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Abstract— The focus in this paper is analysis of stability and
controller design for interconnected systems. This includes both
the case with known and unknown interconnected sub-system.
The key element in both the stability analysis and controller
design is the application of the Youla-Jabr-Bongiorno-Kucera
(YJBK) parameterization. The dual YJBK transfer function is
applied in connection with the closed-loop stability analysis.
The primary YJBK parameterization is applied in connection
with design of controllers. Further, it is shown how it is possible
to obtain a direct estimation of a connected sub-system without
having a direct access to it.

I. INTRODUCTION

The complexity of the control systems has been increasing

the last years. The reason is the increasing requirements

from the surrounding environments with respect to pollution,

energy consumption, performance, cost etc. Examples are

engines for cars, [4] and refrigeration systems. A number of

these conditions can only be satisfied with the cost of more

complex control systems.

The area of interconnected systems has been described and

investigated in a large number of papers through the years.

The modelling has been considered in details by J.C. Willems

in a number of paper, see e.g. [8] and the reference herein.

Design of controllers, specially distributed controllers has

also been investigated, see e.g. [2], [10] and the references

herein.

The first part of the paper deals with an analysis of closed-

loop systems when a sub-system is included in the closed

loop. This includes a stability analysis in both the case when

the sub-system is known and the case when it is unknown.

When the sub-system is unknown, it is investigated how it is

possible to get a direct estimation of the sub-system, when

it is included in the closed-loop.

In the last part of the paper, design of feedback controllers

for the interconnected system is considered. Two different

controller concepts will be considered.

The rest of this paper is organized as follows. The applied

system set-up is shortly described in Section II. Section III

include a stability analysis of the closed-loop interconnected

system. Controller design for interconnected systems are

considered in Section IV followed by an example in Section

V. The paper is closed by a discussion in Section VI.

II. SYSTEM SET-UP

Let the main system Σ1 and the subsystem Σ2 be described

by the following general system for i = 1,2:

Σi :



















ei = Ged,idi + Gew,iwi + Geu,iui

zi = Gzd,idi + Gzw,iwi + Gzu,iui

yi = Gyd,idi + Gyw,iwi + Gyu,iui

(1)

where wi ∈R
qi is an external input, di ∈R

ri is a disturbance

signal vector, ui ∈ R
mi the control input signal vector, zi ∈

R li is an external output vector, ei ∈ R
ki is the external

output signal vector to be controlled and yi ∈ R
pi is the

measurement vector.

Further, let Σi has the following state space representation:

Σi :



























ẋi = Aix + Bd,idi + Bw,iwi + Bu,iui

ei = Ce,ixi + Ded,idi + Dew,iwi + Deu,iui

zi = Cz,ixi + Dzd,idi + Dzw,iwi + Dzu,iui

yi = Cy,ixi + Dyd,idi + Dyw,iwi + Dyu,iui

(2)

where x ∈ R n is the state vector.

The main system Σ1 and the subsystem Σ2 is connected by

connecting the output z1 from Σ1 to the input w2 of Σ2. The

output z2 of Σ2 is connected to w1 of Σ1. This interconnection

of Σ1 and Σ2 is shown in Fig. 1.

The interconnection of the two systems Σ1 and Σ2 shown in

Fig. 1 gives directly the following condition on the diminsion

of inputs and outputs:

l1 = q2, l2 = q1 (3)

Rearranging the two systems Σ1 and Σ2, the interconnected

system Σ1 ∗Σ2 can be calculated and is given by:








e2

e1

y2

y1









= S(Σ2,Σ1)









d2

d1

u2

u1









(4)
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Fig. 1. Interconnection of system Σ1 and Σ2.

Let the main system Σ1 be controllerd by a stabilizing

controller, ΣC,1, i.e.

ΣC,1 :
{

u1 = K1y1 (5)

Assume there exists a coprime factorization of the system

Gyu,1 and the stabilizing controller K1 given by:

Gyu,1 = N1M−1
1 = M̃−1

1 Ñ1, N1,M1, Ñ1,M̃1 ∈ R H∞

K1 = U1V−1
1 = Ṽ−1

1 Ũ1, U1,V1,Ũ1,Ṽ1 ∈ R H∞

The eight matrices will satisfy the double Bezout equation

(see [7]).

Using the Bezout equation, all stabilizing controllers can be

realized as an LFT (linear fractional transformation) in the

YJBK transfer function Q1 ∈ R H∞:

K1(Q1) = Fl

((

U1V−1
1 Ṽ−1

1

V−1
1 −V−1

1 N1

)

,Q1

)

= Fl(JK ,Q1)

This is shown in Fig. 2. All stabilizing controllers can also

be realized through

u1 = Ṽ−1(η1 +Ũy1)

where:

η1 = Q1ε1 + η̄1 ε1 = M̃y1 − Ñu1

and η̄1 is an additional input vector.

Σ1

JK1

y1u1

d1 e1
w1 z1

Q1

ε1 η1

Fig. 2. A block diagram of Σ1 controlled by K1(Q1)

III. CLOSED-LOOP STABILITY

The stability of the closed-loop system is analyzed in the

following when the sub-system Σ2 is included in the loop.

First, it is assumed that Σ2 is known. Later, the stability

analysis will be derived with an unknown Σ2. It is assumed

the Σ1 is known in both cases.

Only the transfer function from w2 to z2 in Σ2 is relevant

in the following stability analysis. This gives the following

simplified Σ2:

Σ2 :
{

z2 = Gzw,2w2 (6)

Only the case when a subsystem is included in the closed-

loop is investigated in the following. The analysis can also be

used directly when a subsystem is removed from the closed-

loop system.

A. Σ2 is known

When Σ2 is known, it is simple to check the stability of the

complete closed loop system. Closing the loop around the

interconnected system given by (4) with the controller K1, it

is simple to calculate the closed-loop poles.

Instead of using the above standard method, it is possible to

apply the dual YJBK parameterization in connection with

a stability analysis. This can be done by calculating the

dual YJBK transfer function S for a certain change in the

system. If S is stable, the closed loop system is stable for the

certain change in the system. Further, the dual YJBK transfer

function will be applied later in connection with controller

design.

The dual YJBK parameterization has been considered in

details in [5], where also the connection between the dual

YJBK transfer function and changes in the system has been

described.

Using the above set-up, the dual YJBK transfer function is

given by, [5]:

S(Gzw,2) = T21Gzw,2(I −T11Gzw,2)
−1T12 (7)

where
T11 = Gzw,1 +Gzu,1U1M̃1Gyw,1

T12 = Gzu,1M1

T21 = M̃1Gyw,1

M1, M̃1 and U1 are the coprime matrices from the factoriza-

tion of Gyu,1 and K1.

It is easy to see that S(Gzw,2) will be zero when Gzw,2 is zero,

i.e.

S(Gzw,2) = 0, for Gzw,2 = 0 (8)

From the theory related to the dual YJBK parameterization

the closed-loop system is stable if the nominal closed-loop

system is stable and the dual YJBK transfer function is
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stable. The nominal closed-loop system is guaranteed to be

stable by the design of K1. This mean that the complete

closed-loop system is stable if the dual YJBK transfer

function given by (7) is stable. It is simple to calculate the

close loop poles when the subsystem Σ2 is known.

It is important to note that the above stability analysis is

based on the information from the input w2 and output z2

on the subsystem Σ2. Only the observable and controllable

dynamic in Σ2 is included in the analysis. This mean that

parts of the subsystem that is not connected to the main

system is unstable can be unstable without it is possible to

see it through S.

B. Σ2 is unknown

In the case when Σ2 is unknown, it is not possible directly to

calculate the closed-loop poles and the closed-loop stability

can not be determined directly. Other methods can needs to

be applied. Methods from robust control can be be applied.

One method is to use the small gain theorem, [6], [9] for

an investigation of the closed-loop stability. This methods

require that Σ2 is stable and an upper bound on gain is

known.

Assume that the subsystem Σ2 is open-loop stable. Let an

upper bound on the gain of Σ2 (or more correct of Gzw,2) be

given by:

lG(ω) ≥ σmax(Gzw,2( jω)), ∀ω (9)

S(Gzw,2) given by (7) is stable if (I −T11Gzw,2)
−1 is stable.

(I −T11Gzw,2)
−1 is stable if

σmax(T11( jω)) < 1/lG(ω), ∀ω (10)

(10) follows directly from using the small gain theorem on

S(Gzw,2), [6], [9]. The small gain theorem has also been used

in [3] in connection with stability anslysis and controller

design for interconnected systems.

Another possibility is to estimate the subsystem Σ2 through

the dual YJBK transfer function S(Gzw,2) given by (7).

S(Gzw,2) is an indirect measure of the subsystem Gzw,2

connected to the system Σ1. It is possible to calculate an

upper bound on S for when an upper bound on Gzw,2 is

known. This can be done by using the skew-µ method, [6].

S(Gzw,2) will not be used directly in connection with estima-

tion of Gzw,2. It is possible to modify the feedback controller

K1 by introduction a Q1 as described in Section Fig. 2. The

input vector η1 is then given by:

η1 = Q1ε1 + η̄1 (11)

The closed-loop transfer function from η̄1 to ε1 is then given

by:

S(Q1,Gzw,2) = S(Gzw,2)(I −Q1S(Gzw,2))
−1

= T21Gzw,2(I − (T11 +T12Q1T21)Gzw,2)
−1T12

(12)

Further, let’s also include pre- and post-filters around

S(Q1,∆) resulting in

SW (Q1,Gzw,2) = WOS(Q1,Gzw,2)WI (13)

This gives three transfer functions that can be designed

with respect to get a simple and direct estimation of Gzw,2.

Based on (12) and (13), it is possible to apply standard

estimation/identification methods. However, in the system

set-up considered in this paper, it will in many cases be

possible to simplify the above closed-loop transfer function

such that it is possible to get a direct estimation of Gzw,2.

Let the following conditions on the number of inputs and

outputs for the two systems Σ1 and Σ2 be satisfied:

l1 = q2 ≤ m1

q1 = l2 ≤ p1
(14)

The first condition guarantee that Gzu,1 is right invertible.

The second condition guarantee that Gyw,1 is left invertible.

Let’s consider the feedback part of SW (Q1,Gzw,2) given by:

(T11 +T12Q1T21)Gzw,2

The condition in (14) guarantee that a right and left inverse

of T12 and T21 exists and given by T
†

12 and T
†

21, respectively.

Let Q1 be given by

Q1 = −T
†

12T11T
†

21 (15)

This gives directly that

(T11 +T12Q1T21)Gzw,2 = 0

Further, let the two filters WI and a WO be given by:

WI = T
†

12, WO = T
†

21
(16)

Using the controller Q1 given by (15) and the pre- and post-

filter satisfying the conditions in (16) gives the following

SW (Q,Gzw,2):

SW (Q1,Gzw,2) = Gzw,2 (17)

This decoupling of the internal feedback in SW (Q1,Gzw,2) by

using Q1 given by (15) is only allowed with a stable Q1. A

non-minimm phase zero in T12 or T21 must also be included

in T11 to give a stable Q1. Necessary and sufficient conditions

to give a stable Q1 with respect to the original system can

be derived but is not investigated further in this paper.

It is also required that the two weight functions WI and

WO are stable. This will require that T12 and T21 does not

include non-minimum phase zeros. If T12 or T21 include non-

minimum phase zeros, it will be possible to make a factoriza-

tion of the transfer functions, where they are factorized into a

minimum phase part and an allpass part. The minimum phase

part can be removed by selecting the weighting matrices as

the inverse of these parts. The resulting transfer function
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from input to output will include the remaining all-pass

factors. These can afterwards be removed manually.

A stabilizing controller Q1(s) given by (15) will give an exact

decoupling as given by (17). Using (11), Gzw,2 is then the

transfer function between η̄1 and ε1, i.e.

ε1 = SW (Q1,Gzw,2)η̄1 = Gzw,2η̄1 (18)

Standard estimations methods can then be applied for the

estimation of Gzw,2.

IV. CONTROLLER DESIGN

Design of controllers for the interconnected system will be

considered in this section. Beyond just designing a new

controller for the complete interconnected system, there exist

a number of alternatives to this. A complete new controller

deign will have the drawback that it will require a complete

new redesign again when the subsystem Σ2 is removed again

from the loop. It is there more relevant to consider controller

architectures where the original controller ΣC,1 is preserved.

Two different design approaches will be considered in the

following, where the nominal feedback controller is pre-

served. In the first approach, a controller is designed for

a feedback around Σ2. The controller must be designed

such that the complete interconnected closed-loop system

is stable. The other approach is to use the YJBK transfer

function Q1 for stabilizing the closed-loop system when Σ2

is included.

Only the stability aspect in connection with the controller

design will be considered in the following. The closed-loop

performance can also be included, but will not be considered

here in this paper.

A. Local Controller Design for Σ2.

Considering a design of a local controller for Σ2. Closing the

loop from around Σ2 by

ΣC,2 :
{

u2 = K2y2 (19)

the closed loop system Σcl,2 is then given by:

Σcl,2 :

{

e2 = Ted,2(K2)d2 + Tew,2(K2)w2

z2 = Tzd,2(K2)d2 + Tzw,2(K2)w2

(20)

where

Ted,2(K2) = Ged,2 +Geu,2K2(I −Gyu,2K)−1Gyd,2

Tew,2(K2) = Gew,2 +Geu,2K2(I −Gyu,2K)−1Gyw,2

Tzd,2(K2) = Gzd,2 +Gzu,2K2(I −Gyu,2K)−1Gyd,2

Tzw,2(K2) = Gzw,2 +Gzu,2K2(I −Gyu,2K)−1Gyw,2

The local feedback controller K2 must be designed such that

the complete closed-loop system is stable. This require that

K2 must be designed such that S(K2) given by

S(K2) = T21Tzw,2(K2)(I −T11Tzw,2(K2))
−1T12 (21)

must be stable.

S(K2) can be written in the following form:

S(K2) = Fu

((

T11 T12

T21 0

)

,Fu

((

Gyu,2 Gyw,2
Gzu,2 Gzw,2

)

,K2

))

= Fu

((

TS,11 TS,12

TS,21 TS,22

)

,K2

)

(22)

where

TS,11 = Gyu,2 +Gyw,2T11(I −Gzw,2T11)
−1Gzu,2

TS,12 = Gyw,2(I −T11Gzw,2)
−1T12

TS,21 = T21(I −Gzw,2T11)
−1Gzu,2

TS,22 = T21Gzw,2(I −T11Gzw,2)
−1T12

Now, standard methods can be applied to design a feedback

controller K2 that will stabilize the complete closed-loop

system. Necessary and sufficient conditions to guarantee that

this can be obtained has not been investigated at this time.

B. Redesign of ΣC,1 by Q1.

As an alternative to design a local controller directly for Σ2,

it is possible to redesign ΣC,1 by using the YJBK transfer

function Q1. This will again leave the original feedback

controller for Σ1 unchanged.

The closed-loop system is stable if the nominal closed-loop

is stable and the closed-loop given by S((Q1,Gzw,2) given in

(12) is stable. S((Q1,Gzw,2) can also be written in an LFT

form given by

S((Q1,Gzw,2) = Fl

((

S(Gzw,2) S(Gzw,2)
S(Gzw,2) S(Gzw,2)

)

,Q1

)

Again, standard methods can be applied for the deisgn of Q1

that will stabilize the closed-loop system.

V. EXAMPLE

The example is a mass spring system. The main system Σ1

consist of a two mass spring systems and the sub system Σ2

is a single mass spring system. The two mass spring system

described in [9]. This system has the following state space

description:

A1 =









0 0 1 0

0 0 0 1

−1 1 −0.2 0.2
0.5 −2.5 0.1 −0.15









(

Bd,1 Bu,1

)

=









0 0

0 0

0 1

0.5 0









Ce,1 = Cy,1 =

(

1 0 0 0

0 1 0 0

)

(23)
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An observer based feedback controller is applied to the

system with the following state feedback gain F and observer

gain L:

F =
(

−0.6886 −1.1124 −0.6288 0.0837
)

L =









−8.3733 16.2211

−0.3220 −5.2795

2.1388 −70.0381

53.0028 −195.6965









The observer based feedback controller is based on an

H∞ feedback controller designed in [9]. The controller is

transformed into an observer based feedback controller by

using the method described in [1].

A mass spring system Σ2 is connected to the main system

Σ1 through the output z1 and the input w1. The associated

output and input matrices are given by:

Cz,1 =
(

1 0 0 0
)

, Bw,1 =









0

0

1

0









Further, the transfer function Gzw,2 is given by

Gzw,2 =
(k3 +b3s)2

m3s2 +b3s+ k3

with m3 = 0.5, K3 = 1 and b3 = 0.1.

Using an observer based feedback controller, T11, T12 and

T21 are given by:

T11 = Cz,1(sI −A−Bu,1F)−1LCy,1(sI −A−LCy,1)
−1Bw,1

+Cz,1(sI −A−LCy,1)
−1Bw,1

T12 = Cz,1(sI −A−Bu,1F)−1Bu,1

T21 = Cy,1(sI −A−LCy,1)
−1Bw,1

In the following, let’s consider the case where the YJBK

transfer function Q1 is designed such that S(Gzw,2) = Gzw,2.

This is possible in this case, because neither T12, nor T21

include RHP zeros. However, both T12 and T21 are strictly

proper, so the inverses of the two transfer functions does not

exist. Instead, an approximation at low frequencies is used.

This is obtained by including a small direct term in T12 and

T21. This will affect the result at high frequencies.

In the case Q1 is given by

Q1 =
(

Q11 Q12

)

In this case it is possible to let one of the transfer functions

in Q1 to be equal to zero and still get a decoupling. Here

we let Q12 = 0. The nominal feedback controller is modified

by using Q11 such that the dual YJBK transfer function gets

equal to Gzw,2. This is obtained by using Q11, WI and WO

given by (15) and (16).

Some simulations are shown in the following. A step input

is injected into the system through the input η1. The output

responses for mass 1 and mass 2 in Σ1 is shown in Fig. 3.

In Fig. 4, the outputs are shown when the sub-system Σ2 is

included. It can be seen from the output responses in Fig. 3

and Fig. 4 that the introduction of the sub-system Σ2 has a

major effect on the output responses.

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [sec]

O
ut

pu
t e

Output of nominal closed−loop system

Fig. 3. The positions of mass 1 and 2 of Σ1 for a step input on η. The
solid line is the output for mass no. 1 and the dashed line is the output for
mass no. 2.

0 10 20 30 40 50 60 70 80 90 100
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0

0.5

1

1.5

2

2.5

3

Time [sec]

O
ut

pu
t e

Output of inter−connected closed−loop system

Fig. 4. The position of mass 1 and 2 of Σ1 for a step input on η when
the subsystem Σ2 is connected. The solid line is the output for mass no. 1
and the dashed line is the output for mass no. 2.

This can be investigated further by considering the transfer

function from η1 to ε1, i.e. the dual YJBK transfer function.

The output response of ε1 for a step on η1 when Σ2 is

included is shown in Fig. 5. The response shows that S(Gzw,2)
is stable.

Including Q11, WI and WO gives the step response shown in

Fig. 6. The step response is compared with a step response

directly from Gzw,2. There is only a minor difference between

the two step responses. This show that SW (Q1,Gzw,2) ≈ Gzw,2.

This can also be seen from the Bode plot shown in Fig. 6 and

Fig. 7. Here, the amplitudes and the phases of SW (Q1,Gzw,2)
and Gzw,2 are shown. SW (Q1,Gzw,2) is calculated out from

a Simulink model by using the Matlab function “linmod”

followed by a model reduction. Due to the approximation of

the inverses of T12 and T21, the two set of curves are almost

identical at low frequencies. For ω ≥ 10rad/sec, there is a

major difference between the curves for SW (Q1,Gzw,2) and

Gzw,2.
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Fig. 5. The output response ε1 for a step input on η1 when Σ2 is included.
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Fig. 6. Step reponse of SW (Q1,Gzw,2) (solid line) and of the subsystem
Σ2 (dashed line).

VI. DISCUSSION

Some new analysis and controller design results for closed-

loop interconnected systems has been presented here. The

key element in both the analysis and the design is a appli-

cation of the YJBK and the dual YJBK parameterization.

The closed-loop stability analysis is based directly on the

dual YJBK transfer function. Analysis results are given in

both cases where the sub-system is known and in the case

where it is unknown. Further, it is shown that it is possible

to design the YJBK transfer function, pre- and post-filters

such that a connected sub-system can be estimated directly

without having a direct access to the sub-system.

The last, design of controllers has been investigated. Two

different controller concepts have been described. In the first

case, a local controller is designed for the sub-system. In

the other case, the existing controller for the main system is

modified by using the YJBK transfer function. In both cases,

the nominal controller is not changed by the new controllers.

Only the closed-loop stability has been considered in this

paper. The next step is to include the performance of the

interconnected in both the analysis and the controller design.

Another area for further research is a more detailed investi-

gation of the conditions for obtaining an exact or an almost
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Fig. 7. The amplitude of SW (Q1,Gzw,2) and of the sub-system Σ2 (dashed
line).
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Fig. 8. The phase of SW (Q1,Gzw,2) and of the sub-system Σ2 (dashed line).

exact decoupling in connection with the estimation of the

connected sub-system.
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