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New Convolutional Code Constructions and a 
C lass of Asymptotically Good 

T ime-Varying Codes 
J0RN JUSTESEN 

Absfract-We show that the generator polynomials of certain cyclic 
codes define noncatastrophic fixed convolutional codes whose free 
distances are lowerhounded by the minimum distances of the cyclic 
codes. This result is used to construct convolutional codes with free 
distance equal to the constraint length and to derive convolutional codes 
with good free distances from the BCH codes. Finally, a class of time- 
varying codes is constructed for which the free distance increases 
linearly with the constraint length. 

I. INTR~DIJCTI~N 

T HIS paper contains a number of refinements and 
extensions of the results on the relationship between 

cyclic codes and convolutional codes given earlier by 
Massey et al. [l]. 

In Section II a lower bound is established on the free 
distance of certain convolutional codes derived from cyclic 
codes. The bound is given in terms of the minimum distance 
of the cyclic code and the roots of the generator poly- 
nomial. 

In Section III convolutional codes analogous to the 
Reed-Solomon block codes are constructed, and in Section 
IV it is shown that the restriction of these codes to subfields 
produces good convolutional codes closely related to the 
BCH block codes. 

Finally a technique quite similar to that used earlier by 
Justesen [2] to obtain asymptotically good block codes 
from Reed-Solomon codes is used to construct asymp- 
totically good “periodic time-varying” convolutional codes 
from the convolutional codes of Section III. 

II. A LOWER BOUND ON THE FREE DISTANCE OF 
CERTAIN CONVOLUTIONAL CODES 

We shall make extensive use of the following theorem, 
which was proved by Massey et al. [ 11. 

Theorem I: For any polynomial P(X) over GF(p’), any 
nonzero element c of GF(d), and any nonnegative integers 
nandN, j 

W[P(x)(x” - c)“] 2 W[(x - c)“] W  [P(x) mod (x” -c)]. 

Here W[P(x)] denotes the Hamming weight of the poly- 
nomial P(x), and we write P(x) mod Q(X) for the remainder 
when P(x) is devided by the polynomial Q(x). 

We shall describe a certain class of fixed nonsystematic 
convolutional codes of rate K/V using the following notation, 
which generalizes the notation of Massey [3]. 
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The information sequence with zeros inserted in the check 
positions has the D-transform 

I(D) = i, + i,D + i,D2 +***+ i,-,DK-’ + i,D” +..* 

= j$l Dj- ‘lj(D”). 

In this paper a convolutional code is defined by a single 
generator polynomial G(x) and the D-transform of the 
encoded sequence may be written as T(D) = I(D)G(D). 

We define the constraint length of the code as nA = 
degree (G) + 1. Thus the constraint length is the number of 
encoded symbols affected by a single information symbol. 

A general fixed convolutional code of rate K/V is defined 
by a generator matrix of the form [4] 

G,,(D) G,,(D) .*. G,,(D) 
9 = GUI G,,(D) ... G,,(D) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

G,,(D) G,,(D) . . . G&9 

The subclass considered here has generator matrices 

i 

G,(D) G,(D) ... G,(D) 
B, = W(D) G,(D) ... G,-,(D) 

- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

DGv-.+2(D) DGv-.+,(D) . . . G,-,+,(D) 

This class of convolutional codes is sufficiently large to 
allow a proof of the Gilbert lower bound on minimum 
distance by the following standard argument [IS]. 

Consider a truncated encoded sequence T,, of length mv 
starting with a nonzero digit and a sequence of mk- in- 
formation symbols I,, also with a nonzero digit in the 
first position. (We recall that the minimum distance is 
defined as the minimum weight of any such T,.) It is then 
easy to see that there is exactly one code in the class with 
constraint length nA I mv that produces an encoded 
sequence whose first mv digits are T, as a response to an 
information sequence whose first mK digits are I,,,. Con- 
sequently at least one code over GF(q) with constraint 
length < mv has minimum distance dG satisfying 

(1) 

A convolutional code is said to be catastrophic [6] if a 
nonpolynomial I(D) can result in a polynomial T(D) [4]. 

The free distance d,,,, of the convolutional code is the 
minimum of W[T(D)] taken over all I(D) # 0. For non- 
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catastrophic codes, dfr,,,, may be taken as the minimum of 
W [T(D)] over all polynomial I(D) # 0. The Gilbert bound 
(I) is clearly a lower bound on the free distance as well as 
the minimum distance. 

We  shall study convolutional codes generated by the 
generator polynomials g(x) of cyclic codes. We  shall write 
h(x) = (x” - 1)/g(x) for the generator of the cyclic dual 
code, d, for the minimum distance of the original cyclic 
code, d,, for the minimum distance of the dual code, and n 
for the length of both cyclic codes. 

The following result was derived in [ 11. 
Theorem 2: If g(x) generates a cyclic code over GF(2’) of 

odd length n, then for any positive integer m  the rate 
R = I/v 2’-ary convolutional code with v = 2m defined by 
G(D) = g(D) is noncatastrophic and has drree 2 min 
{dJ4,:. 

In Section III we give a generalization of this theorem to 
fields of odd characteristic. 

Since the duals of many good cyclic codes, notably 
BCH codes, have small minimum distances, it is desirable 
to obtain a bound on the free distance that depends only on 
d,. The following definition will be useful in deriving such a 
bound. 

Definition: Let p be a prime, n an integer relatively 
prime to p, and v an integer that divides n. The relation 

(x = /I, iff r” = 8” 

is an equivalence relation among the nth roots of unity in 
GF(p’“). We  shall say that the v equivalent nth roots of 
unity form a v-class or that they are v-equivalent. 

If p  is a primitive nth root of unity, y = /?“I’ and c1 is 
an nth root of unity, the v-class that contains TV is {cc,cwy, 
ay2, . * . ,(Yyy- I). 

The definition of a convolutional code introduced in 
this section makes it possible to derive convolutional codes 
of rate K/V, K 2 1, from cyclic codes in a natural way. 

Theorem 3: If g(x) generates a cyclic code over GF(p’) 
of length n relatively prime to p, v is any positive integer 
that divides n, and g(x) has at most v - K v-equivalent 
roots, then the rate R = K/V convolutional code over 
GF(p’) generated by G(x) = g(x) is noncatastrophic and 
has free distance df,,, 2  d,. 

We  base the proof on the following lemma. 
Lemma I: If K or more v-equivalent nth roots of unity 

are roots of a polynomial of the form 

P(X) = ~ Xj-lPj(X") 

j=l 

then all elements of the v-class are roots of P(x). 
Proof: Let 2 be a root of P(x), that is 

P,(X”) + czP,(r’) + ... + cYIPK(sIV) = 0. (2) 

The component polynomials Pj(x”) have the same values for 
all v-equivalent values of x, and we may consequently 
interpret (2) as the equation 

P, + ZP, + z2P, + ‘.’ + ZKm’PK = 0. (3) 

If any of the Pj are nonzero, (3) has at most K - 1  solutions 

for z. A polynomial that includes K or more v-equivalent 
roots can thus divide P(x) only if Pj(x”) = 0, for allj. But 
in this case all elements of the v-class are roots of P(x). 

Proof of Theorem 3: To show that the convolutional 
code generated by g(x) is noncatastrophic, we must prove 
that a nonpolynomial information sequence 

I(D) = i Dj-‘z 
j=l J 

cannot produce a polynomial output. 
We  notice that the least common multiple of the Q,(D”) 

is a polynomial in D”, Q(D”). Thus 

I(D) = [l/Q(D’)] i D’-‘Rj(D’) = R(D)/Q(D’). 
j=l 

It may be assumed that any common factors of R(D) and 
Q(D”), that are polynomials in D’ have been canceled out, 
but they may have other common factors. For the output 
T(D) = G(D)I(D) to be a polynomial all factors of Q(D”) 
must be factors of either G(D) or R(D). But if /I is a root of 
Q(D”), all elements of the v-class containing /? are roots. 
However, we have assumed that at most v - K of these 
elements are roots of G(D), and consequently at least K 

elements must be roots of R(D) for a nonpolynomial I(D) 
to produce a polynomial T(D). We  can now apply Lemma 1 
to show that this is possible only if all elements of the 
v-class are roots of R(D), which contradicts the assumption 
that R(D) and Q(D”) have no polynomial in D” as a common 
factor. 

To bound the free distance of the convolutional code, we 
first observe that since v divides n, (D” - I)’ is a poly- 
nomial in D”. 

Consequently I(D)/(D” - 1)’ is a polynomial of the same 
form as I(D) for any t such that (D” - 1)’ divides I(D). 

Since we have assumed that g(x) has at most v - K 

v-equivalent roots and since all nth roots of unity are roots 
of x” - 1 = g(x)h(x), it follows that at least K elements 
of each v-class are roots of h(x). Hence Lemma I shows that 
h(D) divides I(D) only if (D” - 1) is a factor of Z(D). 
Repeating this argument we obtain I(D) = (D” - I)Np(D) 
where h(D) does not divide p(D). Consequently with the 
aid of Theorem 1 we have 

W [T(D)] 2 W [(D - l)N] W [p(D)g(D) mod (D” - I)] 2  d, 

This completes the proof of Theorem 3. 

The condition on the roots of g(x) may appear quite 
restrictive, but we shall find in Sections III and IV that it is 
satisfied in several interesting cases. 

The binary codes derived from Theorem 3 do not include 
codes of rate 3. The most interesting binary codes will be 
those of rates 3 and 3. 

111. CONVOLUTIONAL CODES W ITH dfree = nA 

Since W [G(D)] I nA, we have for any convolutional 
code d rree I nA. The codes for which df,,, =  nA may be 
viewed as being analogous to the maximum-distance 
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separable block codes [7, p. 3091. The Reed-Solomon 
codes [7, p. 3101 are a class of cyclic maximum distance 
separable codes that exist over any finite field GF(q). 

Let 12 = q - 1 be the length of a Reed-Solomon code 
over GF(q), and let v divide n. The generator polynomial of 
the Reed-Solomon code of rate k/n = K/V may be taken as 

g(x) = (x - 1)(x - u)(x - 2) . . .(x - F-l), WCUD)I 

where a is a primitive element of GF(q). From the v-class 
containing a”, 0 I s < n/v, the elements 

2 W[(D - I)‘] W[P(D)g(D)‘-j+‘@(D)‘-j 

. mod (D2” - I)] 

'y uS+n/V s+2n/v 
, $ ). . .,xs+w(Y-K-l) 

are roots of g(x). Thus g(x) has exactly v - K roots from 
each v-class, and consequently the condition of Theorem 3 is 
satisfied. 

Theorem 4: If g(x) is the generator polynomial of a 
Reed-Solomon code of rate k/n = K/V over GF(q), then 
the q-ary convolutional code of rate K/V generated by 
G(x) = g(x) is noncatastrophic and has d,,,, = nA = 
n-k+]. 

The rate 4 codes obtained in [l] by applying Theorem 2 
to the Reed-Solomon codes over GF(2’) of rates 3 also 
have d,,,, = nA, but they have constraint lengths about 
50 percent greater than the codes of Theorem 4 for rates 
close to +. The proof of Theorem 2 in [l] relies heavily on 
the relation between v and the characteristic of the field, 
and we could extend this theorem in an obvious way to 
codes of rate l/p for fields of characteristic p. We prefer to 
prove a less obvious, but stronger, generalization of 
Theorem 2. 

Theorem 5: If g(x) generates a cyclic code of odd length 
n over GF(q), q = pr and p an odd prime, then the rate $ 
convolutional code defined by G(D) = g(D) is non- 
catastrophic and has df,,, 2 min {d,,2d,,). 

Proof: We shall write P”(x) for the polynomial whose 
roots are the negatives of the roots of P(x). Thus P”(x) = 
+ P(-x) and W[B(x)] = W[P(x)]. Any polynomial 
Q(x2) can be factored into a product of the form P(x)P(x), 
since all roots occur in pairs If: @. In particular x2n -I= 
(x” - 1)(x” + I), and if c( is a root of x” - I, --a is a 
root of xn + I. For odd n, x and --M cannot both be roots 
of xn - 1 and consequently both cannot be roots of g(x). 

Now G(D) = G, (0’) + DG,(D’): thus if a is a common 
root of the code-generating polynomials G,(D’) and 
G2(D2), --c1 is also a common root. We conclude that gcd 
{ G,,G,J = I, and hence that the code is noncatastrophic 
[61. 

For any polynomial I(D) # 0 we may write 

T(D) = W2)g@> = I, (D)~,(D)g(D) 

= P(D)g(D)‘+ ‘ij(D)‘h(D)‘i(D)‘, (4) 

where P(D) is not divisible by any of the polynomials 
g(D), c?(D), h(D), &D). 

Suppose first that i 2 ,j. Then (4) becomes 

T(D) = P(D)g(D)‘-j”J(D)‘-‘(Dz” - 1)’ 

since (@ - I) = D” + 1. None of the roots of y”(x) are 
roots of (x” - I), so h(x) cannot divide g(x)‘-j. Applying 
Theorem 1 we find 

2 W[P(D)g(D)‘-j”g(D)‘-j mod (D” - I)] 2 d,. (5) 

Conversely, suppose i < j, then from (4) we have 

T(D) = P(D)h(D)‘-‘- %(D)j-‘(D” - l)(D’” - I)‘. 

Again applying Theorem 1 we get 

W[T(D)] 2 W[(D - I)‘] W[P(D)h(D)j-‘-‘h(D)‘-’ 

. (D” - I) mod (D2” - I)]. 

Here we note that &(x)(x” - 1) is the generator of a cyclic 
code of length 2n and minimum distance 2d,,, since h”(x) 
divides x” + I, and W[P”(x)] = W[P(x)]. Consequently 

W[T(D)] > 2d,,. 

The theorem now follows from (5) and (6). 

(6) 

Theorem 5 is not applicable to generators of Reed- 
Solomon codes in their usual form, because these codes 
have even lengths when the characteristic of the field is odd. 
However, the maximum distance separable cyclic p-ary 
codes generated by g(x) = (x - I)’ [8], [9], [I] may be 
used in Theorem 5 to obtain good p-ary convolutional 
codes. 

IV. CONVOLUTIONAL CODESOVER SMALL FIELDS 

In this section, we shall study the restriction to smaller 
fields of the codes defined by Theorem 4. While the BCH 
block codes may be obtained simply as the subcodes of 
Reed-Solomon codes with coefficients in a subfield [IO], 
we must here observe the extra condition imposed by 
Theorem 3. Thus from a (primitive or nonprimitive) BCH 
code of sufficiently high rate R 2 K/V we may construct a 
convolutional code of rate K/V with free distance lower- 
bounded by the minimum distance of the BCH code, but 
shorter constraint length nA N n(l - R). 

The following theorem demonstrates that when con- 
volutional codes are derived from certain nonprimitive 
BCH codes, the condition of Theorem 3 can be checked 
without a detailed inspection of the roots of the generator 
polynomial. 

Theorem 6: Let n = pv be a divisor of q”-’ - 1 and ,u a 
prime that divides no number of the form q’ - I for 
r < p - 1. If g(x) is the generator polynomial of a q-ary 
cyclic code of length n, at most v - K of the vth roots of 
unity in GF(q’-‘) are roots of g(x) and at most v - K 
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irreducible polynomials of degree p - 1 are factors of 
g(x), then the convolutional code defined by G(x) = g(x) 
is noncatastrophic and has free distance d,,,, 2  d,. 

Proof: It follows from the assumptions that the 
irreducible factors of x” - 1 are [7, p. 1011 v polynomials of 
degree ~1 - I, (x - I), and one or more minimal poly- 
nomials of the vth roots of unity, cP,a21r; . . ,oI(“-~)~, where 
a is a primitive nth root of unity in GF(qfi-‘). 

For two roots of the same irreducible polynomial to be 
v-equivalent, we must have 

& = ut+J’p 3 i<p--I, 

which implies 

t(qi - 1) zjpmodn, i<p-1 

and since p is a factor of n 

t(q’ - 1) = ,j’/l, i</A-1. (7) 

Since p does not divide (q’ - 1), (7) is satisfied only if t is a 
multiple of p. Thus we may conclude that while all roots of 
the minimal polynomials of the vth roots of unity belong 
to the v-class containing 1, the roots of each of the irreduc- 
ible factors of degree p - 1 include exactly one element 
from each of the remaining v-classes. Consequently the 
condition of Theorem 3 is satisfied if at most v - K of the 
irreducible factors of degree p - 1 divide g(x), and at 
most v - K vth roots of unity are roots of g(x). 

We  apply Theorem 6 in the following two examples. 

Example 1: Since 65 = 5. 13 divides 212 - 1 and 13 
divides no smaller number of the form 2’ - I, x65 + I 
has 5 irreducible factors of degree 12, and the other factors 
are x + 1 and the minimal polynomial of m13. We  obtain 
the convolutional codes listed in Table I. It is interesting to 
observe [ 111 that the code of rate + may be improved by 
including the minimal polynomial of al3 rather than x + I. 
This generator polynomial includes exactly 4 elements of 
each v-class. 

Example 2: 20 = 4. 5 divides 34 - I and 5 divides no 
smaller number of the form 3’ - I. The irreducible factors 
of xzo - 1 are 4 polynomials of degree 4, x + I, x - 1, 
and the minimal polynomial of ~7.‘. 

From the generator polynomial with roots CI,X~,CX~,~~,X~~ 
we obtain a ternary rate $ code with nA = 16 and d,,,, 2  I I. 

Unfortunately the applicability of Theorem 6 is rather 
limited, but it provides some insight into the relationship 
between the divisors of n and the maximal degree of the 
generator polynomials that satisfy the condition of Theorem 
3. In general &is relationship is more complex, but the 
best generator polynomials may be readily determined by 
successive calculation of the roots of the minimal poly- 
nomials. 

In Table II a  list of binary and ternary codes is given. 
The values of dff,,,/nn for the long binary codes in this list 
are comparable to the asymptotic values of the Gilbert 
bound and the stronger lower bound on free distance for 
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TABLE I 

%  rloots of g(x) d free “A 

4/5 091 r6 14 

3/5 w,3 h 10 26 

2/5 O,L3,5 3 14 38 

l/5 w,3,5,7 L 22 50 

l/5 1,3.5,7,13 s 25 53 

Convolutional codes derived from cyclic codes of length 65. The 
generator polynomial is the product of the minimal polynomials of 
c4 where CI is a  primitive 65th root of unity and  i assumes the values 
listed under  “roots of g(x).” 

TABLE II 

9 n Y$ kmts Of g(x) d free “A 

2 129 2h 0.1.3 h 10 30 

2 129 l/J 0,1,3,5,7,9,11 L 26 86 

2 255 2/3 -L-3,0,1,3.5,7,9 1 16 58 

2 255 l/3 -17,-15,...,-l,O.l....,ll b  38 130 

2 on 2/3 -9,-I,...,-1.0,1....,7,9 h 22 102 

2 023 l/3 -31,-29,...,0,...,77,79 2. 116 517 

3 242 l/2 -ll,-10,...,0,...,10,11 k 26 82 

3 244 3/4 0,1,2,4,5 +  14 42 

3 244 2/4 0,1,2,4,...,13,14 A 32 102 

3 244 l/4 rJ,!,2,....11,19.20 b 44 144 

Convolut ional codes over GF(q) der ived from cyclic codes of length 
n. The generator polynomial is the product of the minimal polynomials 
of aI where z is a  primitive nth root of unity and  i assumes the values 
listed under  “roots of g(x).” 

nonsystematic codes derived by Neumann [12]. The binary 
rate 5 code with nA = 102 has df,,,/nA = 0.22, whereas 
the value of Neumann’s bound is only 0.12. The rate 3 code 
with nA = 517 has df,,,/nA = 0.22 where the values of 
Gilbert’s and Neumann’s bounds are 0. I7 and 0.34. 

V. ASYMPTOTICALLY GOOD PERIODIC CONVOLUTIONAL 
CODES 

In this section we shall construct for any R, 0 < R < I, 
a  sequence of convolutional codes of rates R,, 2  R for 
increasing nA such that the free distances and constraint 
lengths satisfy 

lim inf df,,,/nA > 0. (8) 
n,4+m 

In order to simplify the proof we shall consider only binary 
codes. 

Let g,(x) be the generator polynomial of a  convolutional 
code of rate R, = K/V over GF(2h) derived from Theorem 4. 
We  write the D-transform of the encoded sequence 

T,(D) = t, + t,D + t,D2 + ... + t,D” + . . . . 

In a way similar to the construction in [Z], define a time- 
varying convolutional code of rate K/~V by the encoded 
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sequence 

T(D) = t, + t,D + t,D2 + atID + 9 . . 

+ tuD2u + c?‘tuD2u+1 + . . ., (9) 

where LX is a primitive element of GF(2”). 
Alternatively we could have defined the convolutional 

code by two code-generating polynomials, the fixed poly- 
nomial g,(x) and a time-varyiilg polynomial, but we prefer 
the simpler definition directly in terms of the encoded 
sequence (9). 

We shall express the elements of GF(2”) as binary m-place 
vectors, and we may thus interpret the code defined by (9) 
as a tiine-varying binary convolutional code, The period 
of the code is 2m(2” - 1) since ~~~~~ = 1. 

In our proof of theorem 3, we noted that the encoded 
sequence 7’,(D) could be written 

T,(D) = s~(D)f’(DW’ - llN, 

where g,(D)P(D) is not divisible by (D” - 1). We need 
more information about T,(D) than just the weight and, 
therefore, a few steps of the proof of Theorem 1 [l] follow. 

In order to bound the Hamming weight of a polynomial 
of the form q(x) (x” + I)N we write 

q(x) = qo(x”> + xq,(x”) + . . . + Xn-lqn-l(Xn). 

Then 
m- 1 

w[q(x)(x” + I>“1 = Lgo wCqi(x”)(x” + IIN 

and the theorem is proved by observing that for each term 

w[qi(x”)(x” + l)N] 2 w[qi(l)]W[(X + l)N]. 

However, the weight of each of these terms is the weight 
of the symbols that are multiplied by cli when we form the 
sequence (9), and consequently 

W[P(D)g(D) mod (D” - l)] 2 d, 

is a lower bound on the number of nonzero symbols in 
T,(D) that are multiplied by distinct powers of a when 
T(D) is formed. 

We are now in a position to apply the lemma derived 
in [2]. 

Lemma 2: Let o,(L) + 0 as L + 00. Then for any y, 
0 < y < 1, and any 6, 0 < 6 < I, the total Hamming 
weight W of M, = [y - o,(L)](~~’ - 1) distinct non- 
zero binary L-tuples satisfies 

w 2 yL[H-‘(6) - o,(L)](2Lb - 1). 

Here H-l denotes the inverse of the binary entropy 
function, and o,(L) + 0 as L -+ 00. We apply Lemma 2 
with L = 2m, 6 = 3, and y = 1 - R,. Hence 
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0 
R 

0 
> 

0.5 1.0 

Fig. 1. A comparison of the bound on dr,&za for the convolutional 
codes constructed in Section V (C) and the bound obtained earlier 
for a class of block codes (B). 

Now nA = 2m(2” - 1)(1 - R,), and consequently 

lim inf dfree/nA 2 H -I(+) (10) 
“A-C72 

for any rate R < +. 
As in [2] we obtain codes of higher rates by deleting 

the last s binary digits from each of the products t,,d’, and 
we shall write [tud’]s for the resulting (m - s)-place vector. 
We modify the encoded sequence to 

r,: k,,[fols,t,,[~tIls,~ . ~,~tuC~“ls,~ . . . (11) 
There are at least (2” - l)(l - R,)2-” distinct nonzero 
vectors of the form {t,,[t,,ct’],}, and we can again apply 
Lemma 2, now taking L = 2m - s, 6 = (m - s)/(2m - s), 
and y = (1 - R,). The total weight of the nonzero vectors 
is 

W 2 2”(1 - R,)(2m - s) 

[HP’ (E) - o,(m)] (2”-’ - 1). 

We note that the rate of this binary code is R,,* = 
R,ml(2m - s), but the best bound is obtained for R, 
close to 1, so that RllA N m/Qm - s). The constraint 
length is 

Thus 

nA = (2m - ~)(2~ - I)(1 - R,). 

lim inf dfree/nA 2 H -I( 1 - R). 
“A-r/i 

(12) 

We combine (10) and (12) to obtain the following theorem. 
Theorem 7: The binary periodic convolutional codes 

defined by (9) and (11) have free distances and constraint 
lengths satisfying 

lim inf df,,,/nA 2 
i 

H -‘(+I, O<R<; 
nA+m H-‘(1 - R), ;<R<l. 

d,,,, 2 2m(l - R,)[H-‘(3) - 01(2m)](2” - 1). The bound of Theorem 7 is plotted in Fig. 1 together with 
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the corresponding bound for block codes obtained in [2]. 
For rates greater than 3 the bound obtained in Theorem 7 
equals the Gilbert lower bound for block codes. By con- 
catenating the convolutional codes of Theorem 4 with 
good fixed block codes of rates less than ) one could obtain 
a class of convolutional codes whose free distances are 
lowerbounded by the Gilbert bound for all rates 0 < R < 1 
i301, [131. 
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Correspondence 

Time, Frequency, Sequency, and their Uncertainty Relations then, for any choice of to and wO, 

JUDEA PEARL 

AbsrracG-We study the form assumed by the classical t ime-frequency 
uncertainty relations in discrete as well as  nontr igonometr ic spectral 
analysis. In particular we find that if an  N-sample time signal is to con- 
tain a  fraction y of its energy in T  consecut ive samples, then the minimum 
number  of f requency components  containing that same energy fraction 
must be  greater than N/T(2y - l)*. It is also found that the discrete 
Walsh transform permits greater energy concentrat ion (less uncertainty) 
than the discrete Fourier transform. 

GTr $  

with equality holding iff(t) is a Gaussian wave packet. 
(3) 

I. INTRODUCTION 

This study was motivated by the following dilemma: while 
we recognize that a similar limitation also exists in discrete time 
(one cannot simultaneously confine a sampled-time function 
and its discrete Fourier transform without limit), (3) does not 
seem to capture this limitation; in an N-dimensional space T 
can be made 0, R must remain finite, and so the product RT 
can be made as small as one desires. We  therefore seek a more 
refined version of the uncertainty principle that lends itself to 
extension over finite-dimensional vector spaces. 

It is well known that one cannot simultaneously confine a An early work by Fuchs [2] (1956) provides the sought-for 
function f(t) and its Fourier transform F(o) without limit. This extension (unfortunately the proof is unpublished). Fuchs ,con- 
phenomenon is common to both continuous- and discrete-time siders two arbitrary subsets S, and S, of finite measure in the 
functions. The most familiar form of the time-frequency un- time and frequency spaces, respectively. He proves that if the 
certainty is the one leading to the Heisenberg uncertainty prin- energy fraction in the time subset ST is LX’, and the energy 
ciple, stating that if we measure the time spread T off(t) by fraction in the frequency subset Sn is B2, then 

j-2 = s”“, (t - 4J21fW12 dt 
S”, lfW12  dt 

and the frequency spread R of F(w) by 

(1) 02 I 1, ci2 i /I, 

I u&“2 + [(l - a2)(1 - &)]l’2, a2  > L,,, (5) 

where I, is the largest eigenvalue of the equation 

(27L-N s,,, y(w) L, 
exp [- i(t - w)u] du  dw = ky(t). (6) 

Equations (4) and (5) give the maximum frequency concentration 
f12 that can be achieved with given time concentration CC’, time 
band ST, and frequency band S,. 

R2 = S”, (w - wJ21F(412 da 
S”, IF( da 
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