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Automated Minimax Design of Networks 
KAJ MADSEN, HANS SCHJBR-JACOBSEN, AND JBRGEN VOLDBY 

Abstract-A new gradient algorithm for the solution of nonlinear 
minimax problems has been developed. The algorithm is well suited for 
automated minimax design of networks and it is very simple to use. It 
compares favorably with recent minimax and least pth algorithms. 
General convergence problems related to minimax design of networks are.. 
discussed. Finally, minimax des/gn of equalization networks for reflection- 
type microwave amplifiers is carried out by means of the proposed 
algorithm. 

I. INTRODUCTION 

I N PRACTICAL circuit and systems design it is often 
required to approximate certain specified characteristics 

with physical realizable response functions in such a way 
that the maximum deviation is minimized. Such Chebyshev 
or minimax solutions are usually not obtainable by analytical 
means in general cases with arbitrary specifications or when 
strongly frequency dependent elements are used in broad- 
band systems design. It is therefore well motivated to try 
to develop iterative schemes to achieve performance 
approximations that are optimum in the minimax sense. 

Ishizaki and Watanabe [I] and Osborne and Watson 
[2] introduced very similar approaches with successive local 
linearizations of the nonlinear equations. However, these 
methods may fail to converge if certain singularities are 
present. Bandler et al. have developed an algorithm not 
requiring derivatives [3] and also an algorithm which uses 
gradient information of one of more of the highest ripples 
in the response error function [4]. Recent work by Bandler 
and Charalambous [S], [6] used at least pth approach 
together with a gradient optimization algorithm to provide 
minimax solutions. 

This paper describes a new algorithm that is based on 
successive linear approximations to the nonlinear functions 
defining the problem. The resulting linear systems are 
solved in the minimax sense with automatically adjusted 
bounds on the solutions, depending on the goodness of the 
linear approximations. This approach has proved successful 
in least-squares approximation problems [7]. Unlike some 
of the previous developed methods, the present algorithm 
avoids expensive line searches. Although the method is 
intended for solution of a wjde range of nonlinear minimax 
problems, it will be compared here with other algorithms 
solving cascaded transmission-line transformer problems. 
The versatility of the algorithm is finally demon$trated by 
optimal design of microwave reflection amplifiers. 
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II. A NEW ALGORITHM 

A. Mathematical Introduction 

The minimax problem under consideration is that of 
minimizing 

JW = max I.&)I (1) 
i 

where 

fi(rc> = fi(xl,xz; . *,x,), j = 1,2; - *,m, m 2 n (2) 

is a set of residuals which are nonlinear functions of the 
design parameters x. In the frequency-domain design case 
fj may be thought of as the deviation of an actual network 
amplitude response H(s,$~) from a desired response H,(ll/j) 
at the jth sample frequency $ j : 

fj(X,$j) = H(&,$j) - HO(+j)* (3) 

At the kth stage of the algorithm a minimax solution bk 
to the linearized system 

fj@k) + i$l 2 (&klhki = O9 j = 1,2; --,m (4) 
i 

is found subject to the constraints 

Ilbkll = max lhkil I Ak. I (5) 

& is automatically adjusted during the process to try to 
provide the inequality 

F&k + -hk) < F&k) (6) 

allowing a new approximate solution to be defined as 

&,+I = &, + -hk* (7) 

Thus the value of 1, should depend on the goodness of the 
linear approximations to (2) at & = &. The more the 
residuals fj differ from a set of linear functions in the 
neighborhood of &k, the smaller I, should be chosen. 
Correspondingly, if the linear approximations are very good, 
and s, is not near a minimum, we will allow the next step 
to be larger by choosing a larger value of &+ 1. This strategy 
offers a greal deal of flexibility because it allows the algorithm 
to adapt to the local behavior of F(s). 

B. Detailed Mathematical Description 

Let F(_x,_h) be defined through 

F(&,b) = max Ifj(&) + W&),b)I 
i 

where 

(8) 

(9) 
YenmarK. 
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Now bk is found as solution to the linear problem 

&&,bk) = mi11 {&k&}- (10) 
Ilhll~bc 

DIV = .FALSE. 

This subproblem may be solved by a standard linear 
programming routine. However, we have solved the sub- 
problem by a method similar to the exchange algorithm 
[9], which is more efficient than the linear programming 
method. 

solution of linear minimax 
problem subject to bounds 

The point (_xk + Lrk) is chosen as the next point in the 
iteration, if the decrease in the function F exceeds a small 
multiple of the decrease predicted by the linear approxima- 
tion, i.e., if 

AF, 2 0.01 AFk (11) 
where 

calculate residuals and 
derivatives at s + hk 

A& = F&c) - F:(Zk + bk) 
and 

@k = F(&ck,i?) - F(-Xk,!!k)* 

If (1 1) fails we let &+ 1 = &. 
The value &+r is defined as follows. If 

w 

(13) 

AFk I a AFk (14) 

where0.01 < a < 1, wechoose1,+, = BII-hkll, 0 < /3 < 1. 
As a consequence of this we will have 2, + r I /33Lk in the 
case where &+ r = -x,. This strategy ensures convergence 
because (12) will be positive for ll-hklI sufficiently small, 
unless a local minimum is reached. Experiments have shown 
that the values a = /? = 0.25 are appropriate, so in the 
computer’ program we use these constants. 

If (14) is not fulfilled, and 

where 
A2Fk I 0.25 AFk (15) 

Fig. 1. Mathematical flow diagram of minimax algorithm. 

A2Fk = max Ifj&k + bk) - (fj(&k) + (~fjbk),-hk)}I (16) 
i 

is a measure of the goodness of the linear approximation, 
we choose &+i = 21/&/l. In practice this will mean that if 
the linear approximation is very good, and z, is not near a 
local minimum, we will have 3Lk+ r = 22,. 

If neither (14) nor (15) is satisfied, we let A,+i = ll_hklI. 
For the sake of clarity, a flow-diagram of the algorithm 

is shown in Fig. 1. 

the minimization subprogram and to code a subroutine for 
calculating the residuals and the sensitivities. On entry 
initial estimates of _x and A should be provided together 
with parameters n, m, and E. Since the bounds are adjusted 
by the subroutine the choice of the initial value of 1 is not 
critical. We suggest a value near 10 percent of the norm of 
the starting vector. In all the runs quoted in this paper the 
initial value of E. has been set equal to 0.1. 

The iterations are stopped whenever the convergence 
criterion 

Ak s eli~kII (17) 

where E is a small user-specified number, is met. 
It can be shown that the algorithm has sure convergence 

properties. The interested reader is referred to [8] for the 
rather lengthy and space-consuming convergence proofs. 

The program package is available from the authors on 
request. 

III. NUMERICAL RESULTS 
A. Comparison with Other Algorithms 

C. Practical Implementation 
The proposed algorithm has been implemented for a 

digital computer (IBM 370/165) in double precision 
Fortran IV. The package is user-oriented and very simple 
to apply. The user only needs to know the parameter list of 

To compare the proposed algorithm with already 
published minimax and least pth algorithms, the well- 
known two- and three-section cascaded transmission-line 
10: 1 transformers, see Fig. 2, have been optimized over a 
loo-percent bandwidth. These test problems were in- 
troduced in [3]. The residualsfj have been correspondingly 
defined as 

fj(Z) = 3lPj(&)l”9 j = 1,2;**,11 (18) 
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TABLE I 
OPTIMIZATION OF TWO-SECTION 10: 1 QUARTER-WAVE TRANSFORMER OVER lOO-PERCENT BANDWIDTH 

=2 Razor [3] Grazer t4] Least p'th [5-j 
(p = 100) 

This algorithm 

1.0%. 0.x%, 0.01% 

1.0 3.0 1571 126 22 9 11 13 
207 

1.0 6.0 341 83 30 9 9 12 
152 

3.5 5.0 223) 52 15 7 9 10 
100 

3.5 3.0 210) 29 14 8 11 13 
163 

Fig. 2. Three-section cascaded transmission-line 10: 1 transformer. 
Characteristic impedances Z and electrical lengths 0 (radians at 
center frequency). 

where the 11 normalized sample frequencies Gj are (0.5, 
0.6, 0.7, 0.77, 0.9, 1.0, 1.1, 1.23, 1.3, 1.4, 1.5) in the three- 
section case and uniformly spaced in the two-section case. 
The gradients afj/axi are conveniently obtained using 
scattering matrix sensitivities [lo], [ 1 l] based on the adjoint 
network concept [12], [13]. S’ mce the network is reciprocal, 
only one network analysis is required to find the sensitivities. 
The basis of algorithm comparisons is the number of total 
network frequency analysis (including evaluation of the 
gradients) that is required to bring the maximum reflection 
coefficient 

max IPjl 
j 

(19) 

within 0.01 percent of its known optimum value for the 
two-section transformer (0.42857) and to bring (19) within 
5 decimals accuracy (0.19729) in the three-section case. 
For our method we also quote the number of iterations used 
to bring (19) within 1 percent, 0.1 percent, and 0.01 percent 
of the optimum value. 

With fixed quarter-wave lengths some results are given 
for the two-section case in Fig. 3(a)-(d) as a function of 
the number of function evaluations N. Four different 
combinations of starting values of the characteristic 
impedances were used, namely, (Z,,Z,) = (1.0,3.0), (1 .O, 
6.0), (3.5,6.0), and (3.5,3.0). The rate of convergence appears 
to be quite fast and in Table I comparisons are made with 
some previously published algorithms [3]-[53. 

In Fig. 4 results for the three-section transformer are 
shown using the starting point (Z,,Z,,Z3) = (1.0,3.16228, 
10.0) and keeping the lengths fixed at the optimum values 
n/2. In Table II, left column, also comparative results 
obtained in previous works [2]-[4] are tabulated. 

The following two examples concerned with the three- 
section case varying both impedances and lengths exhibit 

0.9 
moxlpl 

(4 (b) (4 Cd) 
Fig. 3. Optimization of two-section 1O:l quarter-wave transformer 

over lOO-percent bandwidth to 0.01 percent accuracy. Starting points 
(Z,,Z,): (a) (1.0, 3.0), (b) (1.0, 6.0), (c) (3.5, 6.0), (d) (3.5, 3.0). 

0.8 

1 max Ipl 

0.6 

o.L-- 
0 N 50 

Fig. 4. Optimization of three-section 10: 1 quarter-wave transformer 
over lOO-percent bandwidth to 0.01 percent accuracy. Starting point 
(Z,,Z,,Z,): (1.0, 3.16228, 10.0). 

a type of singularity- at the solution that causes extremely 
slow final convergence. From the discussion in Section IV 
it follows that when the system is singular at the solution, 
CY ought to be chosen smaller and /? larger than in the non- 
singular case. In order to illustrate this point we present 
the number of function evaluations used by our algorithm 
for various values of (cc,/?) in Table II, right columns. The 
numbers also illustrate the point that the initial rate of 
convergence will normally not be affected by the singularity 
of the system. Also the corresponding results from the 
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TABLE II 
OPTIMIZATION OF THREE-SECTION 10: 1 TRANSFORMER OVER 

~OGPERCENT BANDWIDTH 

1.0 1.0 1.5 

1 1 2 2 0.0 . f 

3.16228 3.16228 3.0 

1 1 2 2 1.2 . ; 

10.0 10.0 6.0 

1. 1 2 2 0.8 . ; 

hmber of netvork analysis 

‘his algorithm 

(1 B 

0.25 0.25 

0.1 0.70 

0.09 0.75 
0.00 0.80 

0.07 0.85 

0.06 0.90 

0.05 0.95 

199 

406 

219 

~0 26 43 99 

860~ 237* 

1300, 1250’ 

696 498 

155 95 

186 304 431 707 7 12 125 253 

121 208 309 373 16 21 32 67 
114 175 253 313 15 24 103 178 

7-l 148 239 294 22 32 42 63 

47 139 193 258 27 35 49 57 

56 75 86 516 37 56 83 143 

80 118 126 473 65 84 120 136 

* Solution not reached with required accuracy. 

literature [2]-[4], [6] are quoted. In [6] two least pth 
algorithms (with modifications) were presented. However, 
for the sake of brevity only the most favorable results are 
quoted here. 

From Tables I and II it occurs that our algorithm per- 
forms quite good on the particular test problems under 
consideration. 

B. Optimum Design of Reflection AmpQers -’ 
Consider a reflection amplifier with a transferred electron 

device represented by its measured small signal impedance, 
Fig. 5. An equalization network consisting of cascaded 
transmission line sections in front of the device is assumed 
in order to provide tuning facilities. The entire amplifier 
is then adequately modeled in analogy with the trans- 
formers previously described in Fig. 2, the voltage gain at 
the sample frequency tij being given by IPjl. The residuals 
are defined by 

&<_x> = 3(lpj(Z)l - Go)‘, j = 1,. . *,I5 (20) 

where G,, denotes the desired voltage gain within the 
frequency band 8.0-10.8 GHz and the sample frequencies 
are equidistantly spaced. FREQUENCY (GHz) _. - 

- ,,I_,-50 
FREQUENCY (GM) 

Fig. 5. Measured small signal impedance Z, = RI, + jX, of 
packaged transferred electron device. Device data: no = 1.5 *lo” 
cm- 3, L = 12 pm, R. = 5.6 Cl, V. = -8.7 V. 

- 

TABLE III 
OPTIMIZATION OF TWO-SECTION EQUALIZATION NETWORKS FOR 
TRANSFERRED ELECTRON AMPLIFIER IN FREQUENCY INTERVAL 

8.0-10.8 GHz (E = lo- 5, G( = /7 = 0.25) 
3PECIFIED 
YOLTAGE GAIN 

FUNCTION 

21 
* 

81 22* 82 EVALUATIONS 

3.5 0.401868 2.13885 0.114232 0.302374 125 

3.0 0.441668 2.044808 0.209277 0.535822 110 

2.5 0.4S1489 1.94140 0.300273 0.738606 27 

2.0 0.521104 1.82380 0.409896 0.907693 66 

INITIAL JL " 
1.0 2 1.0 2 

VALUES 

* Normalized to 50 D. 

VOLTAGE 
GAIN 

Both impedances and lengths are allowed to vary and 

from identical starting points (Z1,Z,,8,,02) = (l.O,l.O, 
Fig. 6. Minimax transferred electron amplifier responses correspond- 

ing to different target gain specifications. 
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7c/2,7c/2) results are revealed in Table III and Fig. 6. Note 
that the starting point corresponds to the nonexistence of a 
tuning structure, i.e., no a,priori information has been used 
in selecting the initial values of the optimization parameters. 

It has not been the purpose of this section to deal with 
problems such as stability, discontinuity capacitances, 
device package parameters, etc., related to reflection-type 
amplifiers. Concerning these problems, the interested reader 
is referred to the literature, for example, [14]. 

IV. DISCUSSION 

The last two test problems considered in Section III-A 
belong to a class of minimax problems that are -singular 
in the following sense. Normally, at a minimax solution 
the extreme values of the residuals are attained in at least 
n + 1 points. In these two test problems, however, n = 6, 
but the optimum response only has r = 4 maxima [3]. 
Because of the continuity this means that near the solution 
r of the functions fj will determine F(s), and it can be shown 
that the corresponding r linear approximations of the form 
(4) are linearly dependent. Therefore, the unrestricted 
solution to (4) may not exist, and if it exists it will have the 
property ll!rkll -+ co. Consequently, we obtain convergence 
only because of the bounds (5). This inconvenience may of 
course be eliminated, if, for example, the line lengths are 
kept fixed at the optimum values while searching for the 
optimum impedances. 

Because of the linear dependence F(s) describes a steep 
valley near the optimum, and, consequently, the linear 
approximations must be very accurate in order to ensure a 
decreasing sequence of function values. This means that 
(14) often will be satisfied and as a result the bound on the 
step lengths will be very small, which means many iterations. 
Therefore, the conditions for decreasing the bound must be 
mild, which means that c1 must be smaller and that /I must 
be larger. 

Note that the difficulty only occurs when x, is near the 
optimum, so we will have a fast initial convergence in all 
cases. The rather slow final convergence in the singular 
case is characteristic for methods using the objective 
function F(s) (this method, [I]-[4]), whereas methods 
that work with smoother objective functions (e.g., [6]) 
probably are superior at this point. When our algorithm is 
applied to nonsingular problems, the final rate of con- 
vergence is quadratic [S]. If, however, it is known in advance 
that the problem is singular we adjust the constants CI and p 
to improve the final rate of convergence. 

V. CONCLUSION 

A nonlinear minimax optimization method has been 
developed and documented. The comparisons that have 
been carried out with published algorithms seem to indicate 
that the proposed algorithm is quite effective in achieving 
optimal minimax solutions to specific network design 
problems. Also more practical design problems have been 
satisfactorily solved by the algorithm, namely, design of 
equilization networks for microwave reflection-type ampli- 
fiers using measured small-signal data for the active device. 
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The problems arising from singularities have been briefly 
discussed and suggestions have been made as to increase the 
final rate of convergence in such singular cases. 

It is believed that the present method will find widely 
spread applications within the field of network design and 
other fields in which solution of nonlinear minimax problems 
is essential. 
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Multiparameter Large-Change Sensitivity 
Analysis and Systematic Exploration 

K. H. LEUNG, MEMBER, IEEE, AND ROBERT SPENCE, MEMBER, IEEE 

Absrrucr-The effect on linear circuit response of simultaneous changes 
in a number (m) of components must often be computed. Two efficient 
methods for predicting this effect are examined. It is shown that the 
computational cost of predicting the effect of each set is approximately 
G,, where G, is the cost of a Gaussian elimination of an M x m matrix. 
However, if the sets represent combinations of relatively few individual 
component changes, then systematic exploration is shown to reduce the 
computational cost per set to the order of 2. 

I. INTRODUCTION 

T HE NEED to compute the effect of component 
parameter change on circuit response arises from the 

frequent occasions during design and use when component 
values change either parasitically, manually or automatically 
(as in circuit optimization). In response to this need, 
sensitivity algorithms have been devised for calculating the 
effect of small changes in one or more parameters within a 
linear circuit Cl]-[3]. For lurge changes, algorithms have 

Manuscript received May 21, 1974; revised November 19, 1974 and 
March 8, 1975. 

The authors are with the Department of Electrical Engineering, 
Imperial College, Exhibition Road, London SW7 2BT, England. 

been proposed and investigated for changes in one [I], [4] 
or more Cl], [5], [6l P arameters, but there still exists a 
need for further assessment and comparative evaluation. 

The effect of simultaneous large changes in more than one 
parameter is frequently of interest. The circuit designer may 
be interactively and dynamically adjusting a number of 
parameters in order to achieve a desired circuit response. 
Or, the changes may be automatic, as in a Monte-Carlo 
statistical circuit analysis [7]. The need to examine the 
consequence of change in the physical properties (e.g., 
temperature, doping level) of a circuit also involves the 
exploration of simultaneous parameter changes [S]; as 
does the calculation of performance contours [9]. 

This paper examines two algorithms originally employed 
to predict the effect of single large parameter changes in a 
linear circuit, and determines their efficiency when extended 
to deal with simultaneous multiparameter variation. One 
outcome is an extremely efficient algorithm which is 
appropriate when the sets of component changes represent 
combinations of individual component changes. Engineering 
applications of this approach-known as systematic 
exploration-are briefly illustrated. 


