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1 Introduction

Extended-spectrum beta-lactamases (ESBL) are enzymes that confer resis-
tance to 3rd generation cephalosporins. The prevalence of ESBL producing
Enterobacteriaceae has increased drastically since it was first discovered in
1983 in Germany. The increasing prevalence of ESBL is of major concern as
it is associated with failure of treatment, prolonged hospitalization and in-
creased costs (Helfand and Bonomo, 2006; Rodriguez-Bano et al., 2006; Col-
lignon and Aarestrup, 2007). In addition, ESBL resistant bacteria often carry
co-resistance to other antibiotics, further complicating the treatment of infec-
tions (Rodriguez-Bano et al., 2006). In other areas of antibiotic resistance,
such as methicillin-resistant Staphylococcus aureus (MRSA) (Bootsma et al.,
2006) mathematical models have shown to be a strong tool for interpreting the
resistance dynamics and investigating possible interventions. In this report we
will attempt to develop such a model for ESBL.
The dynamics of ESBL are very complex and differs from MRSA dynamics by
the acquisition routes and type of bacteria carrying the resistance. Different
types of ESBL have been identified which can be produced by different bacte-
rial species. Until around 2000 mostly ESBL of type TEM/SHV was found in
Europe. In Holland the first ESBL of type CTX-M was detected in 1995 (Hall
et al., 2002). Before the introduction of CTX-M the ESBLs reported were pre-
dominately stemming from Klebsiella pneumonia (Paterson et al., 2003). The
CTX-M enzyme is most frequently associated with Escherichia coli, which
has caused a switch from K.pneumoniae to E.coli as the most predominant
species among ESBL producers (Markovska et al., 2008). Moreover, ESBL K.
pneumonia is mainly nosocomial acquired, whereas ESBL-producing E.coli
is also found in strictly community acquired infections (Cantón et al., 2008;
Rodriguez-Bano et al., 2006).
In this study we suggest a new mathematical model to describe the ESBL
dynamics. The main objective of the study is to investigate the plausibility
of different transmission routes by comparing a mathematical model for the
spread of ESBL with data for ESBL prevalence. For instance, the increase
in CTX-M ESBL prevalence may be due to horizontal transfer of CTX-M
between species (Markovska et al., 2008; Cantón et al., 2008). Other authors
have shown the importance of travellers returning from holiday with an ESBL
bacteria colonization (Laupland et al., 2008; Pitout et al., 2004). The model
will therefore include these routes of horizontal transfer and external acquisi-
tion of ESBL together with cross-transfer and mutation. These pathways will
be discussed in details in the next section. It has been argued that the use
of 3rd and 4th generation cephalosporins in animals has an influence on the
increase of ESBL prevalence in humans, as the drug resistance may spread via
food or other sources like the ground water (Collignon and Aarestrup, 2007).
However, this effect is not included as it would result in an overparametriza-
tion of the model due to lack of data.
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2 Model

Our model describes the spread of intestinal colonization with ESBL. Intesti-
nal colonization is considered, because colonization usually precedes clinical
infections (Harris et al., 2007a). Moreover, most colonized patients do not
develop overt infections and, hence, it is believed that colonization is more
important for the spread than clinical infections (Harris et al., 2007b). The
model considers a hospital and its catchment area and consist of two levels of
dynamics: 1) The flow of patient; and 2) The flow of bacteria and resistant
genes. Each of the two levels of dynamics is described in the following sections.

2.1 Flow of patients

Hospitalized patients are divided into high-risk and low-risk wards for the ac-
quisition of resistance. Hospital-based studies have suggested a number of risk
factors for the acquisition of ESBL including intensive care unit (ICU) admis-
sion, antibiotic usage, and mechanical devices (Laupland et al., 2008; Cantón
et al., 2008). We identify high-risk wards (ICU, Surgery, Hematology, and
lung diseases) as wards at the University Medical Center Utrecht (UMCU),
the Netherlands with a high level of ESBL colonized patients in 2008. This
classification of high-risk wards is in agrement with previous studies (Coque
et al., 2002).
We hypothesize that frequent readmitted patients have a role in maintaining
a high ESBL prevalence in the hospital. Similar to Cooper et al. (2004) we
therefore allow the probability per unit time to be readmitted to decrease with
the time since the most recent hospital discharge. This is modelled by letting
discharged patients move first to core groups and from here on into a catch-
ment population with a lower hospitalization rate. Hence, patients discharged
from the low- and high-risk wards are separated in two different compartments
(core-groups). This flow of patients can be seen in Figure 2.1. Additionally,
persons can be removed from the community, either because they die or be-
cause they move to another municipality. This is implemented in the model by
a constant removal rate from the catchment population and the core groups.
As soon as a person is removed, it will be replaced by a new person in the
catchment population, which is not colonized with resistant bacteria.

2.2 Flow of bacteria

Election of colonization states for the model and the routes of transfer between
the states is a fine balance between keeping the model simple and including
all important states and routes. The extent of the model is further limited by
available information about prevalence and rates. ESBL strains are most often
found in E.coli (EC) and other Enterobacteriaceae (EB) such as K. Pneumo-
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2. Model

Figure 2.1: A sketch of the patient and people flow in the model. The indexes i will
be used to refer to the compartments.

nia (Romero et al., 2007; Caccamo et al., 2006). For this model we therefore
consider EC and another EB type with special focus on the EC population.
EC can be ESBL positive of type TEM/SHV (+) or CTX-M (++), which
are the dominant types of ESBL. EB is included to be able to incorporate
conjugation between species as one of the transfer mechanisms, and therefore
the inclusion of EB++ is very interesting for the model. Assuming each indi-
vidual carries EC, we distinguish four intestinal colonization states, EC, EC+,
EC++ and EC/EB++. The population in each hospital ward and community
compartment is divided into these four states (Figure 2.2(a) and 2.2(b)). The
TEM/SHV phenotype can be obtained by cross-transmission, and mutation
whereas the CTX-M phenotype can be obtained by cross-transmission, conju-
gation and externally from travellers. The model is constructed on the level of
human individuals, and the number of bacteria in each individual is not mod-
elled. Whenever a person acquires resistance, the bacteria is assumed to be
present in sufficient numbers for the individual to be able to transfer the resis-
tance. Cross-transmission is dependent on the amount of people in the ward
with the specific bacteria species and resistance type. Cross-transmission is
therefore modelled with the mass action expression βC/N , where β is a con-
stant which is specific for a given bacteria species and resistant type, C is
the amount of colonized people with the given bacteria species in the ward of
interest and N is the total size of the ward. When conjugation happen from
a EB++ patient it is no longer registered in the model to carry EB++. To
avoid the need of an extra compartment the cross-transfer of EB++ is based
on the amount of people colonized with EB++ as well as EC++. Acquisi-
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2.2. Flow of bacteria

(a) Hospital (b) Community

Figure 2.2: Model describing the transfer of ESBL in E. coli (EC) and other Enter-
obacteriaceae (EB). The model includes the dynamics of the transfer of EC of type
TEM/SHV (EC+), EC of type CTX-M (EC++), and EB of type CTX-M (EB++)
in the hospital and community. In the hospital the rate of cross-transfer, mutation
and conjugation is taken to be three times higher in the high-risk wards, than in the
low-risk wards.

tion of ESBL by mutation is independent of the colonization status of other
people in the ward. It occurs with a constant rate, µ. Conjugation can occur
with a constant rate c, when a patient is colonized with EB++. The rates
β, µ and c at which acquisition happens are assumed to be 3 times lower in
the low-risk wards as compared to the high-risk wards. Cross-transmission is
disregarded in the community, whereas mutation and conjugation occur with
half the rate in the community as compared to the low-risk ward. After the
year 2000 there is an extra inflow of EC++ and EB++ to the catchment
population from travellers carrying the strains home from holiday. This in-
flow is assumed to occur to the core group 2 for EC++ and EB++ and to
the catchment population for EC++ (Pitout et al., 2004). In the community
colonization is lost with the rate r (recovery rate). The decolonization rate is
the same for all community groups. Whenever possible the model parameters
are found in the literature and the remaining parameters will be estimated.
A description of the parameter estimation is given in Section 3.2.
The model is simulated as a discrete stochastic model in R (R Development
Core Team, 2009) using the fixed-increment time advance method. For each
day the following steps are carried out

• transfer between bacteria colonization states within each hospital ward
or community group.

• movement of people within the hospital and community as well as hos-
pital admittance and discharge.
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2. Model

• inflow of resistant strains from travellers.

The two first steps are computed by sampling from a Multinomial distribution,
as more events can happen to one population during one time interval. The
last step is computed by sampling from a Poisson distribution.
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3 Parameter estimation

3.1 Patient flow

Data from the UMCU from 2005 to 2008 with time of admission, discharge
and movement within the hospital, including ward specification, is used to
estimate the parameters for the patient flow.

Survival analysis

Part of the data for the time between two hospital admissions is censored, and
survival analysis is therefore used to calculate the time to readmission. In this
context, censored data means that only the time between discharge and the
end time of the available data set is know. Thus, only a minimum time be-
tween readmissions is known, but there is no observed readmission. For other
patients two subsequent admissions are registered in the data set. Thus, for
these patients the actual readmission time is known. These readmission times
are also called un-censored.
People discharged from the hospital can be readmitted from either the core-
group or catchment population as sketched in Figure 3.1. The survival func-

Figure 3.1: A sketch of the simplified patient flow from with the survival function
for readmission time (Equation (3.4)) is calculated. λ1, λ2 and λ are readmission
rates and γ1 and γ2 are the rates by which patients are moved to the catchment
population. The removal rate, ρ, is fixed to one over the mean time of stay in the
same municipality, which in the Netherlands is 21.6 years.

tion Si(t), for readmittance after discharge from the hospital compartment i
is calculated as

Si(t) = Pi(T > t) = Pi(T = ∞) + Pi(∞ > T > t) (3.1)

where the first term corresponds to patients who are never readmitted, i.e.,
removal from the extramural population, and the second term to a readmission
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3. Parameter estimation

at least a time t after the previous admission.

Pi(T = ∞) =
∫ ∞

0
ρ exp(−(ρ + λi + γi)τ)dτ

+
∫ ∞

0
γi exp(−(ρ + λi + γi)τ)ρ exp(−(ρ + λ)τ)dτ (3.2)

and

Pi(T > ∞ > t) =
∫ ∞

t
λi exp(−(ρ + λi + γi)τ)dτ

+
∫ ∞

t

(∫ τ

0
γi exp(−(λi + γi + ρ)τ ′)λ exp(−(λ + ρ)(τ − τ ′))dτ ′

)
dτ (3.3)

By solving the integrals the survival function is found to be

Si(t) =
ρ

ρ + λi + γi
+

ργi

(ρ + λ)(ρ + λi + γi)
+

λi

ρ + λi + γi
exp(−(ρ+λi +γi)t)

− λγi

(λi + γi − λ)
1

(ρ + λi + γi)
exp(−(ρ + λi + γi)t)

+
λγi

(λi + γi − λ)
1

λ + ρ
exp(−(λ + ρ)t) , (3.4)

where the readmission rate λi and the rate of movement to the catchment
population γi are different for patients discharged from the low-risk (i=1) and
high-risk (i=2) wards. The readmission rate from the catchment population,
λ is the same, independently of which ward a patient was discharged from at
last hospitalization. The removal rate, ρ, is assumed to be the same in the
whole community and is kept fixed in the estimation. A person is removed
from the catchment population or core groups after a mean of 21.6 year, which
corresponds to the mean time that persons stay in the same municipality in
the Netherlands. This is considered to be a good estimate of the time period in
which people might be readmitted to the same hospital. The other parameters
of the survival function are determined by Maximum Likelihood estimation,
where the log-likelihood function is

log(L) =
∑

i ∈ uncensored data

log
(

fi(ti)
Si(ti)

)
+

∑

i ∈ all data

log(Si(ti)) , (3.5)

and f(t) = −dS(t)/dt. The likelihood function is optimized in R using the
optim function (R Development Core Team, 2009).

Results

The suggested survival function gives a good fit to the data for readmission
as seen in Figure 3.2. It should be noted that the survival function does
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3.2. Bacteria flow
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Figure 3.2: Fit of the survival function for people discharged from high-risk and
low-risk wards at University Medical Centre Utrecht. The data used is from 2005 to
2008. High-risk wards are ICU, Surgery, Hematology and lung diseases, which are
identified as those with a high risk of colonization with ESBL carrying bacteria.

not describe to which ward the patients are readmitted. It only states what
the readmission time is when discharged from a specific ward. Based on the
UMCU patient data we find the percentage of patients discharged from the
low- or high-risk wards, which are readmitted to either of these wards, and
from here the readmission rates of the core-groups are calculated.
The readmission rate from the catchment population to each hospital ward
and the size of the catchment population are estimated, such that the size of
the hospital wards are in agrement with the UMCU data. From the UMCU
data the length of stay in each ward, the transfer between wards, and the
fraction of patients which dies at the hospital are also deduced. As soon as a
person is removed from the population a new person, colonized with non ESBL
E.coli, is assumed to appear in the catchment population. All parameters for
the patient flow are given in Table 3.1 and Table 3.2.

3.2 Bacteria flow

The duration of colonization after discharge from the hospital have recently
been examined in a study by Apisarnthanarak et al. (2008). They found a
median duration of outpatient colonization with ESBL of 98 days, i.e. a mean
duration of 141 days. This length of colonization will be used for all ESBL
producing bacteria in the model. The inflow of resistance from travellers is
initiated in year 2000. The inflow of EC++ and EB++ to core group 2 is fixed
to 0.35 per year, and the inflow of EC++ to the catchment population is fixed
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3. Parameter estimation

Table 3.1: Parameters for patient flow calculated from UMCU data with a 95%
confidence interval (CI.

Parameter Value (95% CI)
Mean length of stay:
Low-risk 5.32 (5.27 - 5.36) days
High-risk 6.68 (6.61 - 6.76) days
Mean time to admission:
From Core-group 1 247.57 (239.53 - 255.62) days
From Core-group 2 293.71 (282.29 - 305.23) days
From Catchment population 8.97 (8.63 - 9.30) years
Mean time before moving to catchment group:
Core-group 1 to catchment: 73.88 (70.56 - 77.20) days
Core-group 2 to catchment: 130.55 (122.94 - 138.16) days

Table 3.2: The table shows data values for the percentage of patients that moved
within the UMCU, were discharged, or died at the UMCU between 2005 and 2008.
The table also contain the percentage of people admitted to each hospital ward from
the community.

PPPPPPPPPFrom:
To:

Low-risk High-risk Discharged Dead

Low-risk - 13% 86% 1%
High-risk 24% - 73% 3%
Core-group 1 87% 13%
Core-group 2 23% 77%
Catchment population 72% 28%

to 5 per year (Pitout et al., 2004). The unknown parameters for the flow of
bacteria are determined in three steps. First in Section 3.2 three values of the
cross-transfer rate of EC+ are determined such that the basic reproduction
number equals 0.50, 0.75 or 1.00. Secondly for each of the estimations of the
cross-transfer rate, the mutation rate for EC+ is estimated based on the preva-
lence of ESBL in The Netherlands before the large increase in ESBL caused by
CTX-M. The prevalence of EC+ is assumed to have reached an equilibrium
level before the introduction of CTX-M. The used prevalence data is from
the study of Stobberingh et al. (1999) which found that the ESBL prevalence
at Dutch hospitals in 1997 was 0.35% for EC+. Finally, the parameters for
the transfer of EC++ are estimated using nosocomial ESBL prevalence data
deduced from the Dutch EARSS data (2000-2008). The EARSS prevalence is
based on aggregated data for all of the Netherlands. The parameter estima-
tion of the model can therefore be based on the mean of several simulations.
Thus, estimation based on the ESBL prevalence is made by minimizing the
least squares (LS) value of the difference between the simulated mean yearly
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3.2. Bacteria flow

ESBL prevalence based on up to 50 simulations and the data. Due to the
stochasticity of the model the LS value will be noise even when taking the
mean over several simulations. Therefore the LS estimation will be carried
out using a simultaneous perturbation stochastic approximation (SPSA) al-
gorithm explained in Section 3.2.

Reproduction Number

The basic reproduction number, R0, is the mean number of secondary colo-
nizations that one colonized individual will cause before it get decolonized.
This number is often used in epidemiology, as it can help determine whether
an infection (or in this case colonization) will spread in a population. If R0 < 1
the infection will die out, and if R0 > 1 the infection can spread in a popu-
lation. Alternatively the single readmission number, RA, can be calculated,
which is the mean number of secondary colonizations that one colonized in-
dividual will cause during one hospital admissions. We calculate R0 and RA

for a simplified situation where a person can be either susceptible (i.e. in the
category EC) or colonized with EC+. In this way the initial colonization of
EC+ bacteria can be studied. We only calculate the reproduction number for
cross-transmission, hence the only way of acquiring EC+ is by cross transfer
in the hospital with rate β in the high-risk wards and β/3 in the low-risk
wards. The colonization can be lost in the community with the rate r.
R0 and RA are found as the largest eigenvalue for the next-generation matrix
K0 and KA, respectively (Diekmann and Heesterbeek, 2000). Each element
of K, kij is the expected number of new colonized people in compartment
i caused by one person colonized in compartment j either during one hospi-
talization (RA) or during the whole duration of the colonization (R0). The
expected number of new colonized people in compartment i is given by the
transfer rate β multiplied with the time, u, spend in this compartment before
discharge from the hospital or loss of colonization. The movement between
compartments can be considered as a Markov jump process containing each
of the transient states and a compartment representing the absorbing state,
i.e. discharge of a patient or loss of colonization. The process has an intensity
matrix of the form

Λ =
[
T t
0 0

]
(3.6)

where T describes the rate of movement between the transient states and t
contains the rates by which exit to the absorbing state takes place. The prob-
ability of going from state i to j is written as pij , for example the probability
of going from core group 1 to the low-risk ward is

p31 = λ31/(r + γ1 + ρ + λ31) , (3.7)
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3. Parameter estimation

where λ31 is the readmission rate from core-group 1 to the low-risk ward,
r is the decolonization rate, γ1 is the rate of transfer from core group 1 to
the catchment population, and ρ is the removal rate of persons from the
population. If we apply this notation to the model for the patient flow shown
in Figure 2.1, we can write down the complete T matrix for the case where
discharges from the hospital are considered as the absorption state

T A =



−1/T1 p12/T1 p13/T1

p21/T2 −1/T2 p23/T2

p31/T3 p32/T3 −1/T3


 (3.8)

or when loss of colonization is considered as the absorption state

T 0 =




−1/T1 p12/T1 p13/T1 p14/T1 0 0
p21/T2 −1/T2 p23/T2 0 p25/T2 0
p31/T3 p32/T3 −1/T3 p34/T3 0 0
p41/T4 0 p43/T4 −1/T4 0 p46/T4

0 p52/T5 0 0 −1/T5 p56/T5

p61/T6 p62/T6 p63/T6 0 0 −1/T6




(3.9)

In both cases 1/Ti is the mean length of stay in the given compartment i, as
shown in Figure 2.1. The time until absorption τ is said to have a phase type
distribution PH(π, T ), where π is the initial distribution. It can be shown
that if U = (−T )−1, then each element uij of the matrix U is the expected
time spent in state j given initiation in state i prior to absorption. In this
way each element in the next generation matrix K can be found as

K = (−T )−1
ij βj = uijβj , (3.10)

where β4 = β5 = β6 = 0, as there is no cross-transfer in the community. R0

and RA can then be found as the largest eigenvalue of K0 and KA, respectively

Stochastic approximation

The bacteria transfer parameters will be determined by LS estimation. Due
to the stochasticity of the model the object function will be noisy even when
taking the mean over several simulations. We therefore use a stochastic ap-
proximation method to find the minimum object function. The computation
of each object function is very time consuming as the model has to be sim-
ulated repeatedly for several years to obtain a mean value for the prevalence
which can be compared with the observations. Therefore it is desirable to keep
the number of evaluations of the object function low. When more than one
parameter has to be estimated simultaneously as is the case for the transfer
of EC++, the Simultaneous Perturbation Stochastic Approximation (SPSA)
method can be used. The SPSA method uses only two measurements of the
object function to approximate the gradient, whereas the Finite Difference
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3.2. Bacteria flow
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Figure 3.3: R0 and RA for different values of the cross-transfer rate in the high-
risk wards. R0 equals 1.00, 0.75 and 0.50 for β+ values of 0.122, 0.092, and 0.061,
respectively. The decolonization rate is fixed to 1/141 days−1.

Stochastic Approximation (FDSA) method uses two measurements per pa-
rameter. When only one parameter needs to be estimated the SPSA method
simply reduces to the FDSA method. For both methods the aim is to find the
set of parameters, for which the gradient of the object function equals zero. A
good description of the SPSA algorithm and its implementation can be found
in Spall (1998).

Results

The basic reproduction number, R0 and the single admission reproduction
number, RA are computed in R (R Development Core Team, 2009) for dif-
ference values of the cross-transmission rate, β. The result is plotted in Fig-
ure 3.3. The cross-transmission rate in the high-risk wards is found to be
0.122, 0.092, and 0.061 in order to give a basic reproduction number of 1.00,
0.75, and 0.50, respectively. The unit for the rates is day−1. For the three esti-
mates of the cross-transmission rate, the mutation rate shown in Figure 3.4 is
found by stochastic approximation and evaluation of the least squares value.
The mutation rates are found to be 2.3 · 10−5, 5.4 · 10−5, and 8 · 10−5 for cor-
responding β values of 0.122, 0.092, and 0.061, respectively.
The cross-transfer rate for EC++ and EB++, and the conjugation rate is
found by evaluation the LS value for different values of the cross-transfer rate,
β++, and conjugation rate, c, as seen in Figure 3.5. The intension was to use
SPSA to estimate the parameters, but it has not been possible to find a proper
implementation of the coefficients for the SPSA method, and it was therefore

15
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Figure 3.4: Estimate of the mutation rate, µ using a stochastic approximation
method to find the parameter region giving the lowest least squares (solid black line).
Subsequently, the mean of 50 evaluation of the LS for different rates in this region
is computed (open circles), and the minimum is found by fitting a second order
polynomial (solid grey line) to these values and finding the minimum. The mutation
rate is found to be 2.3 · 10−5, 5.4 · 10−5, and 8 · 10−5 (dotted horizontal line) for
corresponding β+ values of 0.122, 0.092, and 0.061, respectively.
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3.2. Bacteria flow
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Figure 3.5: Least square values (colors) for different combination of the cross trans-
fer rate, β++, of EC++ and EB++, and the conjugation rate, c. Each estimated LS
value is the mean of 10 repetitions for which the prevalence is calculated as the mean
of 50 simulations of the model. The value of c below the line is 0, whereas it about
the line are from 10−4 to 1. The triangles marks the least square values below 3.

chosen to compute the LS value for a span of model parameter values.
It is seen to be difficult to separate the conjugation rate and the cross-transfer
rate. This is caused by the low amount of data available for the estimation,
and the implementation of the cross-transfer to the EC/EB++ colonization
state in the model. According to the least squares estimation, the conjugation
rate can take on values from 0 to 1 per day, whereas the cross transfer can
take on values between 0.095 and 0.19 per day.
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4 Investigating the spread of resistance

The change over time in the total EC+ and EC++ prevalence and the EC++
prevalence is plotted in Figure 4.1, for the three estimates of β+ and µ, and
for each of these three pairs of β++ and c values: β++ = 0.095 and c = 1,
β++ = 0.150 and c = 0.01, and β++ = 0.185 and c = 0. The model predicts
that the total point-prevalence will increase to values between 9.6% and 13.7%
depending on the parameter values used. The prevalence in each of the hos-
pital wards from 1990 to 2009 can be seen in Figure 4.2 for one combination
of model parameters. The equilibrium prevalence for each of these wards are:
low-risk ward 5.0%, high-risk ward 18.1%, core group 1 4.1%, core group 2
14.0%, and catchment population 0.5%. The prevalence in the high-risk ward
is thus 3.6 times higher than in the low-risk ward, and similarly the prevalence
in core group 2 is 3.4 times higher than the prevalence in core group 1. This is
caused by the patient flow, as patients discharged from the high-risk ward is
most frequently (77%) also readmitted to the high-risk ward. The last subplot
in Figure 4.2 show a close-up of the total estimated yearly mean prevalence
for EC+ and EC++ in the hospital until year 2010.
With the parameters used for Figure 4.2 the mean number of patients becom-
ing colonized during one day with either EC+ or EC++ in the high-risk ward
in the year 2009 has been calculated. The mean number of occupied beds in
the high-risk wards is 183. Out of these patients 0.04 and 0.01 patients per day
will be colonized with EC+ due to cross-transfer and mutation, respectively;
and 1.92 and 0.16 patients will be colonized with EC++ due to cross-transfer
and conjugation, respectively.
The relative importance of each of the three transfer mechanisms: cross-
transfer, conjugation, and mutation for the high-risk ward in the year 2009
is plotted in Figure 4. The model predicts that most transfers of EC++ and
EC+ will happen due to cross-transfer. Furthermore, the model predicts that
a minimum of 57% patients will acquire EC++ due to cross-transfer (for c =
1) in the high-risk ward. However, it can not be ruled out that cross-transfer
is the only transfer mechanism for EC++ in the hospital, i.e. that c = 0.
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4. Investigating the spread of resistance
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Figure 4.1: The mean of 50 simulations of the model for different values of the
model parameters. In the top panel β+ = 0.061 and µ = 8 · 10−5, in the middle
panel β+ = 0.092 and µ = 5.4 · 10−5, and in the bottom panel β+ = 0.122 and
µ = 2.3 · 10−5. A total prevalence of EC and EC++ between 9.6% and 13.7% is
predicted to be reached in year 2030 or later.
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Figure 4.2: The total mean prevalence of EC+ and EC++ in each hospital ward
and community compartments from 1990 to 2009 for 50 simulations. The parameters
used for the simulation was: β+ = 0.061, µ = 8 · 10−5, β++ = 0.150, and c = 0.01.
The plot in the lower right corner show the observed and simulated prevalence EC+
and EC++ prevalence in the hospital.
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4. Investigating the spread of resistance
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Figure 4.3: The relative importance of each of the three transfer mechanisms: cross-
transfer, conjugation and mutation, for the transfer of EC+ (β++ = 0.150, c = 0.01)
and EC++ (β+ = 0.061, µ = 8 ·10−5) as measured in the high-risk ward in year 2009
from 50 simulations of the model.
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5 Conclusion and outlook

In this study a mathematical model for the spread of ESBL resistant E.coli
among patients in a hospital and the surrounding catchment population has
been introduced and used to described prevalence data from the Netherlands.
Several statistical methods have been applied to estimate the model parame-
ters. The patient flow data was studied by survival analysis. This enabled us
to get an estimate for the time to readmission when discharged from either the
low-risk or high-risk hospital wards. It is hypothesized that readmission plays
a role for the spread of resistant bacteria. The high prevalence of EC+ and
EC++ colonized patients in the core group with patients discharged from the
high-risk ward, indicates that especially patients readmitted to the high-risk
wards contribute to the increasing prevalence. It could be interesting in a
future simulation study to further investigate the importance of readmission
and the effect of different interventions on the prevalence.
There are several theories with regards to the spread of ESBL resistant bac-
teria, but the actual prevalence data is very sparse. Based on the available
data we have developed an adequate model that can explain the increase in
prevalence from year 2000. It has not been possible to separate the effect
from conjugation and cross-transfer on the ESBL prevalence of type CTX-M,
as several combination of the cross-transfer rate and conjugation rate give a
good fit to data. However, the model predicts that a minimum of 57% of the
acquisition of EC++ colonization is due to cross transfer.
The transfer rates for each hospital and community compartments are all re-
lated by a ratio fixed in the model. Due to the high prevalence of resistant
bacteria in the high-risk ward, this ward is a central element for estimation of
the model parameters. It could therefore be interesting to look at the transfer
going on inside the high-risk wards alone. A surveillance study, where the col-
onization status of all patient in one or two hospital high-risk hospital wards
are followed over a couple of month, could be an idea for a better understand-
ing of the transfer mechanisms.
The mean duration of colonization with EC+, EC++ and EB++ after dis-
charge from the hospital has in this study been fixed to 141 days. Whether
patients readmitted to the hospital are colonized with resistance bacteria is
among other things dependent on the duration of colonization. It would there-
fore be interesting to investigate the effect of increased or decreased length of
colonization by simulation studies. Furthermore the model could be improved,
if data from colonization studies of each of the colonization states EC+, EC++
and EB++ were available.
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