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Abstract—In this paper we study a Markov Chain Monte
Carlo (MCMC) Gibbs sampler for solving the integer least-
squares problem. In digital communication the problem is
equivalent to performing Maximum Likelihood (ML) detection in
Multiple-Input Multiple-Output (MIMO) systems. While the use
of MCMC methods for such problems has already been proposed,
our method is novel in that we optimize the ”temperature”
parameter so that in steady state, i.e. after the Markov chain
has mixed, there is only polynomially (rather than exponentially)
small probability of encountering the optimal solution. More pre-
cisely, we obtain the largest value of the temperature parameter
for this to occur, since the higher the temperature, the faster
the mixing. This is in contrast to simulated annealing techniques
where, rather than being held fixed, the temperature parameter
is tended to zero. Simulations suggest that the resulting Gibbs
sampler provides a computationally efficient way of achieving
approximative ML detection in MIMO systems having a huge
number of transmit and receive dimensions. In fact, they further
suggest that the Markov chain is rapidly mixing. Thus, it has
been observed that even in cases were ML detection using, e.g.
sphere decoding becomes infeasible, the Gibbs sampler can still
offer a near-optimal solution using much less computations.

I. INTRODUCTION

The problem of performing Maximum Likelihood (ML)
decoding in digital communication has gained much attention
over the years. One method to obtain the ML solution is Sphere
Decoding (SD) [1]–[5]. Over a wide range of Signal-to-Noise
Ratios (SNR)s the average complexity of SD is significantly
smaller than exhaustive search detectors, but in worst case
the complexity is still exponential [6]. Thus, in scenarios
with poor SNR or in Multiple-Input Multiple-Output (MIMO)
systems with huge transmit and receive dimensions, even SD
can be infeasible. A way to overcome this problem is to
use approximate Markov Chain Monte Carlo (MCMC) de-
tectors instead, which asymptotically can provide the optimal
solution, [7], [8]. Gibbs sampling (also known as Glauber
dynamics) is one MCMC method, which is used for sampling
from distributions of multiple dimensions. The Gibbs sampler
has among others been proposed for detection purposes in
wireless communication in [9]–[12] (see also the references
therein). The scope of this paper is to describe and analyse

a new way of solving the integer least-squares problem using
MCMC. It will be shown that the method can be used for
achieving a near-optimal and computationally efficient solution
of the problem, even for systems having a huge dimension.

The paper is organized as follows; In Section II we present
the system model that will be used throughout the paper. The
MCMC method is described in Section III and in Section IV
we analyse the probability of error for the ML detector. Section
V treats the optimal selection of the temperature parameter α,
while the simulation results are given in Section VI and some
concluding remarks are found in Section VII.

II. SYSTEM MODEL

We consider a real-valued block-fading MIMO antenna
system, with N transmit and N receive dimensions, with know
channel coefficients.1 The received signal y ∈ R

N can be
expressed as

y =√SNR
N

Hs + υ , (1)

where s ∈ ΩN is the transmitted signal, and Ω denotes the
constellation set. To simplify the derivations in the paper
we will assume that Ω = {±1}. υ ∈ R

N is the noise
vector where each entry is Gaussian N (0,1) and independent
identically distributed (i.i.d.), and H ∈ R

N×N denotes the
channel matrix with i.i.d. N (0,1) entries. The normalization
in (1) guarantees that SNR represents the signal-to-noise ratio
per receive dimension (which we define as the ratio of the total
transmit energy per channel use divided by the per-component
noise variance as described in among others [5]). As explained
further below, for analysis purposes we will focus on the
regime where SNR > 2 ln(N), in order to get the probability
of error of the ML detector to go to zero. Further, in our
analysis, without loss of generality, we will assume that the

1For simplicity we have assumed that the receive and the transmit dimen-
sions are the same, but the results presented in the paper can be generalized
to cover different dimensions.
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all minus one vector was transmitted, s = −1. Therefore

y = υ −√SNR
N

H1 . (2)

We are considering a minimization of the average error
probability P (e) ≜ P (ŝ ≠ s), which is obtained by perform-
ing Maximum Likelihood Sequence Detection (here simply
referred to as ML detection) given by

ŝ = arg min
s∈ΩN

������������y −
√

SNR
N

Hs
������������
2

. (3)

III. GIBBS SAMPLING

One way of solving the optimization problem given in (3)
is by using Markov Chain Monte Carlo (MCMC) simulations,
which asymptotically converge to the optimal solution [13].
More specifically, the MCMC detector we investigate here is
the Gibbs sampler, which computes the conditional probability
of each symbol in the constellation set at the jth index in
the estimated symbol vector. This conditional probability is
obtained by keeping the j − 1 other values in the estimated
symbol vector fixed. Thus, in kth iteration the probability of
the jth symbol adopts the value ω, is given as

p(ŝ(k)j = ω ∣θ) = e
− 1

2α2

�����������y−
√

SNR
N Hs̃j∣ω

�����������
2

∑
s̃j∣ω̃ ∈Ω e

− 1
2α2

�����������y−
√

SNR
N Hs̃j∣ω̃

�����������
2 , (4)

where s̃T
j∣ω ≜ [ŝ(k)1∶j−1, ω, ŝ(k−1)

j+1∶NT
]T and where we for simplicity

have introduced θ = {ŝ(k−1),y,H}.2 α represents a tunable
positive parameter which controls the mixing time of the
Markov chain, this parameter is also sometimes called the
”temperature”. The larger α is the faster the mixing time
of the Markov chain will be, but as we will show in the
paper, there is an upper limit on α, in order to ensure
that the probability of finding the optimal solution in steady
state is not exponentially small. The MCMC method will
with probability p(ŝ(k)j = ω ∣θ ) keep ω at the j’th index in
estimated symbol vector, and compute conditional probability
the (j+1)th index in a similar fashion. We define one iteration
of the Gibbs sampler as a randomly-ordered update of all the
j = {1, . . . ,NT } indices in the estimated symbol vector ŝ.3 The
initialization of the symbol vector ŝ(0) can either be chosen
randomly or, alternatively, e.g. the zero-forcing solution can
be used.

2When we compute the probability of symbol ω at the j’th position, we
more precisely condition on the symbols ŝ

(k)
1∶j−1 and ŝ

(k−1)
j+1∶NT

, but to keep the
notation simple, we do not explicitly state that in the equations above.

3We need a randomly-ordered update for the Markov chain to be reversible
and for our subsequent analysis to go through. It is also possible to just
randomly select a symbol j to update, without insisting that a full sequence
be done. This also makes the Markov chain reversible and has the same
steady state distribution. In practice a fixed, say sequential, order can be
employed, although the Markov chain is no longer reversible. Note that
our theoretical analysis is assuming randomly selected symbol updates for
analytical convenience. In our experimental section we used a sequential
updating order which empirically yields a slight convergence acceleration.

A. Complexity of the Gibbs sampler

The conditional probability for the j’th symbol in (4) can be
computed efficiently by reusing the result obtained for the j −
1’th symbol, when we evaluate ∥y −√SNR/NHs̃j∣ω ∥2. Since
we are only changing the j’th symbol in the symbol vector,
the difference dj ≜ y −√SNR/NHs̃j∣ω can be expressed as

dj = dj−1 −√SNR
N

H1∶N,jΔsj∣ω , (5)

where Δsj∣ω ≜ s
(k)
j∣ω − s

(k−1)
j∣ω̃ . Thus, the computation of condi-

tional probability of certain symbol in the j’th position costs
2N operations, where we define an operation as a Multiply and
Accumulate (MAC) instruction.4 This leads to a complexity ofO(2N2[∣Ω∣ − 1]) operations per iteration. For further details
on the implementation of the Gibbs sampler see [14].

IV. PROBABILITY OF ERROR

In this paper, we are interested in evaluating the perfor-
mance of the aforementioned Gibbs sampler, compared to the
ML solution. To ease our analysis, we will assume that the
ML detector finds the correct transmitted vector. Before we
derive the probability of error for the ML detector, we will
state a lemma which we will make repeated use of.

Lemma IV.1 (Gaussian Integral). Let v and x be independent
Gaussian random vectors with distribution N(0, IN) each.
Then, if 1 − 2a2η(1 + 2η) > 0,

E {eη(∥v+ax∥2−∥v∥2)} = ( 1
1 − 2a2η(1 + 2η))

N/2
. (6)

Proof: See Appendix VIII-A for a detailed proof.

Assuming that the vector s = −1 was transmitted, the ML
detector will make an error if there exists a vector s ≠ −1 such
that ������������y −

√
SNR
N

Hs
������������
2 ≤ ������������y +

√
SNR
N

H1
������������
2 = ∥υ∥2 .

In other words,

Pe = Prob
⎛⎜⎝
������������y −

√
SNR
N

Hs
������������
2 ≤ ∥υ∥2⎞⎟⎠

= Prob
⎛⎜⎝
������������υ +

√
SNR
N

H(−1 − s)������������
2 ≤ ∥υ∥2⎞⎟⎠ ,

for some s ≠ −1, which can be formulated as

Pe = Prob
⎛⎜⎝
������������υ + 2

√
SNR
N

Hδ

������������
2 ≤ ∥υ∥2⎞⎟⎠ ,

4We need to compute both the inner product dT
j dj and the product

H1∶N,jΔsj∣ω .
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for some δ ≠ 0. Note that in the above equation δ is a vector
of zeros and −1’s. Now using the union bound

Pe ≤ ∑
δ≠0 Prob

⎛⎜⎝
������������υ + 2

√
SNR
N

Hδ

������������
2 ≤ ∥υ∥2⎞⎟⎠ . (7)

We will use the Chernoff bound to bound the quantity inside
the summation. Thus,

Prob
⎛⎜⎝
������������υ + 2

√
SNR
N

Hδ

������������
2 ≤ ∥υ∥2⎞⎟⎠ (8a)

≤ E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩e
−β

⎛⎝
�����������υ+2

√
SNR

N Hδ
�����������
2−∥υ∥2⎞⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8b)

= ⎛⎜⎝ 1

1 + 8SNR∥δ∥2
N

β(1 − 2β)
⎞⎟⎠

N/2
, (8c)

where β ≥ 0 is the Chernoff parameter, and where we have

used Lemma IV.1 with η = −β and a = 2
√

SNR∥δ∥2
N

, since

E

⎧⎪⎪⎨⎪⎪⎩⎛⎝2
√

SNR
N

Hδ
⎞⎠⎛⎝2
√

SNR
N

Hδ
⎞⎠
∗⎫⎪⎪⎬⎪⎪⎭ = 4

SNR∥δ∥2
N

IN .

The optimal value for β is 1
4

, which yields the tightest bound

Prob
⎛⎜⎝
������������υ + 2

√
SNR
N

Hδ

������������
2 ≤ ∥υ∥2⎞⎟⎠ ≤

⎛⎜⎝ 1

1 + SNR∥δ∥2
N

⎞⎟⎠
N/2

.

(9)
Note that this depends only on ∥δ∥2, the number of nonzero
entries in δ. Plugging this into the union bound yields

Pe ≤ N∑
i=1( N

i
)⎛⎝ 1

1 + SNRi
N

⎞⎠
N/2

. (10)

Let us first look at the linear (i.e., i proportional to N ) terms
in the above sum. Thus,

( N
i
)⎛⎝ 1

1 + SNRi
N

⎞⎠
N/2 ≈ e

NH( i
N )−N

2 ln(1+SNRi
N )

,

where H(⋅) is entropy in “nats”. Clearly, if limN→∞ SNR = ∞,
then the linear terms go to zero (superexponentially fast).

Let us now look at the sublinear terms. In particular, let is
look at i = 1:

N
⎛⎝ 1

1 + SNR
N

⎞⎠
N/2 ≈ Ne−SNR/2.

Clearly, to have this term go to zero, we require that SNR >
2 lnN . A similar argument shows that all other sublinear terms
also go to zero, and so.5

Lemma IV.2 (SNR scaling). If SNR > 2 lnN , then Pe → 0 as
N →∞.

5Due to space constraints we only present a sketch of this bound. A rigorous
proof can be given using the saddle point method, similarly to the proof in
the next section.

V. COMPUTING THE OPTIMAL α

Assuming that the vector s = −1 has been transmitted, the
probability of finding this solution after the Markov chain has
mixed is simply π−1, the steady-state probability of being in
the all −1 state. Clearly, if this probability is exponentially
small, it will take exponentially long for the Gibbs sampler to
find it. We will therefore insist that the mean of π−1 be only
polynomially small.

A. Mean of π−1
This calculation has a lot in common with the one given in

Section IV. Note that the steady state value of π−1 is simply

π−1 = e
− 1

2α2

�����������y+
√

SNR
N H1

�����������
2

∑s e
− 1

2α2

�����������y+
√

SNR
N Hs

�����������
2 (11a)

= e− 1
2α2 ∥υ∥2

∑s e
− 1

2α2

�����������υ+√SNR
N H(s−1)�����������

2 (11b)

= e− 1
2α2 ∥υ∥2

∑δ e
− 1

2α2

�����������υ+2

√
SNR

N Hδ

�����������
2 (11c)

= 1

∑δ e
− 1

2α2
⎛⎝
�����������υ+2

√
SNR

N Hδ

�����������
2−∥υ∥2⎞⎠

, (11d)

where δ is a vector of zeros and ones and the summations
(over s and δ) are over 2n terms.

Now, by Jensen’s inequality

E {π−1} ≥ 1

E { 1
π−1
} (12a)

= 1

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩∑δ e
− 1

2α2
⎛⎝
�����������υ+2

√
SNR

N Hδ
�����������
2−∥υ∥2⎞⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(12b)

= 1

∑δ E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩e
− 1

2α2
⎛⎝
�����������υ+2

√
SNR

N Hδ
�����������
2−∥υ∥2⎞⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(12c)

= 1

1 +∑δ≠0 ⎛⎝ 1

1+4
SNR∥δ∥2

N
1

α2 (1− 1
α2 )
⎞⎠

N/2 (12d)

= 1

1 +∑N
i=1 ( N

i
)( 1

1+βi
N

)N/2 . (12e)

In (12d) we have used Lemma IV.1 and in (12e) we have
defined β ≜ 4SNR 1

α2 (1 − 1
α2 ). While it is possible to focus

on the linear and sublinear terms in the above summation
separately, to give conditions for E {π−1} to have the form
of 1/poly(N), we will be interested in the exact exponent
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and so will need a more accurate estimate. To do this we shall
use saddle point integration. Note that

( N
i
)⎛⎝ 1

1 + βi
N

⎞⎠
N/2 ≈ e

NH( i
N )−N

2 ln(1+βi
N )

,

where again H(⋅) represents the entropy in “nats”. And so the
summation in the denominator of (12e) can be approximated
as a Stieltjes integral:

N∑
i=1( N

i
)⎛⎝ 1

1 + βi
N

⎞⎠
N/2 ≈ N

N∑
i=1 e

NH( i
N )−N

2 ln(1+βi
N ) 1

N

(13a)

≈ N ∫ 1

0
eNH(x)−N

2 ln(1+βx)dx .

(13b)

For large N , this is a saddle point integral and can be
approximated by the formula

∫ 1

0
eNf(x)dx ≈√ 2π

N ∣f ′′(x0)∣eNf(x0) , (14)

where x0, is the saddle point of f(⋅), i.e.,f ′(x0) = 0. In our
case,

f(x) = −x lnx − (1 − x) ln(1 − x) − 1
2

ln(1 + βx) ,

and so
f ′(x) = ln

1 − x

x
− 1

2
β

1 + βx
.

In general, it is not possible to solve for f ′(x0) = 0 in
closed form. However, in our case, if we assume that β =
4SNR 1

α2 (1 − 1
α2 ) ≫ 1 (which is true since the SNR grows at

least logarithmically), then it is not too hard to verify that the
saddle point is given by

x0 = e− β
2 . (15)

And hence f(x0) =
− e−β

2 ln e− β
2 − (1 − e−β

2 ) ln(1 − e−β
2 ) − 1

2
ln(1 + βe− β

2 )
≈ β

2
e−β

2 + e−β
2 − 1

2
βe− β

2 = e− β
2 ,

and further plugging x0 into f ′′(x) = − 1
x
− 1

1−x
− 1

2
β2(1+βx)2 ,

yields

f ′′(x0) ≈ −e β
2 − 1 + 1

2
β2 ≈ −e β

2 . (16)

Replacing these into the saddle point expression in (14) show
that

N∑
i=1( N

i
)⎛⎝ 1

1 + βi
N

⎞⎠
N/2 ≈ √2π/N exp(Ne−β

2 − β

4
) . (17)

We want E {π−1} to behave as 1
Nζ and according to (12) this

means that we want the expression in (17) to behave as N ζ .
Let us take

eNe−
β
2 = N ζ .
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Figure 1: Value of α vs. SNR for system size N = 10.

Solving for β yields

β = 4SNR
1
α2
(1 − 1

α2
) = 2 (lnN − ln lnN − ln ζ) . (18)

Incidentally, this choice of β yields e− β
4 ≈ 1√

N
, and so we

have the following result.

Lemma V.1 (Mean of π−1). If α is chosen such that

α2

1 − 1
α2

= 2SNR

lnN − ln lnN − ln ζ
, (19)

then
E {π−1} ≥ N−ζ . (20)

B. Value of α

Note that from (12e) it is clear that the larger β is, the larger
π−1 is. Therefore, the range of α that gives a polynomially
small probability to π−1 is

α2

1 − 1
α2

≥ 2SNR
lnN − ln lnN − ln ζ

. (21)

It can be shown that in the regime, SNR > 2 lnN , the above
quadratic inequality in α has two positive real solutions, α+ ≥
α−, and that the inequality holds for all α ∈ [α−, α+].

We know that, the larger α is, the faster the Markov chain
mixes.6 Therefore it is reasonable that we choose the largest
permissible value for α, i.e., α+.

Figures 1 and 2 show the values of α+ and α− as a function
of SNR for systems with N = 10 and N = 50, when we have
ζ = 1/ ln(N).
C. Mixing time of Markov Chain

One open question is whether the Markov chain is rapidly
mixing when using the strategy above for choosing α. This is
something we are currently investigating, and the simulations
presented in Section VI seem to indicate that this is the case.
Furthermore, the simulations also suggest that the computed
value of α is very close to the optimal choice, even in the case
where the condition SNR > 2 ln(N) is not satisfied.

6In general, there is a trade-off between faster mixing time of the Markov
chain (due to an increase of α) versus slower encountering the optimal solution
in steady-state. In fact, at infinite temperature our algorithm reduces to a
random walk in a hypercube which mixes in O(N lnN) time.
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Figure 2: Value of α vs. SNR for system size N = 50.
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Figure 3: BER vs. iterations, 10 × 10. SNR = 10 dB.

VI. SIMULATION RESULTS

In this section we present simulation results for a MIMO
N × N system with a full square channel matrix containing
i.i.d. Gaussian entries. In Fig. 3 and Fig. 4 the Bit Error Rate
(BER) of the Gibbs sampler, initialized with a random s, has
been evaluated as a function of the number of iterations in a
10 × 10 system using a variety of α values. Thereby, we can
inspect how the parameter α affects the convergence rate of the
Gibbs sampler. The performance of the Maximum Likelihood
(ML), the Zero-Forcing (ZF), and the Linear Minimum Mean
Square Error (LMMSE) detector has also been plotted, to
ease the comparison of the Gibbs sampler with these. It is
seen that the Gibbs sampler outperforms both the ZF and
the LMMSE detector after only a few iterations in all the
presented simulations, when the tuning parameter α is chosen
properly. Furthermore, it is observed that the parameter α has
a huge influence on the convergence rate and that the Gibbs
sampler converges toward the ML solution as a function of the
iterations.7 The optimal value of α (in terms of convergence
rate) is quite close to the theoretical values from Fig. 1 of
α+ = 2.7 and α+ = 4.6 at SNR’s at 10 and 14dB, respectively.
It is also observed that the performance of the Gibbs sampler
is significantly deteriorated if the temperature parameter is
chosen based on the SNR (and thereby on the noise variance),

7It should be noted that the way we decode the symbol vector to a given
iteration, is to select the symbol vector which has the lowest cost function in
all the iterations up to that point in time.
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Figure 4: BER vs. iterations, 10 × 10 system. SNR = 14 dB.
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Figure 5: BER vs. SNR, 10×10. Number of iterations, k = 100.

such that α = σ ≜ 1/SNR. Thus, the latter strategy is clearly
not a wise choice.
Figure 5 shows the BER performance for the MCMC detector
for fixed number of iterations, k = 100. From the figure we
see that the SNR has a significant influence on the optimal
choice of α given a fixed number of iterations.
The performance of the Gibbs sampler is also shown for a
50 × 50 system, which represents a ML decoding problem of
huge complexity where an exhaustive search would require
250 ≈ 1015 evaluations. For this problem even the sphere
decoder has an enormous complexity under moderate SNR.8

Therefore, it has not been possible to simulate the performance
of this decoder within a reasonable time and we have therefore
“cheated” a little by initializing the radius of the sphere to
the minimum of either the norm of the transmitted symbol
vector or the solution found by the Gibbs sampler. This has
been done in order to evaluate the BER performance of the
optimal detector. Figure 6 shows the BER curve as a function
of the iteration number, while Figure 7 illustrates the BER
curve vs. the SNR. From Figure 6 we see that there is a
quite good correspondence between the simulated α and the
theoretical value α+ = 2.6 obtained from Figure 2. The
average complexity (MAC pr. symbol vector) of the Gibbs
sampler having a BER performance comparable with the ML
detector is shown in Table I. The SD has been included as

8In fact, it can be shown that, for SNR = O(lnN), the lower bound on
the complexity of the sphere decoder obtained in [6] is exponential.
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Table I: Complexity of SD and Gibbs Sampler (GS).

N Method SNR 6 dB 10 dB 14 dB

10
GS 9.8 ⋅ 103 10.9 ⋅ 103 16.4 ⋅ 103

SD 10.0 ⋅ 103 1.7 ⋅ 103 1.5 ⋅ 103

50
GS 7.6 ⋅ 105 9.5 ⋅ 105 10.6 ⋅ 105

SD ≫ 1.9 ⋅ 109 ≫ 1.9 ⋅ 109 37.7 ⋅ 105

a reference.9 It is observed that the complexity of the Gibbs
sampler is not affected by the SNR as much as the SD.

VII. CONCLUSION

In this paper we considered solving the integer least-squares
problem using Monte Carlo Markov Chain Gibbs sampling.
The novelty of the proposed MCMC method is that, unlike
simulated annealing techniques, we have a fixed temperature
parameter in all the iterations, with the property that after
the Markov chain has mixed, the probability of encounter-
ing the optimal solution is only polynomial small (i.e. not
exponentially small). We further compute the optimal (here
largest) value of the temperature parameter that guarantees
this. Simulation results indicate the sensitivity of the method
to the choice of the temperature parameter and show that
our computed value gives a very good approximation to its
optimal value. Investigating whether the Markov chain mixes
in polynomial time for this choice of temperature parameter
is currently under investigation.

9It has not been possible to simulate the SD for a 50 × 50 system when
SNR ≤ 10dB and, therefore, the complexity of SNR = 12dB has been
used a lower bound.

VIII. APPENDIX

A. Proving Lemma IV.1

Lemma IV.1 (Gaussian Integral) Let v and x be inde-
pendent Gaussian random vectors with distribution N(0, IN)
each. Then

E {eη(∥v+ax∥2−∥v∥2)} = ( 1
1 − 2a2η(1 + 2η))

N/2
. (22)

Proof: In order to determine the expected value we compute
the multivariate integral

E {eη(∥v+ax∥2−∥v∥2)}
= ∫ dxdv(2π)N e

− 1
2 [ vT , xT ]⎡⎢⎢⎢⎢⎣

IN −2aηIN−2aηIN (1 − 2a2η)IN

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v
x

⎤⎥⎥⎥⎥⎦

= 1

detN/2 [ 1 −2aη−2aη 1 − 2a2η
] = (

1
1 − 2a2η(1 + 2η))

N/2
.

Thus, Lemma IV.1 has hereby been proved.
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