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Abstract

Deformable templates have been intensively studied in
image analysis through the last decade, but despite its sig-
nificance estimation of model parameters has receivedlittle
attention. We present a method for supervised and unsuper-
vised model parameter estimation using a general Bayesian
formulation of deformable templates. In the supervised es-
timation the parameters are estimated using a likelihood
and a least squares criterion given a training set. For most
deformable template models the supervised estimation pro-
vides the opportunity for simulation of the prior model. The
unsupervised method is based on a modified version of the
EM algorithm. Experimental results for a deformable tem-
plate used for textile inspection are presented.

1. Introduction

The general idea of deformable models is that a structure
embedded in the image can be considered as a deformation
of a given template. The deformable model is a Bayesian
combination of two parts. One part which represents the
prior knowledge about the structure, i.e. the deformable
template, and a second part which represent the interac-
tions with the observations (the image), the observation
model. Deformable templates can roughly be separated into
2 groups: Free form and Parametric. Free form deformable
templates have no explicit global structure because the prior
only contains local continuity and smoothness constrains
[3, 8, 9, 10]. In parametric deformable models prior knowl-
edge of the global structure is included using a parameter-
ized template of a specific structure [2, 5, 6, 7, 11].

Another characteristic of deformable models is that a
number of model parameters, which gives the relative in-
fluence of different terms in the model, have to be selected.
Though all deformable models contains model parameters
the selection of these model parameters has received very
little attention. [8, 11] don’t comment on the selection and

[2, 3, 5, 7] selects the model parameters based on empirical
observations. [10] gives guidelines for choosing the optimal
parameters in the prior model based on bounds for the pa-
rameters. Only [9] uses an unsupervised method based on a
minimax criterion to determine the regularization parameter
which gives the relative influence of the prior and observa-
tion part, respectively. We present a new method for super-
vised and unsupervised selection of all model parameters
in a deformable model. This method also gives the oppor-
tunity for simulating the prior model for most deformable
models. Section 2 contains a general Bayesian formulation
of deformable models. Then the method for supervised and
unsupervised model parameter estimation is presented, fol-
lowed by experimental results and a conclusion.

2. Deformable models

A structure is modelled by a template that is uniquely de-
scribed by a set of template parametersv = (v1; v2; ::::; vp).
Let 
 denote the parameter space ofv. Using Bayes the-
orem deformable models can be described by the posterior
probabilityP (vjy) of a realization of the template parame-
tersv given an imagey. The posterior probabilityP (vjy)
is defined as:

P (vjy) = P (v)P (yjv)P
v2
 P (v)P (yjv) (1)

whereP (v) is the prior model andP (yjv) is the obser-
vation model. [3, 8, 9, 10, 11] talks about energy and not
about probabilities, but basically the formulations are anal-
ogous.

2.1.The prior model

The prior model represents the prior knowledge of the tem-
plate parameter distribution. Typical the prior model con-
sists of a number terms which represent different types of



prior knowledge. Let the prior probability be Gibbs dis-
tributed and given by:

P (v) =
1

Zp(�)
expf�U (v;�)g (2)

whereZp(�) =
P
v2
 expf�U (v;�)g is the normal-

izing constant,U (v) : 
 7! R is the energy function rep-
resenting the prior knowledge and� = (�1; :::; �n) 2 ��
are the prior parameters which gives the relative influence
of the different terms.

Theorem 1: Let U (v;�) = v0A(�)v + b(�)v + c(�)
depending only onv and�. If A(�) is symmetric and
positive semi-definite andb(�) belongs to the subspace
defined by a linear mapping with�(�) then P (v) 2
N (�(�);�(�)) and:

P (v) = 1p
2�

p
1p

det�(�)
�

expf�1
2 (v � �(�))0�(�)�1(v � �(�))g (3)

where�(�) = ��(�)b(�) and�(�)�1 = 2A(�).

Proof:U (v;�) = 1
2(v� �(�))0�(�)�1(v��(�)) =

1
2v

0
�(�)�1v � �0�(�)�1v + 1

2�
0
�(�)�1� i.e.

�(�) = ��(�)b(�) and�(�)�1 = 2A(�). 2

If the prior (3) is rank deficient the conditional distri-
butionsp(v n vsjvs) for vs � v will be rank sufficient.
Theorem 1 implies that allvi 2 v has a prior distribution,
i.e. P (v) should be a function of allvi 2 v. If this is not
fulfilled then is the subsetvp � v, which have a prior dis-
tribution, used instead ofv. The assumption aboutU (v;�)
made in theorem 1 covers almost all deformable templates
presented in the literature and all cited here.

In the case where it can be justified thatU (v;�) ful-
fill the assumption made in theorem 1 the mean�(�) can
also be found as the solution to@U(v;�)

@v = 0 and the

inverse covariance�(�)�1 as the Hessian@
2U(v;�)
@2v =

�(�)�1. This method can be a fast alternative for deter-
mining�(�) and�(�)�1 if U (v;�) is not directly in the
form v0A(�)v + b(�)v + c(�)

2.2.The observation model

The observation model gives the probability for a given
realization ofv corresponds to the observationsy 2 	

- the image. In many cases the interaction corresponds
to image intensity [2, 5, 6, 11] and/or edge information
[3, 7, 8, 9, 10, 11] but in principle all kind of information
can be combined e.g. texture or colour. Let the observation
model be Gibbs distributed::

P (yjv) = 1

Zo(�)
expf� 1

�
I(y;v;�)g (4)

whereZo(�) =
P
v2
 expf� 1

�
I(y;v;�)g is the nor-

malizing constant,� 2 �� is the regularization parame-
ter that determines the relative influence of the prior and
the observation model,I(y;v;�) : 	 7! R is the en-
ergy function representing the interaction betweeny andv
and� = (�1; :::; �l) 2 �� are the observation parameters
which gives the relative influence of the different types of
information.

3. Supervised model parameter estimation

Assume a training set ofq template parameter sets
V 1; ::;V q corresponding to some structure within an im-
agey are known.

3.1.The prior model

In the case where the assumption in theorem 1 is fulfilled the
prior parameters can be estimated by using theorem 1 and
the maximum likelihood (ML) estimator, which is defined
as:

�̂ = argmax
�

L(�;V 1; :::;V q) (5)

where it is assumed that̂� 2 ��. If V 1; ::;V q are
stochastic independent and the covariance is rank sufficient
then is the likelihood function directly given as:

L(�̂;V 1; :::;V q) = P (V 1; :::;V q) =

qY
k=1

P (V k) (6)

whereP (V 1; :::;V q) is the simultaneous density func-
tion for the prior distributionP (V k) given by (3). If the co-
variance is rank deficient, i.e.rank(�) = p� r for r > 0,
it is necessary to condition on at leastr variables to obtain
full rank. In this case e.g. the pseudo-likelihood [1] can be
used as an approximation to the true likelihood:

PL(�̂;V 1; :::;V q) = P (V 1; :::;V q) (7)

=

qY
k=1

mY
i=1

P (V k;ijV k n V k;i)

If V 1; ::;V q are not stochastic independent then
P (V 1; :::;V q) must be rewritten using conditional prob-
abilities and Bayes theorem. When the prior parameters are
estimated it is possible to simulate the prior model by sam-
pling in the unconditional or conditional prior distribution.

3.2.The posterior model

Due to the image information inP (yjv) is it impossible
to make any distribution assumption aboutP (vjy). This
make it impossible to use the ML estimator for estimation



of the observation and regularization parameters, because it
is infeasible to calculate the normalizing constant even for
small
. A likelihood approximation with the normalizing
constant removed fromP (vjy) or a criterion equivalent to
the minimax criterion proposed by [9] can’t be used either,
becauseP (vjy) without the normalizing constant in many
case would not be convex within(��;��). The observation
and regularization parameters are instead estimated as the
parameters which minimize the least squares error (LSE)
between the training set parametersV 1; ::;V q and the esti-
mated parameterŝv1; :::; v̂q :

(�̂; �̂) = argmin
�;�

1

pq

qX
i=1

(V i � v̂i)0C(V i � v̂i) (8)

whereC is diagonal matrix whereeach parameter can
be assigned an estimation weight (in most casesC is cho-
sen equal to the identity matrixI) and v̂i is the maxi-
mum a posteriori (MAP) estimate of parameter seti de-
fined asv̂i = argmaxvi

P (vijy). Many different tech-
nics have been applied for MAP estimation as deterministic
[3, 7, 8, 9, 11], stochastic [2, 6] and heuristic optimization
algorithms [5].

If the assumption in theorem 1 is not fulfilled the model
parameters(�; �;�) can still be estimated by expanding (8)
to:

(�̂; �̂; �̂) = arg min
�;�;�

1

pq

qX
i=1

(V i � v̂i)0C(V i � v̂i) (9)

If log P (vjy) is a linear function of(�; �;�) then
(9) have to be solved with respect to the constraint:� +Pn

i=1�i +
Pl

i=1 �i = constant to limit the number of
solutions to one.

4. Unsupervised model parameter estimation

The unsupervised model parameter estimation is based on
a modified version of the Expectation-Maximization (EM)
algorithm [4]:

1. Start with the observationsy, an initial estimatev0 of
v and a guess(�0; �0;�0) for (�; �;�).

2. Estimatêvt+1 byvt+1 = argmaxv P (vjy).

3. Use the algorithmfor supervised model parameter esti-

mation (Section 3) to estimate(�̂t+1; �̂t+1; �̂
t+1

) tak-
ing v̂t as training set.

4. Go to 2 for a number of iterations or until(�t; �t;�
t)

has approximately converged.

5. Experimental results

A deformable template is used for localization of the hor-
izontal yarns in a system for automated visual inspection
of textile [5]. The system should be used for inspection of
above 35 different types of textile and new types are devel-
oped frequently, so it is necessary that a non-expert can train
the system, i.e. select the model parameters(�; �;�).

The horizontal yarn k is modelled asvk =
(vk;1; vk;1; vk;2; :::; vk;p)0, wherevk;j is the vertical position
of yarnk in the vertical spacej between the vertical yarns.
The horizontal position of the vertical spacej is assumed
known, because it is easily located as a local maxima in a
vertical projection of the image [5]. The distance between
each vertical spacej is assumed to be constant.

The posterior probability of the deformable model used
for textile inspection is given by [5]:

P (vkjvk�1;y) = 1

Zo(�)Zp(�)
�

expf��1
Pp

j=2(vk;j � vk;j�1)2

��2
Pp

j=1(vk;j � vk�1;j � d)2

� 1
�

Pp

j=1 I(vk;j ; j)g

(10)

where the two first termsU (v;�) = �1
Pp

j=2(vk;j �
vk;j�1)2 + �2

Pp

j=1(vk;j � vk�1;j � d)2 correspond to
the prior model. The first term favours strictly horizon-
tal threads. The second term describes that the thread
vk should be placed in a predefined distanced 2 R+

from vk�1. The third term inP (vkjvk�1;y) is the ob-
servation model whereI(vk;j; j) is the negative horizon-
tal mean at the vertical positionvk;j of the pixels in the
vertical space j.� = (�1; �2) 2 R

2
+ are the prior pa-

rameters and� 2 R+ is the regularization parameter. Let
U (v;�) = �1(Nvk)

0(Nvk)+�2(vk�(vk�1+d))0(vk�
(vk�1 + d)) = �1v

0
kN

0Nvk + �2(vkIvk � 2(vk�1 +
d)vk+(vk�1+d)0(vk�1+d) = v0k(�1N

0N +�2I)vk�
2�2(vk�1 + d)vk + (vk�1 + d)0(vk�1 + d) where

N =

2
6664

0 0 ::: 0
�1 1 ::: 0
...

...
...

...
0 0 ::: 1

3
7775 (11)

N 0N =

2
6664

1 �1 ::: 0
�1 2 ::: 0
...

...
...

...
0 0 ::: 1

3
7775 (12)

From above it’s seen that the prior model fulfill the as-
sumption in theorem 1 (which was obvious because the
prior only consists of quadratic terms). By theorem 1
P (vkjvk�1) 2 N (�k(�);�(�)) where:



�k(�) = �(�)2�2(vk�1 + d)
�(�)�1 =2
6664

2�1 + 2�2 �2�1 ::: 0
�2�1 4�1 + 2�2 ::: 0

...
...

...
...

0 0 ::: 2�1 + 2�2

3
7775

(13)

5.1.Estimation of model parameters

Assume a training set of150 yarnsV 1; :::;V 150 is man-
ual marked in a image by an operator, see subset in fig-
ure 2 and 1. It can be shown that the rank of�

�1 is full
8(�1; �2) 2 R2

+, but the prior probabilities are not inde-
pendent. Because the prior probability is a Markov Random
field and by using Bayes theorem the likelihood is given by:

L(�;V 1; :::;V 150)
= P (V 1; :::;V 150)
= P (V 1)P (V 2; :::;V 150jV 1)
= P (V 1)P (V 2jV 1)P (V 3; :::;V 150jV 2)

= P (V 1)
Q150

k=2P (V kjV k�1)

(14)

where P (V kjV k�1) =
1p
2�

p
1p

det�(�)
expf�0:5(V k � �(�)2�2(V k�1 +

D))0�(�)�1(V k ��(�)2�2(V k�1 +D))g andP (V 1)
is constant becausev1 is estimated using an ad hoc
procedure.

Prior parameters�1 = 1:0476 and�2 = 0:0172 are
then estimated for the known yarns corresponding to fig-
ure 1. Simulations of the prior model are then performed
by sampling in the Gaussian distributionN (�k(�);�(�)),
see figure 1. If the simulated horizontal yarns are com-
pared to the real yarns this seems to verify that the prior
model with the estimated parameters is a good model of the
yarns. The regularization parameter� = 0:3652 is then
estimated using the LSE (8) withC = I and a heuristic
MAP-estimation algorithm [5]. The yarns in the image in
figure 2 is located using the estimated parameters with very
good results, see figure 2. To examine the variation of the
estimated parameters within the same textile sample, two
parameter sets have been estimated on two different pieces
of one sample. This was done for two different samples
and the mean variation on�1; �2 and� was 1.9%, 5.2%
and 9.5%, respectively. The parameter variation between
samples depends on the amount of variations and defects
within the samples used for estimation. This is so signifi-
cant that the estimated parameters often can be used to dis-
criminate between god and bad samples. Using 5 represen-
tative samples were the parameters estimated with the mean
�1 = 1:0214; �2 = 0:0202 and� = 0:4145 and the stan-
dard deviation 0.2009, 0.0066 and 0.0717, respectively. The

parameters were then used to locate the yarns in the 5 sam-
ples with very good results leading to an average increase
on only 6% in the LSE (8) compared to the LSE obtained
with the individual estimated parameters. The method for
supervised parameter estimation have also been tested on
other types of textile with good results.
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Simulated textile, a1 = 1.0476, a2 = 0.0172, P(z) = 0.0259

Figure 1. Manually marked horizontal
yarns (top) and simulated horizontal
yarns (bottom)

The unsupervised method performs well, but it is a lit-
tle bit sensitive to the initial guess(�0; �0;�0) because
it tends to get caught in local maxima if the regulariza-
tion parameter is chosen very large or small. This sensi-
tivity is a well known problem for the EM algorithm. For
6 randomly chosen(�0; 1

�0
;�0) 2 [0:2; 2] under the con-

strain�01 < 1
�0

and�02 < 1
�0

were the parameters corre-



sponding to the yarns in figure 2 estimated with the mean
�1 = 1:3429; �2 = 0:0059 and� = 0:5050 and the stan-
dard deviation 0.1708, 0.0001 and 0.1005. The algorithm
converged within 10 iterations. If the estimated parameters
are compared with the previous estimated parameter there
exists some differences, but still the LSE is only increased
by 14 % compared to the LSE for the individual estimated
parameters, and the yarns are still located very well, see
figure 2. Similar results for the unsupervised parameter es-
timation are obtained for other textile samples and types.

Figure 2. Textile with manually marked
horizontal yarns (top), yarns located using
supervised estimated parameters (center)
and yarns located using unsupervised es-
timated parameters (bottom).

6. Conclusion

A method for supervised and unsupervised estimation of
model parameters in deformable templates have been pre-
sented. Experimental results are successful and indi-
cates that the methods are robust, though the unsupervised
method is a little sensitive to the initial parameter configu-
rations. The opportunity for simulations of the prior model
seems to be a good tool for verification of the model. The
presented methods also contains interesting perspectives re-
garding using the estimated parameters as features for de-
scription of the located structure and regarding automated
model selection using an information criterion.
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