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Implementation of Synthetic Aperture Imaging in Medical Ultra-
sound: The Dual Stage Beamformer Approach
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!Department of Electrical Engineering, Center for Fast Ultrasound Imaging, Build. 349,

Technical University of Denmark, DK-2800 Lyngby, Denmark

2B-K Medical, Mileparken 34, 2730 Herlev, Denmark

Abstract

The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic
structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which
currently cannot be met. A method for reducing the number of calculations and still retain the many advantages of
SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog
beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach

is described.

1 Introduction

In medical ultrasound simple delay-and-sum beamforming
is traditionally used. Here a single fixed transmit focus is
employed. The received signals are digitized and beam-
formed in a digital beamformer with dynamic receive fo-
cusing and dynamic Hanning or Gauss apodization, where
more elements are included for larger depths. Usually 64 to
128 active elements are used in transducers with a center
frequency of 5-12 MHz and a 100% bandwidth. A Full-
Width-Half-Max (FWHM) resolution of 1-2 \ is obtained
axially and around 1 X laterally with side-lobes being at-
tenuated more then 60 dB. The transducer pitch is 2 - 3 A
for linear array transducers used in rectangular sized scans
and ) for phased array transducers used in polar scans. The
large dynamic range demands very tight control over the
transducer geometry and the beamforming done where the
focusing delays change dynamically with depth.

A requirement in medical ultrasound is that imaging is real
time, so that the dynamic function of organs and views
form different directions can be seen. More than 20 frames
should be shown per second and in cardiac imaging often
50-60 frames per second is sought achieved. This puts a
heavy demand on the processing hardware that often have
to process 5 - 10 Gbytes of data per second in a system that
must be transportable by one person.

The major drawback of current systems is that there is only
one transmit focus and that the imaging is sequential. This
limits image quality and the frame rate is limited by the
speed of sound (1540 m/s in the human body). This is es-
pecially a problem in 3D imaging, where many directions
have to be probed. The acquisition of data for velocity es-
timation is also difficult, since data have to be measured in
the same direction several times, thus, lowering the frame
rate. Other more efficient and high quality methods for
data acquisition are, thus, needed.

2 Synthetic ultrasound

imaging

aperture

Synthetic aperture data acquisition can be used in medi-
cal ultrasound imaging as has been shown by a number of
authors. The method can either be employed for single el-
ement or multi-element transducers. Many variations of
synthetic aperture focusing (SAF) and examples of imple-
mentation have been reported with improvements in both
frame rate, penetration, and lateral resolution. This in-
cludes single channel system [1, 2], where the same ele-
ment serves as a transmitter and a receiver. Systems with
multi-element transmit and receive aperture was described
by Karaman et al. [3] and Lockwood and Hazard [4, 5].
A SA method for a circular aperture was investigated by
O’Donnell and Thomas [6].
A typical method for acquiring the data is shown in Fig. 1,
where the transmit focusing is synthesized. A single or a
few elements are combined to send out a spherical wave to
insonify the whole region of interest. The scattered signal
is then received by some or all of elements in the trans-
ducer. A low resolution image can be formed after each
transmit event by summing the signals from all receiving
elements as

Neie

ylr(”?pmj) = Z a(iv.j)gi(td(i7j)7j)

i=1
where 7, is the point in the image, [V, is the number of re-
ceive elements, a(i, j) is the apodization or relative weight
of the signal g;(¢) from the received element signal for ele-
ment ¢ and j is the transmission number. The time point ¢4
at which the signal value is taken is calculated from the ge-
ometric distance between transmit position 7;(7), the im-
age point and the receiver location 7,.(7) as
|7 = T (G)| + |7 = 7 (9)]

c
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The process is then repeated for the next transmit element
to cover all elements as transmitters in the transducer. All
low resolution images are summed, and this yield a high
resolution image, which is both dynamically focused in
transmit and receive resulting from the precise calculation
of the delay ¢4(4, 7).
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Figure 1: Data acquisition in synthetic aperture imaging
(from [7].

The method ensures an optimal resolution and side-lobe
levels for the delay-and-sum beamformer for the particular
transducer. It can also be combined with a sparse transmit
sequence to make fast imaging or make it suitable for SA
flow imaging [8].

The major drawback of the approach is the large number
of calculations to be performed. A full new low-resolution
image must be made each time a new pulse is emitted. The
number of complex beamformed samples per second is

Nps = NeleNlefprfa

where NV, is the number of lines in an image (100-200), N,
is the number of samples (500-1000), and f, s is the pulse
repetition frequency (10 kHz at 7.5 cm depth of scanning,
5 kHz 15 cm). A normal scan situation at 7.5 cm for 192
channel array would yield 38.4 - 10° complex samples per
second for 200 x 1000 images with substantial data rates
also. For all of these data the delay ¢4 have to be calculated
as well as interpolating data and apodizing them. This has
precluded the introduction of commercial SA scanner so
far. More efficient techniques are, thus, needed.

3 Dual stage beamforming

The major problem in SA imaging is that a low resolu-
tion images are formed after each emission and that there
are data from many receive channels. The dual-stage
beamforming approach presented here is a compromise be-
tween image quality and the possibility of implementing
SA imaging on a simple platform [9, 10].

The implementation consists of two parts: a simple fixed
focus receive beamformer followed by a traditional digi-
tal beamformer capable of dynamic delay-and-sum beam-
forming. The first beamformer emits a beam focused close
to the transducer and receive the scattered signal by a num-
ber of elements. The F-number (F'# =depth/aperture
width) is fairly low around 1-2 and keeping the depth low
ensures that only a modest amount of elements have to be
used. The number of transmitting and receiving channels
are, thus, low and a simple analog, fixed delay beamformer
can even be used for keeping price down. The second stage
beamformer receives the data from the first and combines a
number of emissions to dynamically focus the data in both
transmit and receive. The time delay ¢4 is here calculated
from the travel time from the emission focus to the imaging
point and back to the transducer. Several approach based
on a virtual source [11, 12, 13, 14] can be used and they
are described in more detail in [9, 10].

The digital beamformer can yield one new high resolution
line each time it receives a signal from the first beamformer
and the demands are, thus, not higher than for an ordinary
digital beamformer if the emission line density and the fi-
nal image line density are the same. More calculations
have to be performed if the final line density is higher, but
often high end beamformers can produce 4 to 16 beam-
formed signals per emission. This feature can also be used
to cover more emissions. The limitation is that the number
of first stage beamformed lines is restricted by the number
of input channels to the beamformer, but it is possible to
combine two beamformed lines by adding them. Hereby
twice the number of emissions can be used for one high
resolution line at the price of a reduction in output data
rate.

The approach is, thus, flexible and can be readily imple-
mented in commercial scanners with minimal modification
of the hardware. Actually the number of active receive
channels, which are the most expensive in a scanner, can
be reduced to one, if a suitable analog beamformer is used
in the first stage. The method can therefore be used in both
low-end as well as high-end scanner and still maintain a
good image quality.

4 Results

The method has been investigated using both the Field II
simulation program [15, 16] and measurements on phan-
tom objects.

A 191 elements linear array transducer with a center fre-
quency of 7 MHz, relative bandwidth of 0.6, pitch of 0.208
mm, and an elevation focus of 25 mm has been used.
Imaging with synthetic aperture sequential beamforming
(SASB) is compared to normal dynamic receive focusing
(DRF) in Fig. 2, where the transmit focus was set at 70
mm. For SASB imaging F'# = 1.5 and the transmit fo-
cus was at 20 mm, so that the transducer uses 64 elements
in transmit. It can be seen that the point targets maintain



a more uniform and narrower appearance throughout the
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Figure 2: Envelope images using DRF (left) and SASB
(right). For DRF the transmit focal point is at 70 mm. For
SA the VS is at 20 mm and F'# = 1.5. Dynamic Range is
60 dB (from [10]).

The performance can be quantified for the -6 dB and -40
dB resolution. This is given in Fig. 3, where the perfor-
mance is compared for different transmit foci and differ-
ent number of receive elements in the second-stage beam-
former. The SASB method maintains its narrow focusing
for nearly all depths and is apart from the very near field
always better than DRF.

A measurement has also been performed on a tissue mim-
icking phantom using a BK Medical ProFocus scanner
equipped with a research interface. The scanner then mim-
ics the first stage beamformer and data are stored for post-
processing for emulating the second stage beamformer.
The various images are shown Fig. 4. The left images show
the data right after the first stage beamformer, the middle
image shows the SASB image and the right panel shows
the conventional ultrasound image. Again a clear differ-
ence and improvement can be seen. A further advantage
of SASB is that the signal-to-noise ratio is improved in the
images and imaging to greater depths can be attained [10].
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Figure 3: Lateral resolution of DRF and SASB as function
of depth at -6 dB (top) and -40 dB (bottom). If the lateral
PSF has a distinct main-lobe, and side-lobe distribution,
the main-lobe resolution is shown as a dotted line. For
DREF the transmit focal point is at 50 mm, 70 mm, and 90
mm. For SASB the VS is at 20 mm and F'# = 1.5. SASB
results are presented using different number of available
2nd stage beamformer channels (N2,,q = 63, Nong = 127,
and No,q = 191), (from [10]).
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Figure 4: Envelope images using st stage SASB (left),
SASB (center), and DRF (right). RF-data is acquired us-
ing a commercial scanner, and processing is done off-line.
For DREF the transmit focal point is at 65 mm. For SASB
the VS is at 20 mm and F'# = 2. Dynamic Range is 60
dB (from [10]).

5 Conclusion

A method for reducing the complexity of synthetic aper-
ture imaging has been suggested. By implementing SA in
two stages with a simple beamformer first many of the ad-
vantages of SA imaging can be attained without the need
for a large number of calculations. Using simulations and
phantom measurements it was shown that the resolution,
contrast, and penetration depth is improved compared to
normal dynamic delay-and-sum beamforming employed in
modern ultrasound scanners.
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