on a peak uncertainty of 0.05 dB in Ax and 0.05" in Aq5. 
Furthermore, fixed  values  of the reflections from  the walls, 
floor and ceiling  of the chamber are taken into  account. 
The larger error flags for small w/ll values  reflect the larger 
percentage effect  these  fixed uncertainties have for small 
AI and A$. Since Acr values  were  generally  of the order 
of 2 dB  or less and Ad values  were  less than 10"-12", the 
factor e-*'e-j*@' in (16) was  generally of  the  order of unity 
in magnitude, and  subtracting unity in calculating the IFR 
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generally magnified any experimental uncertainties. Thus 
the measurements  were  extremely sensitive to  any  random 
or systematic errors. Finally, since a moving cart was  used 
for  the measurements, the 1.5- and 2.5-cm diameter cylinders 
were subject to considerable  mechanical oscillation (swing- 
ing), which  may  have  caused enhanced data scatter for 
small w/A. 

With a few exceptions, the experimental error flags  may 
be  seen to overlap  the calculated E-wave IFR magnitudes 
both for  the  square (based on moment-method analysis) 
and circle (based on (2a)). Both the experimental and 
theoretical results for  the  circular cross section are con- 
sistently 10-15 percent  less than those for  the  square, in- 
dicating that the  magnitude of the  forward scattered field 
for E-wave  incidence is less for a circular cylinder than  for  a 
square of the same width. 

The experimentally  measured IFRH magnitudes are 

compared in Fig. 8(a) with the  theoretical curve for  square 
cross section, and  in Fig. 8(b) for  circular  cross section. 
The experimental error flags generally overlap the  theoretical 
curves. There is no evidence  of the  spurious resonances in 
Fig. 3 either in the theoretical curve or in the experimental 
data (as seen, for example,  by the five points  surrounding 
w/A = J?: in Fig. 8(a), a resonance  of the  “internal” 
structure). Again, the H-wave IFR magnitudes for  the 
square cross section are consistently greater  than  those  for 
the  circular. The “hump” in the curve for  the  square cross 
section is  sufficiently pronounced that  at w / A  = 0.5, for 
example, the IFR is nearly 50  percent greater  than  the value 
for  a  circular cylinder of the same  width. 

Experimentally  measured IFR phase data was consistently 
8”-12” in delay  of the  corresponding  theoretical values for 
both cross sections, both  polarizations,  and  all cylinder 
sizes and frequencies. It was not  known whether this 
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consistent discrepancy was due to the  measurement  pro- 
cedures or  approximations  in  the theory. However, the 
significance  of this small discrepancy is quantitatively 
very little  in  its effects on  aperture blocking. 

IV. DISCUSSION OF THE RESULTS FOR SQUARE CYLINDERS 

The IFRs  for a  square cylinder are plotted  on  the complex 
plane in Fig. 9. This figure  resembles  Fig. 2 for the circular 
cylinder except for its more complicated structure and 
enhanced magnitude  for  the H polarization. Similarly a 
table of IFR values for H polarization is given  in Table I 
for rectangular cylinders with face-on incidence. The 
depth-width  ratio r is shown  in Fig. 3. 

The enhanced IFR magnitudes for  rectangular and  square 
cylinders have significant implications on  aperture blocking 
losses and boresight cross polarization levels  as  defined in 
(4) and (5). In  particular,  the  “super-enhanced”  IFR, 
magnitude may  cause greatly increased blocking by H-plane 
struts for  a linearly polarized antenna, or by any  strut for a 
circularly polarized antenna.  The question is considerably 
complicated, however, by the  more  favorable  radius of 
gyration of a  square  strut relative to  a circular one, so that 
a  square  strut of  smaller width will  achieve the same 
mechanical properties as  a somewhat  larger  circular  strut. 
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-178.08 

-178.05 

r = 2  i 
Mag. 
.2299 

A382 

.5483 

.6772 

.9101 

1.0628 

1.1521 

1.2374 

1.1711 

1.1296 

1.0637 

1.0128 

-9779 

.9624 

.9701 

1.0016 

1.0240 

1 .oh96 

1.0487 

1.0394 

1.0224 

1.0049 

-9926 

-9905 

1.0156 

1.0276 

1.0157 

-9998 

Phase 

-98.22 

-1l3.20 

-121.36 

-120.16 

-125.22 

-137.07 

-148.49 

-160.59 

-168.17 

-172.79 

-175.43 

-176.01 

-175.14 

-173.93 

-172.06 

-171.75 

-172.25 

-173 - 69 

-175.42 

-176.50 

-177.30 

-177.51 

-177.15 

-175.84 

-175.a 

-177.09 

-178.05 

-177.91 

For example, the IFR’s of  a  square cylinder of 0.608% 
width for  normal face-on incidence are  tabulated  in Table I1 
together with the corresponding IFRs for  four reference 
cylinders of circular cross section. The reference cylinders 
are : 

a)  equal  diameter, ie., 0.6801, which can be inscribed in 

b) equal cross sectional area, i.e., 0.461 square wave- 

c) equal circumference,  i.e., 2.65). (diameter = 0.8463.); 
d) circular cylinder of  0.931A width, which can be circum- 

the  square cylinder ; 

lengths (diameter = 0.7661); 

scribed around  the  square cylinder. 

The IFR magnitudes for electric, magnetic, and circular 
polarization are tabulated. In [2] it is shown that the IFR 
for  circular  polarization is equal  to the algebraic mean of 
the E- and H-wave  IFR’s. In  order  to  compare the different 



RUSCH et a!. : FORWARD SCA’ITERING WITH APPLICATION TO APERTURE BLOCKAGE 

TABLE I1 

189 

vidth ,v  

(varrelength) 
ID% I 

Square 
cylinder 0.680 1.612 

Circular 
inscribed 0.680  1.397 

Circular 
equal 
cross-section 

0.766  1.362 

Circular 
equal 0.846  1.336 
circumference 

Circtdai 
circumscribed 0’931 1.312 

0.893 

0.679 

0.762 

0.845 

0.931 

geometries the quantity (width) x (IFR) is also  tabulated. 
This quantity yields the effective blocking contribution 
to  the forward scattered field since the IFR alone is nor- 
malized by the width. 

The blocking parameters of the  four reference cylinders 
are plotted  in  the  four  bottom rows of Table 11. The electric 
IFR magnitudes decrease toward unity as the diameter 
increases while the magnetic IFR magnitudes increase to- 
ward unity. The circular polarization magnitudes are close 
to unity over the range. The wIFR product  for  the  two 
smaller circular cylinders is less than  that of the  square 
cylinder for  the E-wave and circular polarization. Because 
the magnetic scattering appears enhanced for  the  square 
cylinder, three of the circular cylinders have smaller wIFR 
products  than  the  square cylinder. A complete comparison 
of the circular versus.square cylinders involves both  the RF 
and mechanical properties of interest. For example, if 
equal cross sectional areas  are desired (equal support 
strength) the circular cylinders have 5 percent less  E-wave 
blocking, 20 percent less H-wave blocking, and 15 percent 
less blocking for circular polarization. While no definitive 
figure of merit can be easily formulated for  a comparison 
of the two cross sectional geometries, it may be concluded 
that the data  from Table I and Figs. 7 and 8 provide a 
quantitative means by which square cylinders can be 
selected for  a  particular  strut  support application. 
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