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Abstract— This paper investigate different controller archi-
tectures in connection with controller switching. The controller
switching is derived by using the Youla-Jabr-Bongiorno-Kucera
(YJBK) parameterization. A number of different architectures
for the implementation of the YJBK parameterization are
described and applied in connection with controller switching.
An architecture that does not include inversion of the coprime
factors is introduced. This architecture will make controller
switching particular simple.
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I. INTRODUCTION

The Youla-Jabr-Bongiorno-Kucera (YJBK) parameteriza-

tion, [6], [20], [21] has been investigated in a number of

books, [4], [7], [18], [22] and in papers [1], [8], [9], [10],

[14], [19] for mention a few references. These books and

papers deals with both theoretical results as well as with

applications.

One of the later applications of the YJBK parameterization

is in connection with Active Fault Diagnosis (AFD), [11],

[12], [16], [17] and Fault Tolerant Control (FTC), [14].

Both the AFD and the FTC approaches make directly use

of the YJBK architecture. In the FTC architecture described

in [14] use the YJBK transfer function directly to change

the controller when faults has been detected. The involved

fault diagnosis in the FTC architecture is based on the same

input and output signals that are connected through the YJBK

transfer function.

A central element in an FTC architecture is to be able to

change controller in a suitable way. One possibility is to use

the YJBK architecture as the basic for an FTC architecture

as described in [14]. A systematic way to switch between

different controllers through the YJBK transfer function is

needed. Controller switching through the YJBK parameteri-

zation was first shortly considered in [8]. Later, these results

has been extended in [15]. Here, both controller switching

and controller optimization using the YJBK transfer function

has been investigated.

A drawback with using the YJBK architecture directly in

connection with controller switching is the complexity of

the YJBK transfer function. The transfer function include the

coprime matrices from both controllers and from the system.

This will e.g. give a YJBK transfer function 3 times the

order of the system when switching between two full order

observer based feedback controllers.

The main focus in this paper is firstly to complete the re-

sults from [15] by considering an alternative implementation

of the YJBK parameterization. Secondly, a new architecture

for implementation of nominal controllers as well as for

YJBK parameterized controllers is introduced. The new

architecture give both a simple and direct implementation

of feedback controllers as well as of the YJBK parameter-

ization. It is shown that this new structure will result in a

more simple YJBK transfer function for controller switching

than using the standard implementation. It is shown that

it is possible to implement all feedback controllers as a

feedback from an output estimation error from an arbitrary

observer. At last in this paper, the new controller structure is

considered in connection with extension of the system. The

system is extended by adding extra sensors and actuators. In

this paper, only systems with extra actuators are considered.

The rest of this paper is organized as follows. In Section

II, the system set-up is given together with some preliminary

results for coprime factorization and the YJBK parameteriza-

tion. Controller switching is introduced in Section III. A new

architecture is introduced in Section IV following of Section

V where the systems is extended with additional actuators.

The paper is closed with a conclusion in Section VI.

II. SYSTEM SET-UP

Let a general system be given by:

ΣP :

{

e = Gedd + Geuu

y = Gydd + Gyuu
(1)

where d ∈ R r is a disturbance signal vector, u ∈ R m the

control input signal vector, e ∈ R q is the external output

signal vector to be controlled and y∈ R p is the measurement

vector.

Further, let the system be controlled by a stabilizing

feedback controller given by:

ΣC :
{

u = Ky (2)

A. Coprime factorization

Let a coprime factorization of the system Gyu from (1)

and the stabilizing controller K from (2) be given by:

Gyu = NM−1 = M̃−1Ñ, N,M, Ñ,M̃ ∈ R H∞

K = UV−1 = Ṽ−1Ũ , U,V,Ũ ,Ṽ ∈ R H∞

(3)
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where the eight matrices in (3) must satisfy the double

Bezout equation given by, see [18]:
(

I 0

0 I

)

=

(

Ṽ −Ũ

−Ñ M̃

)(

M U

N V

)

=

(

M U

N V

)(

Ṽ −Ũ

−Ñ M̃

) (4)

B. The YJBK Parameterization

Based on the above coprime factorization of the system

Gyu and the controller K, we can give a parameterization of

all controllers that stabilize the system in terms of a stable

transfer function Q, i.e. all stabilizing controllers are given

by using a right factored form [18]:

K(Q) = (U +MQ)(V +NQ)−1
, Q ∈ R H∞ (5)

or by using a left factored form:

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ R H∞ (6)

Using the Bezout equation, the controller given either by

(5) or by (6) can be realized as an LFT (linear fractional

transformation) in the parameter Q:

K(Q) = F l

((

UV−1 Ṽ−1

V−1
−V−1N

)

,Q

)

= F l(JK ,Q) (7)

Equation (7) is the same for both the right and the left

form given in (5) and (6), respectively.

The YJBK parameterization is shown in Fig. 1.
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Fig. 1. The YJBK parameterization of all stabilizing controllers K(Q) for
a given system Gyu.

III. CONTROLLER SWITCHING

One of the application of the YJBK parameterization is to

do controller switching in terms of using the YJBK transfer

function Q. It is possible to change the nominal controller

K to another stabilizing controller Ki by a suitable selection

of Q. Assume the existence of a coprime factorization of the

system and the controller

Gyu = NiM
−1
i = M̃−1

i Ñi Ki = UiV
−1
i = Ṽ−1

i Ũi

which satisfy the double Bezout equation given by:
(

I 0

0 I

)

=

(

Ṽi −Ũi

−Ñi M̃i

)(

Mi Ui

Ni Vi

)

=

(

Mi Ui

Ni Vi

)(

Ṽi −Ũi

−Ñi M̃i

) (8)

Then a switching from K to Ki can be obtained by using Qi

given by([15]):

Qi = M−1Mi(ŨiV −ṼiU) (9)

or

Qi = M−1Mi

(

Ũi −Ṽi

)

(

V

U

)

in (5). The transfer function Xi = M−1Mi is stable, see [15].

In some special cases, we will have that M = Mi and N = Ni

and therefore with the result Xi = I.

It is possible to switch from K to Ki in a smooth way by

using

Qi(α) = αQi, α ∈ [0, 1] (10)

by increasing α from 0 to 1.

Instead of using the controller implementation shown in

Fig. 1, it is possible to use an alternative implementation

of the YJBK parameterization as described in [4]. This

alternative implementation is shown in Fig. 2.
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Fig. 2. An alternative implementation of the YJBK parameterization, [4].

Using the controller implementation in Fig. 2, it will also

here be possible to calculate a Q transfer function such that

it is possible to change from K to Ki. Following the same

line as in [15] for the derivation of (9), we get the following

YJBK transfer function:

Qi = (ṼUi −ŨVi)M̃iM̃
−1 (11)

or

Qi =
(

Ṽ −Ũ
)

(

Ui

Vi

)

M̃iM̃
−1

for a switch from controller K to Ki when the implementation

in Fig. 2 is applied.

The two YJBK transfer functions given by (9) and (11)

has the same structure. It can be shown that the two transfer

functions are identical. This is shown in Appendix A.

IV. CONTROLLER ARCHITECTURES

The two controller architectures shown in Fig. 1 and 2

result in two non-simple equations for Q given by (9) and

(11) when we want to switch from K to Ki. Both equation in-

clude six coprime matrices. Following the calculation of the

YJBK parameters, these matrices will decoupling/replacing

dynamic in the controller. This decoupling is not necessary
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by using a more suitable selection of the implementation

of the controller. The critical point in the implementation

is the inversion of matrices. Using the Bezout equation,

it is possible to remove Ṽ−1 or V−1 in Fig. 1 or in 2,

respectively, by using a feedback loop instead. The above

two implementations take then the following forms as shown

in Fig. 3 and 4, respectively.

Ñ M̃

U +MQ

ΣP
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d e

Fig. 3. A new implementation of the YJBK parameterization shown in
Fig. 1.
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Fig. 4. A new implementation of the YJBK parameterization shown in
Fig. 2.

A direct calculation of the control vector u of the YJBK

parameterization in Fig. 3 gives:

u = (U +MQ)(M̃y− Ñu)

= (I +UÑ +MQÑ)−1(U +MQ)M̃y

= (MṼ +MQÑ)−1(UM̃ +MQM̃)y

= (Ṽ +QÑ)−1(Ũ +QM̃)y

which coincides with Fig. 1.

Alternatively, the right factored form given by (5) can also

be derived directly from Fig. 3 in the following way:

u = (U +MQ)(M̃y− Ñu)

= (I +(U +MQ)Ñ)−1(U +MQ)M̃y

= (U +MQ)(I + Ñ(U +MQ))−1M̃y

= (U +MQ)(M̃V + M̃NQ)−1M̃y

= (U +MQ)(V +NQ)−1y

which coincides with Fig. 2.

The controller structure in the Fig. 3 and 4 is very simple

and it does not involve any inversions of matrices/transfer

functions. As it will be shown below, it will also simplify

the controller switching.

It should be mentioned that another controller architec-

ture has been considered in connection with Loop Transfer

Recovery (LTR), [13]. This LTR controller architecture is

similar to the architectures shown in Fig. 3 and Fig. 4.

A. Controller Switching

Using the new implementation of the YJBK parame-

terization shown in Fig. 3 or 4, it is possible to reduce

the implementation complexity of the implementation of Qi

significantly. The feed forward part of the controller in Fig.

3 (i.e. U(Qi(α)) = U +MQi(α)) can now be rewritten into:

U(Qi(α)) = U +αMQi

= U +αMi(ŨiV −ṼiU)

= (1−α)U +α((I −MiṼi)U +MiŨiV )

= (1−α)U +α(−UiÑiU +UiM̃iV )

= (1−α)U +αUiM̃i(−GyuU +V )

= (1−α)U +αUiM̃iM̃
−1

(12)

In the special case where M̃ = M̃i, U(Qi(α)) take the

following simple form:

U(Qi(α)) = (1−α)U +αUi (13)

Using either (12) or (13), the controller switching get very

simple. It will only require a calculation of the Ui for the

controller Ki and possibly also M̃−1
i M̃. The implementation

of the controller switching using U(Qi) given by (12) will

give a lower order of the controller than using the general

equation for Qi given by (9).

Equivalent, using the set-up in Fig. 4, the feed forward

term (i.e. Ũ(Qi(α)) = Ũ +Qi(α)M̃) take the following form:

Ũ(Qi(α)) = Ũ +αQiM̃

= (1−α)Ũ +αM−1MiŨi

(14)

or

Ũ(Qi(α)) = (1−α)Ũ +αŨi (15)

in the simple case where M = Mi.

It is possible to obtain controllers as a combination of a

number of controllers by using the YJBK parameterization,

[15]. This can be done by using a YJBK transfer function

given by:

Q =
s

∑
i=1

αiQi (16)

Note that there is no condition that α = ∑s
i=1 αi should be

equal to 1. Using Q given by (16), it will be possible to

optimize the controller, based on a number of predesigned
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controllers. The feed forward part of the controller in Fig. 3

U(Q) can now be rewritten into for s = 2:

U(Q) = U +α1MQ1 +α1MQ2

= U +α1M1(Ũ1V −Ṽ1U)+α2M2(Ũ2V −Ṽ2U)

= (1−α1 −α2)U +α1((I −M1Ṽ1)U +M1Ũ1V )

+α2((I −M2Ṽ2)U +M2Ũ2V )

= (1−α1 −α2)U +α1(−U1Ñ1U +U1M̃1V )

+α2(−U2Ñ2U +U2M̃2V )

= (1−α1 −α2)U +α1U1M̃1(−GyuU +V )

+α2U2M̃2(−GyuU +V )

= (1−α1 −α2)U +α1U1M̃1M̃−1 +α2U2M̃2M̃−1

(17)

or in a more compact notation

U(Q) = (1−α)U +(
s

∑
i=1

αiUiM̃i)M̃
−1 α =

s

∑
i=1

αi (18)

Again, if M̃i = M̃, then (18) take the following simple form:

U(Q) = (1−α)U +
s

∑
i=1

αiUi (19)

The equivalent equations can also be derived when for

YJBK implementation shown in Fig. 4. Ũ(Q) is then given

by:

Ũ(Q) = (1−α)Ũ +M−1(
s

∑
i=1

αiMiŨi) (20)

or

Ũ(Q) = (1−α)Ũ +
s

∑
i=1

αiŨi (21)

when Mi = M can be applied.

The controller switching based on the architecture in

Fig. 3 can also be used in connection with implementation

of arbitrary controllers. A controller Ki = UiV
−1
i can be

implemented by using the control input given by:

u = UiM̃iM̃
−1ε (22)

This is a direct consequence of (12) (for α = 1). The ε vector

given by

ε =
(

M̃ −Ñ
)

(

y

u

)

(23)

can always be implemented as an output estimation error

vector, i.e.
(

M̃ −Ñ
)

describe an observer. ε will be the

innovation vector when a Kalman filter is applied. It will

always be possible to obtain a coprime factorization that will

include an observer. This has been shown in [8]. Based on the

controller architecture in Fig. 3, it is possible to implement

feedback controller using the general structure shown in Fig

5.

The controller architecture shown in Fig. 5 has also a

relation with fault diagnosis and active fault diagnosis. The

ε vector is here used as the residual vector for detection and

diagnosis of additive and parametric faults in the system, [2],

[3], [5], [11], [16].

Observer

UiM̃iM̃
−1

ΣP

�

�

-

-

�

- -

yu

ε

d e

Fig. 5. An observer based implementation of the feedback controller Ki.

It will also be possible to reformulate the controller

architecture shown in Fig. 4 in a similar way.

B. Input-Output Implementation

Another issue in connection with the implementation of

the controller switching is the accessibility of internal signal

vectors in the nominal controller, special the input point for

the η vector in between Ũ and Ṽ−1 in Fig. 1 (or the ε vector

in Fig. 2). It is therefore interesting to based the parameteri-

zation part of the controller only on the measurement vector

y and control vector u. The original formulation of the YJBK

parameterization given by (7) can be rewritten into, [7], [18]:

K(Q) = K(0)+F l

((

0 Ṽ−1

V−1
−V−1N

)

,Q

)

= K(0)+Ṽ−1Q(I +V−1NQ)−1V−1

= K(0)+Ṽ−1Q(V +NQ)−1

= K(0)+ K̄(Q)

(24)

As it can be seen from (24), this realization will require

that Ṽ−1 need to be implemented separately in K̄(Q). This

will give an unstable transfer function for nominal unstable

controllers. It is not impossible to use this realization for an

unstable nominal controller, but it is not to prefer.

To remove the inversion of Ṽ , another implementation has

been considered in e.g. [7]. The implementation is shown in

Fig. 6.

ΣP

K

Q̄

Gyu(I −KGyu)
−1

+

+

+

+

�

��

�
6

-

6

-

- -

yu

d e

Fig. 6. An implementation of the YJBK parameterization when K is a
stable controller, [7].

The controller in Fig. 6 is given by:

K(Q̄) = K(0)+ Q̄(I +NṼ Q̄)−1 (25)
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A simple calculation show that the connection between Q

in (7) and Q̄ in (25) is, ([7]):

Q̄ = Ṽ−1QV−1 (26)

or

Q = Ṽ Q̄V

It is possible to remove either V−1 or Ṽ−1 from (26) by

using the controller implementation shown in Fig. 3 or in

Fig. 4. From (4) we have directly that V−1 can be written

as:

V−1 = U(I + ÑU)−1M̃ (27)

From Fig. 3 we also have that V−1 is the transfer function

from y to ε given by (r = 0)

ε = U(I + ÑU)−1M̃y = V−1y

Further, ε can also be written directly as function of the

measurement output and the control input given by:

ε = M̃y− Ñu

Equivalent, Ṽ−1 can also be substituted by using the

double Bezout equation and the controller set-up shown in

Fig. 4. It should be pointed out that it is only possible to

remove either V−1 or Ṽ−1, not both at the same time without

affecting the general YJBK parameterization.

V. SYSTEM EXTENSION

In some cases, it is relevant to consider the possibility to

extend the system with extra sensors and/or actuators. This

will give an additional freedom in the YJBK parameteriza-

tion. Some preliminary results has been given in [14] and

more detailed results has been given in [10]. These results

are all derived with respect to the controller implementation

shown in Fig. 1. Instead of using the implementation in

Fig. 1, it is possible to use the two implementations shown

in Fig. 3 and 4. It will here be possible to simplify the

implementation of the YJBK parameterization.

Without loss of generality, let’s only consider the case

when additional actuators is added to the system. The case

where additional sensors or actuators and sensors are added

to the system can be derived in the same way by using the

general results from [10].

Let the system ΣP given by (1) be extended with some

extra actuators resulting in the following system:

ΣP,ext :

{

e(t) = Gedd(t) + Geu,extuext(t)

y(t) = Gydd(t) + Gyu,extuext(t)
(28)

with

uext(t) =

(

u(t)
ua(t)

)

Geu,ext =
(

Geu Geu,a

)

Gyu,ext =
(

Gyu Gyu,a

)

where ua is the additional actuator inputs.

It has been shown in [10] that the coprime matrices has

the following structure:

The above eight matrices has the following form:

Next =
(

N N1

)

Mext =

(

M M1

0 I

)

Uext =

(

U

0

)

Vext = V

M̃ext = M̃ Ñext =
(

Ñ Ñ1

)

Ṽext =

(

Ṽ Ṽ1

0 I

)

Ũext =

(

Ũ

0

)

(29)

This structure can be obtained when an observer based

feedback controller is applied as the nominal controller or

when the general state space description of the coprime

matrices given in [18] is applied. This structure might not

be obtained in other cases.

Based on the coprime matrices for the extended system

given in (29), the standard implementation of the YJBK

parameterization can be derived. However, using instead the

implementation shown in Fig. 3 will give a much more sim-

ple structure of the complete controller. Using the coprime

matrices directly in Fig. 3 given the block diagram shown

in Fig. 7 where the YJBK transfer function for the extended

system is given by:

Qext =

(

Q

Q1

)

where Q1 is the transfer function due to the extension.

Ñ Ñ1 M̃

U +MQ+M1Q1

Q1

ΣP,ext

+-

�

�

-

- - �

�

- -

yuext

ε

d e

Fig. 7. Implementation of the YJBK parameterization when additional
actuators has been included.

A little manipulation of the block diagram will give a

much more clear structure of the controller. This has been

done in Fig. 8.

The transfer function from ε1 to ũext in Fig. 8 is the

additional term that will occur when extra actuators are added

to the system.

Equivalent, including extra sensors or both extra sensors

and actuators can be handled in the same way.

Another important issue in connection with this is the

closed-loop stability aspect when the applied sensors and/or

actuators are changed. In this case a stability analysis of the

closed-loop system is needed. Such an analysis is independed

of the controller implementation. This stability analysis can

be found in [10].
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Ñ 0

0 Ñ1

M̃

U +MQ

0

M1

I
Q1

ΣP,ext
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�
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�
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��

-

-

- -
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ε

ε1

ũext

d e

Fig. 8. An alternative implementation of the YJBK parameterization when
additional actuators has been included.

VI. CONCLUSION

Different architectures for implementation of the YJBK

parameterization has been considered in this paper. Con-

troller switching has been considered for an alternative

implementation of the YJBK parameterization. It has been

shown that the two YJBK transfer functions are identical.

A new architecture for the YJBK parameterization has

been described. This architecture will give a very simple way

to switch between controllers compared with the standard

architecture.

At last, the new architecture has also been applied in

connection with adding extra actuators to the system. It has

been shown that including extra actuators to the system will

only extent the architecture with an extra term.

APPENDIX

A. Proof of (9) and (11) are identical

0 = M−1Mi(ŨiV −ṼiU)− (ṼUi −ŨVi)M̃iM̃
−1

= Mi(ŨiV −ṼiU)M̃−M(ṼUi −ŨVi)M̃i

= MiŨi(I +NŨ)−MiṼiUM̃− (I +UÑ)MiŨi +MŨViM̃i

= MiŨiNŨ −MiṼiUM̃−UÑMiŨi +MŨViM̃i

= Mi(ŨiN −ṼiM)Ũ +U(M̃Vi − ÑUi)M̃i

= Mi(ŨiGyu −Ṽi)MŨ +UM̃(Vi −GyuUi)M̃i

= Mi(ŨiNi −ṼiMi)M
−1
i MŨ +UM̃M̃−1

i (M̃iVi − ÑiUi)M̃i

= −MŨ +UM̃

= 0
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