
Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 295–298

ISBN 978-83-60810-22-4

ISSN 1896-7094

Ontological Semantics in Modified
Categorial Grammar

Bartłomiej Antoni Szymczak
DTU Informatics, Technical University of Denmark

International Language Studies and Computational Linguistics

Copenhagen Business School

Email: bas@imm.dtu.dk

Abstract—Categorial Grammar is a well established tool for
describing natural language semantics [1]. In the current paper
we discuss some of its drawbacks and how it could be extended
to overcome them. We use the extended version for deriving on-
tological semantics from text. A proof-of-concept implementation
is also presented.

I. INTRODUCTION

IN THIS paper we extend the usual Categorial Grammar

framework in order to achieve more flexibility. We also

present how it can be used with an ontological component,

which imposes well-formedness restrictions on sentences.

The objective is to integrate formal ontologies with semantic

domains. Such an ontology-oriented semantics may be useful

e.g. in content-based text search.

Throughout the paper we use classical Church’s type theory,

C, as presented in [2]. We use the convention that functional

types associate to the left, i.e. type γβα is the same as (γβ)α,
which is also sometimes denoted as α → (β → γ).

The work presented here takes place within the SIABO

project [3].

II. ONTOLOGICAL SEMANTICS

We wish to construct ontological semantics for a fragment

of English, following the approach in [4] and [5].

We can represent concepts appearing in a skeleton ontology

as constants of type α: Childα, T allα, Runningα, Those
concepts are to be thought of as sets, e.g. Childα is a set

of all imaginable children. Tallα is the set of all tall objects,

thus properties such as “tall” are introduced in the ontology

on the par with classes. Runningα is a set of all imaginable

actions of running, etc. Introducing nominalized verb forms

as concepts in the ontology is in line with the adoption of

the Davidsonian view. We also disregard meaning of deter-

miners in the present fragment, as the resulting semantics

is intended to be used for content–based text search. We

don’t want to be specific about α, but in the current example

it could be replaced by oι, which is traditionally used for

representing sets. We will represent intersection of concepts

using constant ∩ααα, e.g. child ∩ tall will be represented as

∩αααChildαTallα.

A simple skeleton ontology can be represented using a set

of factual clauses of the form:

SuboααChildαPersonα

SuboααPersonαPhysicalα

SuboααPersonαAnimateα

SuboααRunningαActionα

Suboαα is a direct descendant relation, representing the lines

that are drawn in the Hasse diagrams. Isaoαα can be specified

as the (reflexive) transitive closure of Suboαα in the following

way:

∀cα[Isaoααcαcα]

∀cα∀aα∀pα[Isaoααcαaα ⊃ Suboααcαpα ∧ Isaoααpαaα]

We use constants of type ρ to represent roles (binary rela-

tions), e.g. Agtρ, Locρ. We can use Peirce product [6] to create

compound concepts. We use constant :ααρ for that purpose,

e.g. agt : child will be represented as :ααρ AgtρChildα. Such

a concept formation is well-known from Description Logics,

where it would be represented as ∀agt.child.
For a sample sentence “The tall kid runs”, we would like

to derive the following ontologico–algebraic meaning:

running ∩ agt : (child ∩ tall)

This can be represented in type theory as a wffα:

∩αααRunningα[:ααρ Agtρ[∩αααChildαTallα]]

We shall extend the specification of subsumption relation to

accomodate for the intersection:

∀xα∀yα∀zα[[Isaoαα[∩αααxαyα]zα] ⊃ [Isaoααxαzα]]

∀xα∀yα∀zα[[Isaoαα[∩αααxαyα]zα] ⊃ [Isaoααyαzα]]

III. MODIFIED CATEGORIAL GRAMMAR

We introduce type ω. Constants of this type represent words
in English, e.g. W kidω, W tallω, W runsω . Notice that we

use different names for constants denoting words and those

representing concepts, e.g. W tallω and Tallα. In this way

they are not confused.

Let us define a new type, say, κ, which we will use for

lexical entries. We also define three constants, which act as

type constructors:

978-83-60810-22-4/09/$25.00 c© 2009 IEEE 295

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:55:46 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

296 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Bκ(oκκ)

Fκ(oκκ)

Eκα

Lexical entries are represented using the predicate constant

Lexoκω. The lexicon consists of the set of factual clauses of

the form:

LexoκωW kidω[EκαChildα]

The type constructor Eκα is used in the lexical entry in case

the meaning of a word is some “fixed” ontological concept.

The other constructors, Fκ(oκκ) and Bκ(oκκ) are reminiscent

of the Categorial Grammar’s backward and forward slashes,

respectively. A lexical entry for word “tall” might look as

follows:

LexoκωW tallω[Fκ(oκκ)P talloκκ]

In the above, P talloκκ is a predicate, which might be

defined in the following way:

∀cα[[P talloκκ[Eκαcα][Eκα[∩αααtallαcα]]]

⊃ [IsaoααcαPhysicalα]]

The novelty in our approach is the use of predicates in

meanings of words. In standard Categorial Grammar, lambda

terms are used for that purpose. They are combined using

β–reduction, with the only provision of categorial agree-

ment. Consider the sentence “vitamin smiles.” In traditional

CG, “vitamin” has category np and meaning vitamin. The

word “smiles” has category np\s and meaning λx.smile(x).
Since the categories fit together, the meanings get com-

bined using β–reduction, and the sentence gets the meaning

smile(vitamin). While the sentence is correct syntactically,

it’s incorrect from an ontological point of view. Unfortunately,

usual CG does not allow us to introduce any ontological

restrictions on the semantics. Our approach can reject this sen-

tence, as we can use the following lexical entry for “smiles”:

LexoκωW smilesω[Bκ(oκκ)P smilesoκκ]

∀cα[[P smilesoκκ[Eκαcα]

[Eκα[∩αααSmilingα[:ααρ Agtρcα]]]]

⊃ [IsaoααcαAnimateα]]

The inability of β–reduction to fail has been already rec-

ognized as a problem by G. Ben–Avi and N. Francez in [7].

They have introduced a new formalism, which includes “β–
reduction for ontologically–well typed λ–terms”, among 12

definitions that constitute “the Ontological Lambek Calculus”.

Our proposal, however, has a few further advantages:

• It’s very formal – it’s formalized fully within C.
• It’s very simple – it consists of a few formulas only.

• It’s very flexible – it allows adding arbitrary restrictions,

e.g. one might like to use restrictions based on parthood

relation rather than subsumption.

• It can be implemented in a straight-forward way, as

presented in Section V

For those reasons, rather than using β-reduction, we propose
using a general proof system, which is a machinery having

inherently the notion of failure at disposal. Now, desired

semantic restriction can be handled by non-provability of a

certain statement, e.g.:

K 0 ∃xα[P smilesoκκ[EκαV itaminα]xα]

In the above K denotes a set of formulas consisting of

lexical assertions and rules introduced throughout this paper.

So a vitamin cannot smile, but a child certainly can:

K ⊢ ∃xα[P smilesoκκ[EκαChildα]xα]

Not only are we interested in the provability of such a goal,

but we would also like to know what is the resulting semantics.

In this case it’s: Eκα[∩αααSmilingα[:ααρ AgtρChildα]]
In other words:

K ⊢ [P smilesoκκ[EκαChildα]

[Eκα[∩αααSmilingα

[:ααρ AgtρChildα]]]]

IV. ELIMINATION RULES

Recall that the forward sequent rule of the natural–deduction

Lambek Calculus takes the form:

a ⇒ Φ1 : A/B b ⇒ Φ2 : B

a, b ⇒ Φ1(Φ2) : A

and the backward rule:

a ⇒ Φ1 : B b ⇒ Φ2 : B\A

a, b ⇒ Φ2(Φ1) : A

In the above a, b is the concatenation of a and b. Notice
that the only provision for the elimination to take place is the

agreement of syntactic categories. This is because Φ1(Φ2) is

always a well-formed λ-term, which can be β-reduced.
For the ease of reading, let us present the forward elimina-

tion rule of the generalized grammar in a similar, though quite

informal way:

aθ ⇒ Fκ(oκκ)poκκ bθ ⇒ jκ K ⊢ poκκjκkκ

aθ, bθ ⇒ kκ

Let us formalize our generalized elimination rules in C. The
derivation relation (⇒) can be represented using a constant

Roκθ. The sequences of meanings will be represented using a

well–known logic representation for lists. For the empty list

we use the Nθ constant, and the list constructor is represented

by Lθθκ.
The list concatenation can be represented using the list

appending well–known from logic programming, though here

defined for non–empty lists only:

∀xκ∀yκ∀tθ[Aoθθθ[LθθκxκNθ]

[Lθθκyκtθ]

[Lθθκxκ[Lθθκyκtθ]]]

∀hκ∀lθ∀mθ∀tθ[[Aoθθθ[Lθθκhκlθ]mθ[Lθθκhκtθ]]

⊃ [Aoθθθlθmθtθ]]

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:55:46 UTC from IEEE Xplore. Restrictions apply.

BARTŁOMIEJ ANTONI SZYMCZAK: ONTOLOGICAL SEMANTICS IN MODIFIED CATEGORIAL GRAMMAR 297

The above use of Aoθθθ asserts that the concatenation of a
and b yields g, or g is split into a and b. Now the forward

elimination rule can be formalized in C:

∀aθ∀bθ∀gθ∀jκ∀kκ∀poκκ[Roκθgθkκ]

⊃ [Aoθθθaθbθgθ]

∧ [Roκθaθ[Fκ(oκκ)poκκ]]

∧ [Roκθbθjκ]

∧ [poκκjκkκ]

Similarly, the backward elimination rule:

∀aθ∀bθ∀gθ∀jκ∀kκ∀poκκ[Roκθgθkκ]

⊃ [Aoθθθaθbθgθ]

∧ [Roκθaθjκ]

∧ [Roκθbθ[Bκ(oκκ)poκκ]]

∧ [poκκjκkκ]

We also need the following grammatical axiom, which

expresses that if the list of meanings contains only one

element, that element is the resulting meaning:

∀kκ[Roκθ[LθθκkκNθ]kκ]

The English text can also be represented formally in C. We

introduce a new type ζ for that purpose. We will represent

the text as a list of words. An empty list of words will be

represented by a constant Tnilξ and a list constructor by a

constant Tξξω.

V. IMPLEMENTATION OUTLINE

Using C instead of some kind of untyped logic as the under-

lying formalism has important advantages regarding the imple-

mentation. It forces us to think of the type of every formula,

subformula and symbol. Thanks to that, the resulting formal-

ization of the grammar is well-suited for implementation in a

strongly-typed programming language. Using such a language

(e.g. Mercury instead of Prolog) helps avoid very hard-to-find

bugs and allows the compiler to generate much faster code.
We are interested in translating the formal specification

given so far to a Prolog–like logic programming language,

so that we can execute specific queries. For that purpose, we

have formalized the grammar in C using only definite clauses.

Furthermore, we perform the following steps:

• We write all the constants in lower–case

• We write all variables in upper–case

• We use i for intersection constant and p for the Peirce

product constant

• We drop the subscripts indicating types in all formulas

• We replace ‘⊃’ and ‘∧’ with ‘:-’ and ‘,’, respectively.

• We add a period at the end of each formula.

• We replace curried notation of argument application with

a non–curried one.

• We simply remove the universal quantification over all

variables, as it’s implicit.

Following all the given steps results in the program pre-

sented below. The result is a perfectly valid program in the

Mercury logic programming language. Mercury is however

strongly typed, so we need to add a few auxiliary definitions

in order to compile it.

The type α can be modeled as follows:

:-type alpha ---> child; tall; physical;

action; person; running;

smiling; animate;

...

i(alpha,alpha);

p(role,alpha).

We need to add the following type, mode and determinism

specification for the subsumption predicate:

:-pred sub(alpha::in,alpha::out) is nondet.

This tells Mercury that predicate sub takes an entity

of type α as input, and computes an entity of type α as

output. Furthermore, we specify that sub is a nondeterministic

predicate, meaning that it can compute multiple outputs for

one input. We need to provide similar specifications for all

predicates in our program.

The factual subsumption database, translated directly from

our previous definition in C:

sub(child,person).

sub(person,physical).

sub(person,animate).

sub(running,action).

sub(smiling,action).

...

The type ρ of roles can be defined in Mercury as:

:-type role --->

tmp ; loc ; prp ; wrt

; chr ; cum ; bmo ; cby

; cau ; cmp ; pof ; agt

; pnt ; src ; rst ; dst

; via ; ...

Clauses defining the isa relation:

isa(C,C).

isa(C,A):-sub(C,P),isa(P,A).

isa(i(X,_Y),Z):-isa(X,Z).

isa(i(_X,Y),Z):-isa(Y,Z).

The predicates included in lexical entries take the following

form in Mercury:

p_tall(e(C),e(i(tall,C))):-

isa(C,physical).

p_runs(e(C),e(i(running,p(agt,C)))):-

isa(C,animate).

p_smiles(e(C),e(i(smiling,p(agt,C)))):-

isa(C,animate).

p_the(e(I),e(I)).

...

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:55:46 UTC from IEEE Xplore. Restrictions apply.

298 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

The lexicon, translated to Mercury:

lex(w_kid,e(child)).

lex(w_tall,f(p_tall)).

lex(w_runs,b(p_runs)).

lex(w_smiles,b(p_smiles)).

lex(w_the,f(p_the)).

lex(w_a,f(p_the)).

...

The definition of non–empty list appending:

a(l(X,n),l(Y,T),l(X,l(Y,T))).

a(l(H,L),M,l(H,T)):-a(L,M,T).

The rules formalized in C take the following form in

Mercury:

r(l(X,n),X).

r(G,E1):-

a(G1,G2,G),

r(G1,f(P)),

r(G2,E2),

P(E2,E1).

r(G,E1):-

a(G1,G2,G),

r(G1,E2),

r(G2,b(P)),

P(E2,E1).

The rules are the only place in the program, where we use

higher–order predicates.

The following predicate assigns a meaning to English text:

m(T,C):-

map_lex(T,L),

r(L,e(C)).

Let us add an auxiliary predicate work for testing purposes:

work(C):-

m(t(w_the,

t(w_tall,

t(w_kid,

t(w_smiles,

tnil)))),C).

The map_lex predicate is used for lexicon look–up of a

list of words.

map_lex(tnil,n).

map_lex(t(W,T),l(I,MT)):-

lex(W,I),map_lex(T,MT).

Notice that the program does not require higher order

unification, except for the simplest case where a variable is

bound to a predefined predicate and such a predicate is called.

Most logic programming languages provide a facility for such

behaviour. We could change the syntax slightly and turn our

code into a valid Prolog program by utilizing the call library

predicate.
Notice that the program is a direct implementation of the

theory, hence quite inefficient. Instead of the presented top–

down approach, we could derive the semantics in the bottom–

up manner in order to avoid unneeded search.

For the sample query:

? work(C).

We get the following (exactly one) result:

C = i(smiling, p(agt, i(tall, child)))

VI. CONCLUSION

We have presented an extension to Categorial Grammar,

which allows constructing arbitrary semantics and enforcing

arbitrary semantic restrictions in a very flexible manner. The

functional composition and β-reduction are replaced with

proof rule application. We have utilized it for constructing

ontologico-algebraic meaning using ontological restrictions,

dropping at the same time syntactic categories and syntactic

restrictions. Finally, a proof-of-concept implementation has

been given.

ACKNOWLEDGMENT

I am very grateful to my supervisor, prof. Jørgen Fischer

Nilsson, for his most kind help.

REFERENCES

[1] B. Carpenter, Type-logical semantics. Cambridge, MA, USA: MIT Press,
1998.

[2] P. Andrews, “Classical type theory,” 2001, peter Andrews. Classical type
theory. In Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning,volume 2, chapter 15, pages 965-1007. North-
Holland, 2001. 43.

[3] SIABO.dk, “Siabo project website,” http://www.siabo.dk, 2008.
[4] P. A. Jensen and J. F. Nilsson, “Ontology-based semantics for preposi-

tions,” in Syntax and Semantics of Prepositions, ser. Text, Speech and
Language Technology, Vol. 29. Springer, 2006.

[5] B. A. Szymczak, “Formal ontologies for semantic text processing,”
Master’s thesis, Informatics and Mathematical Modelling, Technical Uni-
versity of Denmark, DTU, Richard Petersens Plads, Building 321, DK-
2800 Kgs. Lyngby, 2007, supervised by Prof. Jørgen Fischer Nilsson,
IMM, DTU. http://www2.imm.dtu.dk/pubdb/p.php?5399.

[6] C. Brink, K. Britz, and R. A. Schmidt, “Peirce algebras,” Formal Aspects

of Computing, vol. 6, no. 3, pp. 339–358, April 1994, also available
as Research Report MPI-I-92-229, Max-Planck-Institut für Informatik,
Saarbrücken, Germany (July 1992), and as Research Report RR 140,
Department of Mathematics, University of Cape Town, Cape Town, South
Africa (August 1992). An extended abstract appears in Nivat, M., Rattray,
C., Rus, T. and Scollo, G. (eds), Algebraic Methodology and Software

Technology (AMAST’93): Proceedings of the 3rd International Confer-

ence on Algebraic Methodology and Software Technology. Workshops in

Computing Series, Springer-Verlag, London, 165-168 (1994).
[7] G. Ben-Avi and N. Francez, “Categorial grammar with ontology-refined

types,” in Proceedings of CG04, 2004.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:55:46 UTC from IEEE Xplore. Restrictions apply.

