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Abstract (max. 2000 char.): 
 
 
A progressive damage fatigue simulator for variable amplitude 
loads named FADAS is discussed in this work. FADAS (Fatigue 
Damage Simulator) performs ply by ply stress analysis using 
classical lamination theory and implements adequate stiffness 
discount tactics based on the failure criterion of Puck, to model 
the degradation caused by failure events in ply level. Residual 
strength is incorporated as fatigue damage accumulation metric. 
Once the typical fatigue and static properties of the constitutive ply 
are determined,the performance of an arbitrary lay-up under 
uniaxial and/or multiaxial load time series can be simulated. The 
predictions are validated against fatigue life data both from repeated 
block tests at a single stress ratio as well as against spectral fatigue 
using the WISPER, WISPERX and NEW WISPER load sequences 
on a Glass/Epoxy multidirectional laminate typical of a wind 
turbine rotor blade construction. Two versions of the algorithm, the 
one using single-step and the other using incremental application of 
each load cycle (in case of ply failure) are implemented and 
compared. Simulation results confirm the ability of the algorithm to 
take into account load sequence effects. In general, FADAS 
performs well in predicting life under both spectral and block 
loading fatigue.  
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1 MOTIVATION 

Fatigue design of Wind Turbine Rotor Blades, despite their steady increase both in 
size and weight, is performed using a number of simplifying assumptions. Such 
simplifications are accounted for by conservative safety factors to the detriment 
of product weight and cost. A number of those are: 

• Uniaxial fatigue stress fields 

• Fatigue characterization only of typical laminates 

• Palmgren Miner rule for damage accumulation 

There is substantial potential for optimizing the use of material while increasing 
the safety margins, if detailed fatigue design or Rotor Blades is performed. In 
order to accomplish this, an efficient life prediction methodology, taking into 
account the above mentioned parameters, should be developed. While no such 
methodology enjoyed general acceptance until now, a multitude of models 
applicable to limited or more general cases, are available. Nevertheless, this 
great variety can be misleading: The field of applicability, degree of complexity 
and efficiency of each theory should be considered in depth before its integration 
into a general life prediction algorithm. Naturally, the first step in this direction is 
a review on fatigue life prediction. The present report attempts such a review in 
order to provide different alternatives for building up such a detailed life 
prediction scheme.  
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2 INTRODUCTION 

Fatigue life prediction in composite materials has been a subject of interest during 
more than three decades now. Numerous articles have been published, a 
substantial amount of experimental data on different materials is available and 
still there is no definite conclusion on specific predictive algorithms. This holds 
especially for the case of complex, variable amplitude stress fields. Amongst 
several works attempting a general discussion of the subject, one could find 
interesting books, e.g. [1], [2], [3] and recent review articles, e.g. [4], [5]. In 
the same time, a number of recent PhD dissertations on the subject are available, 
focusing on improving fatigue life prediction schemes for Wind Turbine Rotor 
Blades design, e.g. Wahl [6], Nijssen [7], Passipoularidis [8], Post [9]. 

All discussions agree that the problem of defining and modelling the damage 
mechanisms developing in anisotropic materials during fatigue has proved to be 
much more complicated than for their isotropic counterparts. Especially, the 
correlation of the micro-structural damage and the fatigue performance of 
general laminates under general loading conditions remains in large an unsolved 
problem. This impedes the development of applicable, engineering models that 
would require only a small amount of basic material characterization data to 
simulate the fatigue process. As a result, most fatigue models proposed until now 
are founded on an empirical or phenomenological basis. A general classification of 
fatigue modelling efforts adopted herein is the following: 

• Empirical 

• Phenomenological 

• Mechanistic 

As empirical are considered models that introduce a damage parameter with no 
physical interpretation as a means of accumulating fatigue damage until final 
failure of the material. Several examples of different levels of complexity are 
found in literature, with most typical example the widely used Palmgren-Miner 
rule [10]. Most empirical approaches have been introduced for metallic materials 
in an effort to predict fatigue damage and life under variable amplitude (block or 
spectrum) loading. Some amongst them account for non linear dependencies of 
fatigue life on parameters such as the load sequence, fatigue stress level etc.  

In contrast to empirical models, phenomenological formulations try to correlate 
the fatigue damage state of the material with a physically measurable quantity 
like residual stiffness or strength. Again no special focus is put on the actual 
types of fatigue damage, since its effects are reflected in average value of said 
mechanical property. This category of models treats the fatigue life prediction 
problem from the macro down towards the meso- or even micro-scale. However, 
micro-damage is not treated as such but rather as a cause of change of material 
mechanical properties at the considered scale. Given the variety and various 
interactions between fatigue damage mechanisms, phenomenological modelling 
appears as an attractive and convenient solution to the problem. Nevertheless, as 
for the case of most empirical models, a number of parameters have to be 
experimentally derived for each laminate. This increases material characterization 
cost while limiting their applicability to specific materials and laminate 
architectures. 
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Mechanistic models is the third category of life prediction schemes for composites 
which will provide –hopefully- the missing link between actual fatigue damage 
mechanisms and macro-mechanical properties of general laminates under 
arbitrary stress conditions. These models attempt to solve the problem moving 
from the micro- to the meso- or macro-scale. This task is quite demanding 
considering the variety of mechanisms and is further complicated by the strong 
statistical character of the properties of the composite’s constituents. These are 
indeed the major reasons why such models still remain, after several years of 
development, in their infancy being applicable only in specific, simple laminate 
architectures and fatigue loading conditions. The theoretical advantage of such 
models, when fully developed, will be their ability to produce predictions of life 
requiring a comparatively small amount of experimental input from the basic 
elements of the composite (e.g. fibre, matrix and interface mechanical 
properties). However, such models are not explicitly considered in the present 
work since focus is put on life prediction under complex stress states on 
multiaxial composite laminates, which is still further away from their present 
applicability field. 

An intermediate level of modelling the fatigue process between phenomenological 
and mechanistic approaches, or more correctly still phenomenological but also 
considering the direct consequences of fatigue damage mechanisms in the meso-
scale of the laminate, are those often called laminate-to-lamina approaches. Such 
models can be obtained either from the micro level up by considering larger 
characteristic volumes, e.g. the micromechanical ‘Critical Element Model’ of 
Reifsnider [11], or from the macro level down combined with adequate failure 
criteria and degradation strategies, e.g. the ‘Generalized Material Property 
Degradation Model’ implemented by Lessard [12]. This kind of modelling is at 
present an optimal compromise between applicability and accurate modelling of 
the fatigue process requiring as input a limited amount of material 
characterization experimental data. 

All of the models classified above and discussed further on, require the knowledge 
of some basic fatigue parameters which could be categorized into discreet 
modules. These constitute the building blocks of a possible generalized life 
prediction algorithm under arbitrary fatigue loads (i.e. complex stress states of 
variable amplitude). These modules are the following: 

S-N Curve Definition. In order to obtain any life prediction under VA loads, the 
fatigue response of the material under constant amplitude fatigue is required. In 
composites there are doubts on the existence of a fatigue limit (e.g. see [13]). 
Furthermore, only a few fatigue tests can be performed at stress levels usually 
exceeding the actual fatigue loads to be encountered during operation (in order to 
have realistic testing times). Consequently, an adequate model for extrapolating 
or interpolating fatigue lives at any stress level must be assumed. 

Generalizing to Various R-ratios. A wide variety of fatigue cycles of different 
maximum and minimum stress are to be encountered under realistic VA fatigue. 
In the same time, experimental cost limitations impose the definition of only a 
few S-N curves (usually 1-3) at characteristic stress ratios R (R=minimum 
stress/maximum stress). In order to obtain S-N curves at intermediate stress 
ratios, an adequate model must be used. Often, this is performed through the 
definition of a Constant Life Diagram (CLD), e.g. a linear Goodman type 
formulation. 
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Damage Accumulation Metric (DAM). Apart from the Palmgren-Miner rule 
mentioned earlier, a variety of damage accumulation metrics have been proposed 
up to date. Their main function is to assume a point at which fatigue failure under 
VA fatigue takes place. Naturally, input from the first two modules is required for 
DAM definition under VA fatigue. 

Fatigue Failure Criterion. When considering the case of complex stress fatigue, an 
expression for adding up the contribution of each component of the stress tensor 
to failure of the composite must be assumed, using some kind of failure function. 
The variety of the failure mechanisms observed in composite materials, caused by 
their anisotropic nature, depending both on their lay-up and the loading 
characteristics, has lead to the development of a variety of failure criteria for 
multiaxial static loading. Some of them could be generalized for the case of cyclic 
loading as well. 

An additional module, defining the kind of input necessary for any life prediction 
scheme under VA fatigue, is the algorithm for analyzing irregular load-time series 
into a sequence of constant amplitude cycles. This requirement arises from the 
fact that all fatigue testing is performed (most usually) through application of 
load cycles of sinusoidal form. Consequently, in order to correlate the 
experimentally obtained fatigue characteristics of the material with the VA load 
applied, an adequate counting method must be applied on the latter. 

Taking into account the highly stochastic behaviour observed in fatigue life of 
composites, several researchers have tried to develop statistical models for its 
prediction. In this direction several approaches have been attempted, including 
fatigue life statistical modelling (e.g. [14]), empirical (e.g. 15]) or 
phenomenological (e.g. [16]) damage metrics, or laminate to lamina 
methodologies (e.g. [17]). Nevertheless, the majority of life prediction 
methodologies under generalized cyclic loading remain deterministic, referring to 
expected values. 

An engineering oriented review of the above topics will be presented further on. 
Special focus is put on life prediction of Wind Turbine Rotor Blade composites 
under plane stresses of variable amplitude. Following the discussion on life 
prediction schemes, it is evident that the simplest of all life prediction models is 
the S-N curve (Uniaxial stress field, Constant Amplitude, constant R ratio). This is 
the reason why the discussion begins with the different alternatives of S-N curve 
formulations. Proceeding to slightly more complex predictive methodologies (i.e. 
Uniaxial stress field, Variable Amplitude, constant R ratio) different damage 
accumulation metrics are discussed. Generalizing the above for the case of 
varying Stress Ratio, several published analytical methods or Constant Life 
Diagram implementations are presented. Further on, state of the art multiaxial 
fatigue failure criteria are discussed, as a prerequisite to upgrade the above 
methodologies to the level of making life predictions under complex stresses of 
variable amplitude. Finally, up-to-date lamina-to-laminate algorithms considering 
progressive damage of multidirectional laminates based on the properties of the 
constitutive ply are resumed. 

All models developed until now for VA fatigue of composites have been 
formulated in the time domain. When stochastic loads are involved in design, e.g. 
the wind loads experienced by Wind Turbine Rotor Blades [18], fatigue 
calculations are based on load-time series obtained through simulations using the 
statistical characteristics of wind and the system’s transfer function. These are 
subsequently used as input to simple or more sophisticated life prediction 
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methodologies. The output of those possibly feedbacks again design, affecting the 
structure’s elastic properties, requiring in turn a number of iterations for 
concluding on the final structural design of the blade. While this procedure 
requires a lot of time, formulating the problem in the frequency domain, i.e. 
applying some spectral method, could drastically reduce computational effort. In 
that case, fatigue calculations would be performed directly on a Power Spectral 
Density function (PSD) obtained through the Fourier transform of the time based 
load series. A number of such methods, which have been introduced for fatigue 
calculations of metallic materials under stochastic loads, will be also reviewed. 

 

2.1 S-N Curve Definition 

Fatigue response of materials is usually defined in terms of simple functional 
relationships between cyclic stresses and corresponding number of cycles named    
S-N curves. In most cases they refer to a specific stress ratio R defined as: 

σ
=
σ

min

max

R
 

(1) 

σmin and σmax are respectively the minimum and maximum cyclic stress. The 
stress ratio is a characteristic property defining whether the cycle is purely tensile 
(0<R<1), alternating with dominant tension (-1<R<0), alternating with dominant 
compression (-∞<R<-1), or purely compressive (1<R<∞ ).  

The equation chosen for the S-N curve is significantly affecting life prediction 
under variable amplitude fatigue as shown by the sensitivity analysis performed 
in [19]. The simplest way to derive an S-N curve is through linear regression on 
fatigue life data. The most commonly used relation is the following logarithmic (or 
log-log) equation. It is represented by a straight line in the log(N)-log(σmax) 
space: 

−
σ =

1
b

max KN
 

(2) 

Another alternative is the semi-log or lin-log: 

( )σ = ⋅ +max b log N K
 (3) 

Eq.(3) is drawn as a straight line in the σmax-log(N) space, and has been proved 
[20] to yield pessimistic life predictions in the very high cycles range. The slope b 
of both curves is a metric of the material’s fatigue life sensitivity on stress level, 
i.e. high values of b introduce a highly sensitive dependence of life on stress 
level. 

It is questionable whether it is appropriate to include static tests in the fitting of 
the S-N curve. If static data are excluded, the intercept of the regression curve 
with the stress axis is truncated, leading to incorrect predictions under low cycle 
fatigue, especially when Eq.(2) is implemented. If static tests are included 



 

10                                                                  Risø-R-1740 

 

however, a wrong slope of the S-N curve could be imposed. A limited number of 
static tests performed at stress rates comparable to fatigue stress rate [21] 
indicate that despite the improvement, a difference still exists between the 1 
cycle prediction by the S-N curve and the static strength data. Echtermeyer et al. 
[22] suggest that static and fatigue performances are not necessarily related to 
each other, so static tests should not be included in the S-N curve fitting. 

Even though the log-log formulation is widely used in literature, alternative 
procedures for deriving the S-N curve have been proposed. In some cases 
phenomenological modelling along with simple statistical assumptions are used 
rather than direct fitting of fatigue life data.  

In a review work on life prediction of composite materials [23] Sendeckyj is 
referring to residual strength theories as a means for predicting life under 
constant amplitude fatigue, assuming the existence of a unique relationship 
between static strength and fatigue life. The following general S-N curve 
formulation is derived: 

( )⎡ ⎤= σ + −⎣ ⎦
S

0 maxX 1 N 1 f  
(4) 

The strength–life pairs (X0,1) and (σmax,N) are assumed to be the boundary 
conditions, X0 being the ultimate strength and σmax the maximum cyclic stress.  
Different alternatives are proposed for f and S parameters, according to the 
residual strength model assumed. Their values are fitted using the equivalent 
static strength procedure based on fatigue life and/or residual strength and/or 
static strength data. Alternative expressions are summarized in the following 
table. 

Table 1 Expressions proposed by Sendeckyj for f, S is eq.(4) 

 S f 

W1 
0S  1 

W2 
0S  C  

W3 
0S  GC(1 R)−  

W3A G
0S (1 R)−  

GC(1 R)−  

W4 G
0S D(1 R)+ −  

GC(1 R)−  

W4A D
0S (1 R)−  

GC(1 R)−  

S0, C, G and D are constants. Expressions W3 to W4A take into account the 
dependency on stress ratio R. 

Sutherland, Mandell et al [24] propose a three parameter equation based on the 
one proposed by Epaarachchi, [25] formulating an S-N curve flat at low cycles, 
steeper at medium and less steep at high cycles: 

( )⎛ ⎞σ
− σ = ασ −⎜ ⎟

⎝ ⎠

b

cmax
0 max max

0

X N 1
X  

(5) 
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α, b, c are fitting parameters while X0 is the ultimate strength of the material 
obtained at a strain rate similar to that of the fatigue tests.  

Whitney [26] proposes a method for defining the S-N curve at specific reliability 
levels assuming Weibull probability distribution of fatigue life. Tests are 
performed at various stress levels and each data set is fitted to a Weibull 
distribution. Subsequently, the experimental fatigue lives at each stress level are 
normalized by their respective characteristic life and the resulting population is 
also assumed to follow a Weibull distribution. The latter has a shape parameter αf 
derived using Maximum Likelihood Estimators. The S-N curve equation is finally: 

( )
−

α
⎡ ⎤⎛ ⎞σ = −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

f

11
bb

max K lnR N N
 

(6) 

Parameters K and b are derived through fitting of a log-log S-N formulation to the 
σmax – characteristic life data points at the corresponding stress level: 

Rotem and Nelson [27] propose a generalized S-N formulation to account for 
vertical shift (through αs

i ) and slope change (through αi ) of the S-N curve due to 
temperature. Their model is based on data from a reference temperature T0, to 
derive the S-N curve at an elevated temperature T: 

−⎡ ⎤⎛ ⎞
σ = σ α − − α⎢ ⎥⎜ ⎟⎜ ⎟α⎢ ⎥⎝ ⎠⎣ ⎦

0

1
u s s b
i(T) i(T ) i(T) i i

i(T)

1
b logN N

 
(7) 

σu
i(T)  is the cyclic stress and σ

0

s
i(T ) is the static strength at the reference 

temperature. 

Xiao [28] proposes the power law S-N relation where the temperature 
dependence is accounted for by the factor bT, being equal to the ratio of static 
strength at the considered temperature T, versus the static strength at a 
reference temperature. The equation is: 

( )

σ⎛ ⎞
−⎜ ⎟σ σ⎜ ⎟= +

⎜ ⎟+ τ
⎜ ⎟
⎝ ⎠

0

max 0 0
T n

0 0

1
X

b
X X 1 N  

(8) 

τ, n are fitted parameters. X0 and σ0 are static strength and fatigue limit 
respectively. bT is related to static strength as a function of temperature. The 
above equation refers to isothermal conditions. Under general non-isothermal 
conditions the temperature rise is calculated as a function of the area of the 
hysteresis loop, frequency and time. Fatigue strength is calculated using 
experimentally obtained iso-strength (in life vs temperature) diagrams using 
fatigue data at different temperatures. 
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Miyano presented in [29] a methodology for deriving S-N curves at arbitrary 
temperature and loading frequency: 

( ) ( ) =
σ = σ − α

bs
bf bf bs bs t 1/ f

T, f, t T, t logN
 (9) 

The static term ( )σbs bsT, t  is obtained from static tests at various temperatures 

and stress ratios using time-temperature shift factor, in an analogy to creep 
strength. This way, a master curve can be constructed where static strength is 
given as a function of time to failure (or temperature through the shift factor) 
based on a reference temperature. This equation assumes the static strength 
term to be equal to the creep strength corresponding to one-time period of the 
cyclic test (=1/f). 

2.2 Generalizing to Various R-ratios 

Several alternatives have been proposed to deal with the problem of generalizing 
fatigue life S-N curves to arbitrary cyclic loads. The parameter most frequently 
used to characterize cyclic loads is undoubtedly the stress ratio and for that 
reason many researchers focus in the development of models expressing fatigue 
life as a function of stress level and stress ratio. Furthermore, a number of 
studies have proved that considerable strain rate effects are evident during 
fatigue of composites, mostly related to their viscoelastic behaviour which is even 
more pronounced in GRPs. Different models, try to account for this effect, using 
mostly empirical or phenomenological relations for introducing, apart from the 
number of cycles, frequency (i.e. time) or temperature dependence in their 
models. Such methodologies at a single stress ratio have been previously 
discussed, while others generalizing their predictions for arbitrary stress ratio are 
presented in the following paragraphs. 

Following the standard design practice in Wind Turbine Blades, interpolation or 
extrapolation of fatigue lives at stress ratios different from the ones 
experimentally derived is implemented through a Constant Life Diagram or CLD 
[30], [31]. CLD diagrams are linear or non-linear interpolation schemes between 
experimentally obtained S-N curves in the mean stress (σm) – stress amplitude 
(σa) coordinate system. They are visualized as lines connecting all points 
corresponding to a specific fatigue life. While CLD diagrams for metals are 
typically represented satisfactorily by the Goodman line [32] or Gerber parabola 
[33], the response of composites under varying stress ratio indicates a more 
irregular form of CLD. See for instance [34] or [35] for Glass Polyester and [7] 
and [36] for Glass Epoxy materials used in Wind Turbine Blades. 

Even though the CLD is a convenient representation of the material’s fatigue 
response for any combination of maximum cyclic stress and stress ratio, a 
number of questions remain. One of them regards the convergence of all CLD 
lines to the UTS and UCS in the area near R=1. In fact, it is questionable whether 
it is appropriate to use static properties in a fatigue life diagram instead of creep 
strength. Tests performed at various stress ratios by Mandell et al. [24] do not 
seem to support the former, so the creep strength of the material is used instead 
of static properties, being correlated with fatigue life by a constant frequency (see 
also [29], [37]). A second issue arises during high cyclic stresses (low cycle 
fatigue) which should be accounted for by the diagram: Some of the widely used 
S-N curves (e.g. lin-log or log-log) represent poorly the material’s fatigue 
behaviour in this region. Consequently, when such cycles need to be accounted 
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for by the S-N curve, inclusion of static strength data to the S-N curve fitting 
should be considered. However it should be provided that static tests are 
performed at similar stress rates as cycling. 

Investigations of the effect of various CLD implementations on life predictions 
under spectrum fatigue can be found in [36] for UD and in [37] for MD Glass 
Epoxy laminates. 

Typically, a Goodman type CLD is constructed based on the ultimate tensile and 
compressive strength of the material (UTS and UCS respectively) and the S-N 
curve at R=-1 stress ratio by assuming linear interpolation between them. The 
form of this CLD is shown in Fig.1 for the Glass Epoxy material used in [38]. The 
number of cycles for any combination of mean stress (σm) and stress amplitude 
(σa) is calculated separately for the region of tensile and compressive mean 
stress, by introducing σeq to the chosen R=-1 S-N equation:  

a
m

m
eq

a
m

m

UTS
0

UTS

UCS
0

UCS

⋅ σ⎧
σ >⎪ − σ⎪σ = ⎨

⋅ σ⎪ σ <⎪ − σ⎩

 
(10) 

 

Fig. 1 Goodman type Constant Life Diagram 

GL [30] proposes a slightly different CLD formulation with its peak located at 
equal distance between the UCS and UTS. The form of this symmetrical CLD is 
presented in Fig.2. The number of cycles for an arbitrary fatigue cycle, assuming 
b to be the slope of the S-N curve, is calculated through the equation: 

b

m

a

UTS UCS 2 UTS UCS
N

2

⎛ ⎞+ − σ − +
= ⎜ ⎟⎜ ⎟σ⎝ ⎠

 
(11) 
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Fig. 2 CLD formulation proposed by GL [30] 

More complex CLD diagrams can be assumed by including additional S-N curves. 
The CLD proposed by DNV [31] includes S-N curves in the tensile (R=0.1) and 
compressive (R=10) quadrant of the (σm-σa) plane as well. Its form is shown in 
Fig.3 while various procedures can be incorporated to derive the fatigue life under 
different cyclic stresses, see for instance [6], [39]. In general, a more detailed 
representation of fatigue behaviour in the CLD construction leads to improved 
predictions under fatigue life, as proposed by [35], [7], even though the cost 
associated with S-N curve determination at various stress levels can be 
prohibitive.  

 

Fig. 3 CLD based on 3 S-N curves, as proposed by DNV [31] 

An alternative CLD formulation is introduced by Adam et al. [40]. A three 
parameter function is proposed implying non linear interpolation between the 
available S-N curves and static strength values of the material. The result is the 
bell like CLD shown in Fig.4, which is not necessarily symmetrical around the σa 
axis. Its functional form is the following: 

σ σ σ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

u v

a m mUCS
f 1

UTS UTS UTS UTS
 (12) 

f, u and v are parameters that depend on fatigue life.  
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Fig. 4 The bell-shaped CLD proposed in [40] 

Towo and Ansell [41] proposed a similar bell-shaped CLD formulation based on a 
third order polynomial equation fitted on S-N curve data at R=0.1 and R=-1.  

Another non linear, asymmetrical CLD formulation has been proposed by Kawai 
and Koizumi [42] for Carbon Epoxy laminates. Its form is shown schematically in 
Fig.5.  

χ
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−χ σ
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χχ

χ σ
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⎧
⎛ ⎞σ − σ⎪ ≥ σ ≥ σ⎜ ⎟⎪ − σσ − σ ⎪ ⎝ ⎠− = ⎨

σ ⎪ ⎛ ⎞σ − σ⎪ ≤ σ ≤ σ⎜ ⎟⎪ − σ⎝ ⎠⎩

max

B

max
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2

m m
m m

ma a

2a

m m
m m

m

f UTS
UTS

f UCS
UCS

      (13) 

A critical stress ratio χ, equal to the compressive versus the tensile static 
strength, is assumed. χσm , χσa , χσmax  are mean, alternating and maximum cyclic 
stress at the critical stress ratio, expressed as functions of the unknown fatigue 
life N, while σB is the intercept of critical S-N line with the stress axis. The shape 
of the assumed CLD changes progressively from a straight line to a parabola with 
increased fatigue life. 
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Fig. 5 The nonlinear CLD proposed by [42] 

Boerstra [43] proposes different forms of CLD on either side of the σa axis, each 
described by a Gerber parabola. The slopes of the S-N curves are assumed to 
vary with mean stress σm according to an exponential relationship of the form: 

σ⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

m
0b b exp

D
  (14) 

Another CLD form is implied when adopting the equivalent stress concept 
proposed by Brondsted et al in [44] where all fatigue cycles inside a spectrum are 
assumed to be described by a single S-N curve close to its average stress ratio. 
This simplistic CLD formulation can be interpreted by the following set of CLD 
lines, all having the same slope equal to -1. Its graphical presentation can be 
seen in Fig.6. 

o
a m1

kN

σ
σ = − σ  (15) 

 

Fig. 6 CLD lines assuming a single S-N curve for any cycle 

Alternative CLD formulations implying a similar behaviour as the latter in the 
purely tensile part of the graph have been discussed in [37]. 

Rotem in [45] suggests a methodology for deriving the S-N curve of a composite 
laminate at any stress ratio once its fatigue behaviour has been obtained at two 
stress ratios, one in the tensile failure mode region and the second in the 
compressive. The S-N relation for arbitrary stress ratio R, is obtained after 
calculating two of its points (referring to known fatigue lives, taken as 10 and 106 
cycles) according to the following relations, assuming log-log S-N curve 
representation: 
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1 1
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1 1
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UTS UTSS 10 S 10

 
(16) 

S=S0NK is the known S-N curve at stress ratio R1 (tension dominated fatigue). 
The final form of the unknown S-N curve at R is: 

( ) ( ) ( ) ( ) ( )σ − σ σ − σ
σ −

σ =
a1 a2 a1 a2

a1

6log log 6log log
log

5 5
a 10 N  (17) 

Similarly, S-N curves at the compression dominated region can be defined using 
the UCS and a known compressive S-N curve in the above relations. 

Epaarachchi and Clausen [46] based as previously on a differential equation of 
residual strength degradation, suggested an S-N curve formulation which includes 
the stress ratio and fatigue frequency dependence: 

( )
( )

0.6 sin

0 0
B1.6 sin

max max

X X 1
1 f N 1

1

−ψ θ

β
−ψ θ

⎛ ⎞ ⎛ ⎞
− = α −⎜ ⎟ ⎜ ⎟

σ σ − ψ⎝ ⎠ ⎝ ⎠  
(18) 

Parameters α and β are material related, fitted on tensile fatigue tests while θ is 
the smallest angle between fibre direction and loading, fB is the cycling frequency 
ψ is the stress ratio for tensile and reversed loading fatigue and the inverse 
stress ratio for compression-compression.  

A similar approach, aiming at the derivation of a master curve for all stress ratios 
R, has been proposed by Caprino and D’Amore in [47] implemented on flexural 
fatigue test data. The model is once more based on a residual strength 
degradation formulation, concluding in the following generalized S-N expression: 

( ) ( )β⎛ ⎞
− = α −⎜ ⎟

σ −⎝ ⎠
0

max

X 1
1 N 1

1 R  
(19) 

When the left hand term of the above equation is plotted against (Nβ-1) a straight 
line is drawn having a slope of β. This way, using fatigue tests at various stress 
ratios, the parameters α and β can be determined. 

Finally, Miyano et al. generalized the model presented in the previous chapter to 
arbitrary stress ratio in [48] and [49]. The previously discussed master curve 
from static strength tests at different strain rates is constructed, along with 
another master curve for fatigue tests (at R=0 stress ratio) for various testing 
frequencies. The S-N curve prediction is generalized to arbitrary stress ratio 
assuming linear dependence on R. 

( ) ( ) ( ) ( )σ = σ + σ −f f f:1 f f:0 ft , f,R, T t , f, T R t , f, T 1 R
 (20) 
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( )σf ft , f,R, T  is the fatigue strength depending on the creep strength ( )σf:1 ft , f, T R  

(considered equal to the fatigue strength at R=1 and arbitrary frequency f) and 
the fatigue strength under R=0 ( )σf:0 ft , f, T , derived for arbitrary frequency f 

through the fatigue master curve. 

 

2.3 Damage Accumulation 

2.3.1 Empirical Models 

Various empirical relations for summing up fatigue damage at different stress 
levels and predicting failure have been proposed up to date. In general, non-
linear formulations have been developed in a continuous effort to improve the –
usually poor- performance of the linear theory discussed below. An interesting 
review of various cumulative damage models can be fount in [50]. 

The best established amongst empirical damage accumulation metrics is the 
Palmgren-Miner rule [10], which assumes a linear dependence of fatigue damage 
D on the total life fraction spent during cycling. 

=

= ∑
k

i

i 1 i

n
D

N  
(21) 

Eq.(21) refers to k blocks each consisting of ni cycles with an expected fatigue life 
equal to Ni.. Failure is usually assumed to occur when D=1. 

While the Palmgren-Miner rule is a simple and straight forward approach in 
fatigue damage accumulation, its application on composites is rather problematic 
since it does not account for load sequence effects. Discussions on the efficiency 
of Palmgren-Miner rule are presented by Broutman & Sahu [51], Schaff and 
Davidson [52], Bond [53], Philippidis & Vassilopoulos [54], Gamstedt & Sjogren 
[55], Hosoi et al. [56] and others. The main conclusion from these investigations 
is the inefficiency of Palmgren-Miner rule to predict failure under block or 
spectrum fatigue, yielding in some cases conservative and in some others over-
optimistic predictions. In view of this, different approaches of non-linear empirical 
fatigue damage have been proposed: 

The non-linear Marco Starkey formula [57] is one of them: 

α

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑
k

i

i 1 i

n
D

N  
(22) 

Parameter α is an experimentally fitted function of the stress amplitude. Using 
this theory sequence effects can be accounted for.  

Another non-linear damage accumulation rule has been proposed by Owen & 
Howe [58] based on block loading fatigue observations: 
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=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= Α + Β⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

2
k

i i

i 1 i i

n n
D

N N  
(23) 

Eq.3 has been later modified by Bond with one additional parameter c and 
validated using the WISPER [53] (on GRP laminates) and FALSTAF [59] (on CFRP) 
standardized spectra. 

=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= Α + Β⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

c
k

i i

i 1 i i

n n
D

N N  
(24) 

Following the approach of Sabramanyan [60] based on the definition of 
equivalent damage lines converging to a knee point, Hashin & Rotem [61] have 
proposed a similar concept. This time the damage accumulation rule does not 
account only for load sequence but also for stress level dependency through the 
following equation: 

( )
( )−

σ

σ
−= +

max,i

max,i 1

log

log i
i i 1

i

n
D D

N  
(25) 

 

2.3.2 Phenomenological Models 

2.3.2.1 Residual Strength 

Residual strength has been considered since early in the study of composites as a 
convenient property for expressing phenomenologically damage accumulation 
during fatigue. In contrast to empirical and other phenomenological formulations, 
residual strength theories inherently include a failure criterion: Failure is assumed 
to occur when residual strength degrades to the maximum applied stress. 
Additionally the ‘Strength Life Equal Rank Assumption’ or SLERA, introduced by 
Hahn & Kim [62] and named later on by Chou and Croman [63], provides a 
handy tool for deriving the probability distribution of either fatigue life or residual 
strength based on that of the static strength. 

Up to date residual strength models have been extensively discussed by 
Sendeckyj in [64], reviewed in [4], [5] and evaluated through implementation on 
common experimental data sets in [65]. An overview of the most characteristic 
models is presented in the present section. 

Broutman and Sahu [51] have presented one of the first attempts for modelling 
static strength degradation of GFRP composites, in an effort to develop a modified 
Palmgren-Miner rule, which would account for load sequence effects. Their 
equation assumes linear degradation of strength up to failure: 
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( )r max

n
X X X

N
⎛ ⎞= − − σ ⎜ ⎟
⎝ ⎠  (26) 

Their model has been proven [65] to overestimate strength degradation of WT 
blade composites under fatigue, especially in the range of higher fatigue lives. It 
has however performed satisfactorily as fatigue damage metric when 
incorporated into life prediction schemes under VA fatigue [see also 36]. 

Hahn and Kim [62] introduced the concept of rate of change of residual strength 
through the following rate type equation: 

( )c 1r
r

dX
AX

dt
− −= −  (27) 

The positive parameter A(σ) depends on the applied dynamic load σ(t) and the 
exponent c is a material constant. The behaviour of the above equation depends 
on parameter c being above or below unity, thus forcing the above equation to 
follow slow strength degradation becoming steeper as fatigue progresses or vise 
versa. Integration leads to: 

( )= − −c c
r 0X X cD t t  

(28) 

Parameter D, which is the integral of A(σ) from to to t, in general depends on the 
characteristics of fatigue loading. In constant amplitude fatigue, appropriate 
parameters are the stress amplitude, stress ratio and frequency. 

Yang et al have, since 1975, published several articles on residual strength [66]-
[69] and in later works on stiffness degradation of composites due to fatigue 
[70], [71]. The most general form of their model, fount in [72], is based on the 
following rate type equation: 

r

max
c 1

r

X (n)
d

n f( ,X)

dn X
c

γ

−

⎛ ⎞
⎜ ⎟β −γ σ⎝ ⎠ =

⎛ ⎞
⎜ ⎟β⎝ ⎠

 (29) 

The expression of maxf( ,X)σ  in Eq.(29), is derived by applying the fracture 
condition after integration, which leads to: 

c c
c c bmax

r max
max

X
X (n) X (K n)

(X )
ωγ γ

ω ω γ

− σ
= − β σ

− σ  (30) 

c, b, K, ω and γ are model parameters derived through the equivalent static 
strength concept, i.e. attributing a fictitious static strength to each residual 
strength and/or fatigue life experimental datum through eq.(30) and trying to 
match the obtained probability distribution to that of static strength. 
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Chou and Croman propose, on one hand a different wear-out model, including an 
additional free parameter [63], and on the other hand they introduce the sudden-
death model [73], as a limiting case in the residual strength study. This latter is 
the case for which the residual static strength remains constant, i.e. independent 
of load cycles, until immediately prior to failure and then drops suddenly. The 
form of their wear-out degradation equation is the following:  

f

f

i

r

n
X X n

n

α

αα α
γ γ

γ

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 

(31) 

Xγ and nγ are the static strength and fatigue life respectively, that give a value of 
(1-γ) in the cumulative distribution function (CDF). By assuming different values 
for parameter i, a family of degradation curves is obtained, ranging from gradual 
wear-out to sudden death behaviour 

Adam et al. [74] introduced the interaction model, motivated by the apparent 
similarity of the residual strength curves at various stress levels, and the possible 
event of some appropriate normalized formulation. In this direction, they 
introduce the residual strength ratio as: 

r max

max

X
r

X

− σ
=

− σ  (32) 

As well as the cycle (or log-time) ratio: 

logn log0.5
t

logN log0.5

−
=

−  (33) 

These two normalized quantities are combined under the appropriate boundary 
conditions, i.e. points (1,0) and (0,1), through the following expression: 

x yt r 1+ =  
(34) 

x and y are determined through fitting on residual strength data. 

Reifsnider (e.g. [11]) proposed a Critical Element Model theory for modelling the 
fatigue process in composites based on the definition of critical (causing overall 
failure) and sub-critical (causing stress redistribution) elements. The general 
equation proposed for the critical elements can account for different failure modes 
through an adequately chosen failure criterion and for local stress concentrations. 
The equation proposed for the case when local effects are disregarded is: 

( ) ( )
v

r maxn

n
X X X

N
⎛ ⎞= − − σ ⎜ ⎟
⎝ ⎠  

(35) 
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Parameter v, expressing the non-linearity in the degradation of static strength, 
has been close to unity for the cases examined [11]. For WT blabe materials 
however this parameter seemed to be a function of the fatigue damage state of 
the material [65].  

Schaff and Davidson [52] have adopted in their study the above degradation 
equation. Parameter v is derived by fitting the occurring fatigue life probability 
distribution to a fatigue life sample. They also introduced the effective number of 
cycles quantity, necessary under variable amplitude fatigue, being the number of 
cycles that would have brought residual strength down to its current value if the 
material was subject to constant amplitude fatigue at the current block’s stress 
level. 

Epaarachchi and Clausen [75] proposed a frequency and stress ratio dependent 
residual strength formulation as damage accumulation metric under step VA 
fatigue, previously implemented for deriving the materials S-N behaviour under 
different fatigue conditions: 

( )
( )( ) ( )

( )( ) ( )

β−ψ θ β
−ψ θ β

β=
σ−

−ψ θ
−ψ θ β

β

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞σ⎪ ⎪⎢ ⎥⎜ ⎟⎜ ⎟α σ − ψ − − −⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭=
σ⎛ ⎞α σ − ψ −⎜ ⎟

⎝ ⎠

∑ k

0.6 sin

n 1.6 sink k
k k kk 1

r nkn 1

0.6 sin
1.6 sinn

n n
n

n1
1 n 1 1 1

X Nf
1

1
1 N 1

X f

 
(36) 

α and β are experimentally defined model parameters. As previously, θ is the 
smallest angle between load and fibre in the laminate and ψ is the stress ratio R 
or its inverse value when R>1. σnN  is the residual life at level n after the loading 
at level (n-1) step. 

Yao and Himmel [76], suggested a different residual strength degradation 
equation for the case of tensile loading, having the following form: 

( )
( )

( )

⎛ ⎞
β β − α⎜ ⎟
⎝ ⎠= − − σ

⎛ ⎞
β β − α⎜ ⎟

⎝ ⎠

f
r max

f

n
sin cos

N
X X X

n
sin cos

N

 (37) 

Parameters α and β are derived through experiments. Under compressive fatigue 
they propose a non-linear formulation of the form of Reisnider (Eq.(35)) 

It must be noted that any residual strength degradation equation available can be 
generalized to variable amplitude fatigue using the effective number of cycles 
during the application of subsequent single cycles or CA blocks. Nevertheless, 
attention must be paid when the residual strength is assumed constant through a 
part of the specimen’s life. In that case, the zero degradation from one block to 
another makes numerically impossible the calculation of effective cycles within 
available accuracy limits. Consequently, when this kind of behaviour is assumed, 
different strategies for accumulating damage over sequences of variable 
amplitude must be implemented. 
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2.3.3 Stiffness Degradation 

Several researchers proposed phenomenological formulations relating the 
observed stiffness degradation during fatigue to fatigue life. While the 
implementation of such models is similar to those considering residual strength, 
stiffness can be recorder non-destructively during cycling. Nevertheless, a failure 
criterion must be assumed, which is not as obvious as for residual strength. A 
number of researchers considered the ultimate strain during static strength test 
to be an adequate metric. The significant difference in the damage mechanisms 
and loading conditions however, make this assumption questionable, as 
suggested in [22], [20]. 

Hwang and Han [50], [77] proposed a model based on the fatigue modulus 
concept, i.e. the slope between the maximum stress vs strain at an arbitrary 
cycle and the origin of the stress-strain coordinate system. This metric expresses 
not only modulus degradation but also residual strains accumulating during 
cycling. The degradation equation is based on the following power equation: 

−= − c 1dE
Acn

dn  (38) 

A and c are material constants. The failure criterion adopted upon integration of 
the above equation assumes failure when the fatigue modulus degrades up to the 
ultimate strain during static testing. 

For the case of variable amplitude fatigue, amongst others, the following damage 
metric has been proposed [50]: 

σ
⎛ ⎞

= −⎜ ⎟σ ⎝ ⎠−

max

0

max n

EXD 1
E1

X

 (39) 

E0 and En are the initial fatigue modulus and the fatigue modulus at cycle n 
respectively, while the damage parameter D is assumed equal to unity at failure. 

Sidoroff and Subagio [78] proposed a different damage equation, considering no 
damage during compressive cycling and the following damage rate under tensile 
fatigue: 

( )
( )
⋅ Δε

=
−

c

b

AdD

dn 1 D  (40) 

The variable D is equal to 1-E/E0 and A, b, c are material constants defined 
experimentally. Δε is the stain amplitude applied during fatigue. This model has 
also been implemented in FEM code by Van Paepegem and Degrieck [79]. Van 
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Paepegem implemented later on [80] a different stiffness degradation approach 
adopting the following equation, which distinguishes between the two stages of 
fatigue stiffness degradation, corresponding to damage initiation and damage 
propagation: 

( )( )
( )

−
− Σ−Σ

− − Σ−
Σ

⎧
Σ + Σ + σ ≥⎪

⎪= ⎨⎡ ⎤ ⎛ ⎞⎪ Σ + Σ + σ <⎢ ⎥ ⎜ ⎟⎜ ⎟⎪⎢ ⎥ ⎝ ⎠⎣ ⎦⎩

2
5 4

5
2 4

D
c

c c2
1 3

3D cc c2 3
1 3

c e c D 1 e 0
dD

dn
c e c D 1 e 0

 (41) 

ci (i=1:5) are model parameters and Σ is a quantity named failure index defined 
equal to Eoε/Χ, Eo being the initial modulus, X the tensile or compressive strength 
and ε the current cycle’s maximum strain. 

Whitworth [81] proposed a different stiffness degradation equation for the case of 
CA fatigue, assuming the following change rate for the modulus: 

α

α
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ σ⎛ ⎞ ⎛ ⎞⎝ ⎠⎜ ⎟ = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎜ ⎟
⎝ ⎠

max

0

n
E

nN
1 H 1

E X N  (42) 

H and α are stress independent parameters. According to [82], fatigue damage 
for the case of VA cyclic loading can be accumulated according to the following 
formula which is used to calculate the damage contribution of each cycle of 
normalized range S: 

( )α
α

⎛ ⎞− ⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

H 1 S n
D

N1 S  (43) 

In [83], another stiffness degradation model is proposed, further implemented to 
derive the statistical distribution of residual stiffness: 

( ) ( )
⎛ ⎞⎛ ⎞
⎜ ⎟= − ⋅ + + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1
m m

0
N

N

E
E n E h ln n 1

E  
(44) 

h and m are model parameters to be determined experimentally and EN is the 
stiffness at failure assumed, as in previous cases, to take the value of ultimate 
strain at static test. 

Yang et al. [70] assumed stiffness degradation rate of Graphite/Epoxy laminates 
under CA fatigue to be a power function of the number of cycles. When 
integrated, their model is expressed through the following equation, where α1, α2, 
α3 are parameters independent of the stress level, obtained though stiffness 
measurements during cycling. 
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( ) ( )( )( )α +
= − α + α α + α 3 BS

0 1 2 3 2E n E 1 BS n  (45) 

B is a random variable used further on in the derivation of the stiffness statistical 
distribution and S is the applied stress level.  

Lee, Fu and Yang proposed in a subsequent publication [84] the following 
stiffness degradation equation for spectral fatigue (at the nk

th loading block): 

( )
( ) ( )⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

v k

k
0

k 0

E nn
E n E 1 1

n E  (46) 

The only parameter is v(k), fitted on stiffness measurements during fatigue. The 
failure criterion assumed for defining failure stiffness and consequently fatigue 
life, is based on the following relation where S is the stress level and A0 is a fitted 
constant: 

( )ε = + 0
0 0

S UTS
N A

E E  (47) 

Brondsted et al [85] proposed a stiffness degradation equation implemented in 
the definition of stiffness controlled S-N curves of Glass/Polyester laminates 
based on the specific failure stiffness EL, the latter being experimentally obtained. 
Their model, assuming CA fatigue, is: 

( ) ⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

n L

0 0

E E n
1 1

E E N  (48) 

Post et al [86] suggested the implementation of a stiffness degradation equation 
on a statistical life predictive algorithm based on the critical element model 
philosophy of Reifsnider [11]. The strain controlled failure criterion assumes 
failure to occur as soon as fatigue strain equals the failure strain during the static 
test. The stiffness model has the form: 

( ) ( )( )−= α − + − αbn
0nE E e cn 1

 (49) 

α, b and c are fitted parameters. The above equation claims to fit the modulus 
degradation during its first and second stage, i.e. not during its last stage of 
steep drop prior to failure. 
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2.4 Complex Stress Failure Criteria- Static 

The application of failure criteria under complex stress states used in metals, such 
as the Mohr-Coulomb or Von-Mises theory, is not effective in composite materials 
due to their anisotropic nature. Trying to take this anisotropic behaviour into 
account, different researchers proposed a multitude of failure theories under 
biaxial static stress conditions, while different experimental setups for inducing 
such stress fields in composite laminates have been incorporated, to provide the 
necessary input for their validation. A review and categorization of failure criteria 
under multiaxial static loading can be fount in [87].  

Criteria suggesting the maximum stress or maximum strain at the two principal 
directions and in shear of a laminate in order to derive the failure surface in the 
σ1, σ2, τ12 space have been proposed respectively by Stowell and Liu [88] and 
Waddoups [89]. 

Hill [90] proposed a failure criterion for metals with anisotropic strength 
properties induced by extreme deformation of their crystalline structure by a 
manufacturing process. The model was similar to the one proposed later by Azzi 
and Tsai [91] suggesting a different normal stress interaction parameter.  

Norris [92] proposed a quadratic formulation combining the two stresses in the 
principal coordinate system and in-plane shear in a similar expression as that of 
Hill, leaving out the normal stress interaction term. Later [93] he introduced an 
additional, non-squared term. In an effort to account both effects of normal 
stress interaction and different strength in tension and compression, Hoffman 
[94] suggested a relation including both tensile and compressive strengths in the 
symmetry directions of the orthotropic material.  

Several other quadratic or cubic failure functions have been proposed, with many 
amongst them being different adaptations of the general theory proposed by 
Tsai-Wu [95]. Its tensorial expression is: 

σ + σ σ =i i ij i jF F 1 (50) 

The linear terms in the above relation take into account the difference between 
positive and negative stress induced failures, while the quadratic term defines an 
ellipsoid in the stress space. Fi and Fij are strength tensors of the 2nd and 4th rank 
respectively and for the case when i=j are determined through simple static tests. 
The non-diagonal term Fij (i ≠ j) (interaction term) on the contrary is defined 
through multi-axial tests and defines the orientation and position of the ellipsoid 
in the 3D stress space. Off-axis, tubular or cruciform specimens for instance could 
be used for its determination. The following stability equation has to be satisfied 
in order to have a closed failure surface. 

− ≥ii jj ijF F F 0  (51) 

Different failure criteria are derived with different assumptions of the interaction 
term (see e.g. [96], [97]). 

A recent attempt to access different biaxial static failure criteria proposed up-to-
date, based on available experimental data is the ‘World Wide Failure Exercise’ 
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organized and coordinated by MJ Hinton (Defence Evaluation & Research Agency) 
and PD Soden, AS Kaddour (UMIST, Applied Mechanics Division) [98]. The final 
scope was to provide the composites community with accurate failure prediction 
methods for multidirectional laminates under complex static stresses. Complete 
methodologies to predict biaxial failure in the UD laminate and generalize it up to 
final failure (i.e. last ply failure) of a multi-directional lay-up are proposed. 
Specific degradation rules, in the form of knock down factors, are proposed for 
stiffness and/or strength components due to non-catastrophic failure of plies, 
depending on the failure mode observed. In total 14 such failure theories are 
considered and implemented. All of them can be found in [99], which was 
dedicated to the World Wide Failure Exercise. A comparative presentation of the 
methodologies is presented in [100], presenting the outcomes of the part A of the 
exercise. 

The methodologies are implemented on 4 different material systems (2 
Carbon/Epoxy and 2 Glass/Epoxy) and various predictions are obtained for a 
variety of lay-ups, discussed in [101]. The predictions from the various authors 
are presented in [102], which was dedicated to Part B of the World Wide Failure 
Exercise. A complete discussion of the part B of the exercise (i.e. the 
implementation and assessment of all models based on different experimental 
data sets of multidirectional laminates), grading the various models can be fount 
in [103]. Five different criteria are used to in the grading procedure: Strength of 
a UD laminate under biaxial stress, Initial and Final failure, stress-strain 
behaviour simulation and ability to predict the general trend observed in the data.  

The final part of the exercise (part C) has been presented in [104] where 
additional models presented by that time were included and recommendations for 
design application of the methodologies considered during the exercise were 
discussed [105]. 

The input provided by this discussion on the various aspects of each methodology 
along with the variety of materials and lay-ups considered provides a solid basis 
for understanding and modelling the consequences of damage during static 
loading in composite multidirectional laminates. Nevertheless, considering the 
numerous possible combinations of failure modes that can be integrated to 
progressive damage models, through simple knock-down factors applied on the 
elastic and strength properties, attention should be paid to keep a close 
correlation between assumed failure modes and the actual damage mechanisms 
observed during testing. Otherwise, even though accurate predictions may be 
fitted, the physical background of the model is discredited. 

A review of existing methodologies modelling failure in composite materials has 
appeared quite recently by Orifici et al. [106]. An extensive review of failure 
predicting models is presented, categorizing them in terms of the failure mode 
predicted: 

• Fibre failure 

• Matrix failure 

• Shear failure 

• Ply level failure 

• Delamination initiation 
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• Existing delamination growth 

Fibre and matrix failure criteria are listed separately when different formulations 
are used in tension and compression. This work is valuable in assembling and 
categorizing all up-to-date failure theories for quasi-static loading. 

 

2.5 Complex Stress Failure Criteria- Fatigue 

Efforts for taking into account complex stress states in fatigue of composites are 
usually incorporated through modification of a static multiaxial criterion: The 
failure functions are expressed in terms of the fatigue strength of the composite 
rather than of its static strength. This concept has been used by Owen and 
Griffiths in their critical review of biaxial stress failure criteria [107].  

In certain cases the failure criteria proposed for UD laminates can be generalized 
to MD lay-ups, the laminate however can only be treated macroscopically since 
otherwise additional assumptions for damage progression and degradation 
strategy for post failure behaviour of sub-critical elements (which are constrained 
between adjacent layers) should be assumed as well. Furthermore, the latter 
would cause plane stress redistributions between layers, constantly altering the 
stress field in each lamina, thus requiring the implementation of a damage 
accumulation assumption in order to obtain a realistic prediction of failure. This is 
in brief the lamina-to-laminate approach discussed in the following section. 

 

2.5.1 Hashin & Rotem 

Hashin and Rotem proposed in [108] a fatigue failure criterion for unidirectional 
laminates under constant amplitude fatigue, distinguishing between fibre and 
matrix failure modes: 

σ = σ

⎛ ⎞ ⎛ ⎞σ τ
+ =⎜ ⎟ ⎜ ⎟

σ τ⎝ ⎠ ⎝ ⎠

u
F F

2 2

T
u u
T

1 (52) 

Transition from one mode to the other can be calculated so a critical off-axis 
angle is obtained. Terms σF, σT and τ refer to normal stresses in the fibre, 
transversely to the fibre and in-plane shear respectively. Superscript u denotes 
fatigue failure stresses which are defined as the product of the corresponding 
static strength times a dimensionless material fatigue function, the latter being in 
general a function of stress ratio, number of cycles and frequency. The three 
failure functions can be derived using three experimentally obtained S-N curves, 
one for the fibre direction and two off-axis angles θ. Then, the fatigue functions 
for shear and transverse direction can be calculated by solving the 2x2 system of 
equations derived through the following relationship, relating the fatigue functions 
in the transverse direction fT and shear fτ and the fatigue function of the two θ° 
off-axis laminates: 
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τ

τ

⎛ ⎞τ
+ θ⎜ ⎟σ⎝ ⎠′′ =
⎛ ⎞τ

+ θ⎜ ⎟σ⎝ ⎠

2

2
u
T

2

2
u

TT

1 tan

f f
f

1 tan
f

 (53) 

 

2.5.2 Philip et al 

The failure criterion for anisotropic materials proposed by Hill was implemented 
by Philip et al [109] to predict the fatigue behaviour of tubular specimens under 
combined axial-torsional fatigue stresses. The general formulation they propose 
as the extended Hill’s criterion is: 

( ) ( ) ( ) ( ) ( ) ( )

⎛ ⎞ σ τσ ⎜ ⎟− σ σ + − + + =
⎜ ⎟
⎝ ⎠

2 22
y xyx

x y2 2 2 2 2 2
N N N N N N

1 1 1
1

X X Y Z Y S  (54) 

Z is through-the-thickness strength of the laminate. No stress ratio dependence is 
assumed. Since only on-axis (tension) and shear stresses are applicable in their 
case, the equation used included only the on-axis and shear term. 

 

2.5.3 Ellyin & El-Kadi 

Ellyin and El-Kadi [110] suggested a different failure criterion based on strain 
energy density under cyclic loading. The latter, for the case of plane stresses, is 
expressed through the following relationship, where ijS are the transformed 

compliances of the unidirectional orthotropic lamina and Δ in front of stress terms 
implies fatigue stress range: 

( ) ( ) ( )

( )( ) ( )( ) ( )( )

⎡ ⎤⎡ ⎤ ⎡ ⎤Δσ ΔτΔσ ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ = + +
⎢ ⎥⎢ ⎥ ⎢ ⎥− −−⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤Δσ Δσ Δσ Δτ Δσ Δτ
⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥

− −− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

2 22
y xyx

11 22 662 2 2

x sy

x y x xy y xy
12 16 26

x sx y y s

W S S S
2 1 R 2 1 R2 1 R

S S S
1 R 1 R1 R 1 R 1 R 1 R

 (55) 

According to Ellyin and El-Kadi, the strain energy density can be expressed as a 
function of the fatigue life under the plane cyclic stresses considered above, 
through the following power type relation: 

αΔ =W kN  
(56) 



 

30                                                                  Risø-R-1740 

 

k and α are fitted parameters depending in their case on the fibre orientation 
angle θ. The criterion was evaluated using the experimental data of Hashin and 
Rotem [108]. The following expressions appeared to correlate satisfactorily with 
the experimental observations, where α, β and b are constant parameters and k0 
and α0 are the values obtained for 0° fibre orientation: 

( ) ( ) β

α = α + αθ

= + θ
0

0log k log k b  (57) 

2.5.4 Plumtree & Cheng 

Plumtree and Cheng [111] proposed another failure criterion based on energy 
density for predicting the fatigue behaviour of off-axis UD laminates, in a context 
similar to Ellyin & El-Kadi. They use the Smith Watson Topper parameter 
assuming that fatigue of off-axis UD is dominated by transverse matrix cracks. 
The proposed damage parameter is resembling to strain energy density: 

Δ = σ Δε + τ Δγmax max
22 22 12 12W 2  (58) 

Where Δ indicates range of strains and the superscript max indicates maximum 
cyclic stress. A log-log curve is used to fit the damage parameter as a function of 
the number of cycles to failure, based on off-axis CA fatigue data. This master 
curve is subsequently used for predicting fatigue life of other UD coupons of 
different off-axis angle. 

 

2.5.5 Reifneider & Gao 

Reifsneider and Gao [112] developed and implemented a micromechanical 
methodology for life prediction under complex stresses using the formulation of 
Hashin and Rotem discussed above. The stresses used however are calculated 
using the Mori-Tanaka method [113] which deals with the problem of the stress 
field around inhomogeneities (i.e. fibres in this case) located inside a matrix. The 
failure criterion is: 

σ =

⎛ ⎞ ⎛ ⎞σ σ
⎜ ⎟ ⎜ ⎟+ =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

f f
11

2 2
m m
22 12

m m

X

1
X S

 (59) 

The denominators are fatigue failure functions of the fibre and unreinforced 
matrix material while the terms in brackets refer to the average stresses 
calculated with the Mori Tanaka method.  
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2.5.6 Fawaz & Ellyin 

Fawaz and Ellyin propose in [114] a simplified approach for determining off axis 
S-N curves, based on a reference S-N curve and the off-axis static strength. As 
pointed out also by Awerbuch and Hahn [115] off axis S-N curves seem to follow 
a common trend when the data are normalized by the corresponding static 
strength. The final form of the model is: 

( ) ( ) ( ) ( )α α θ α α θ
⎡ ⎤σ = +⎣ ⎦1 2 1 2 r r, , ,R,N , , Rf g m log N b  (60) 

α1 and α1 are the biaxiality stress ratio σy/ σχ and τxy/ σχ respectively, θ is the off-
axis angle, R is the stress ratio and mr, br are the parameters of the reference    
S-N curve. The function g is introduced to account for different stress ratios, and 
function f is defined as the ratio of the static strength along the considered 
direction (under the specific biaxiality ratio) versus the static strength along the 
same direction under the reference loading parameters: 

( )
( ) ( )

( )
( )α α θ

α α θ

σ−
= σ =

σ − σ
1 2

1 2

x , ,

maxR , ,
rmax r min r

1 R
g f

X  (61) 

( )α α θσ
1 2x , ,  is obtained by substituting the principal stresses (as a function of the 

applied cyclic stress and off-axis angle) to an adequate failure criterion. 

The model is very simple and requires minimal experimental effort, nevertheless 
it is highly sensitive on the choice of the reference S-N curve. 

 

2.5.7 Fujii & Lin 

Fujii and Lin [116] implemented the failure criterion of Tsai and Wu to model the 
fatigue failure locus under plane stresses of different biaxiality ratios, induced 
through cyclic tests on tubular specimens (combined tension and torsion). The 
simplified form they used was: 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− σ + σ + τ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2
1 1 122

1 1 1 1
1

X X' XX' S  (62) 

X and X’ are the tensile and compressive fatigue strength respectively. X is 
calculated from the experimental curve they derive by normalizing the maximum 
cyclic stresses with the corresponding static strength (under the same biaxiality 
ratio). However, a generic definition of compressive fatigue strength X’ is not 
proposed. On the contrary X’ is rather used as a free parameter in order fit the 
failure criterion to the experimental fatigue data. 
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2.5.8 Philippidis & Vassilopoulos 

Philippidis and Vassilopoulos [117] developed their fatigue failure criterion named 
‘Failure Tensor Polynomial in Fatigue’, based on the Tsai-Hahn equation [118]:  

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ + σ + − σ + − σ + τ − σ σ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2
1 2 1 2 12 1 22

1 1 1 1 1 1 1 1 1
1

XX' YY' X X' Y Y' XX ' YY 'S  (63) 

The static strength terms initially considered by Tsai-Hahn are replaced directly 
by the material’s fatigue strength, described by the S-N curves of the considered 
material at 0°, 90° and 45° the latter divided by 2 to simulate the fatigue 
behaviour under shear. Equal fatigue strengths are assumed under tension and 
compression. The final form of the proposed equation is: 

( ) ( ) ( ) ( ) ( )

σ σ τ σ σ
+ + − =

2 2 2
1 2 12 1 2

2 2 2
N,R N,R N,R N,R N,R

1
X Y S X Y  (64) 

The model was later implemented in predictions under spectrum fatigue [39] 
using a standardized spectrum as well as an irregular one obtained from aero-
elastic simulation of a WT blade. A linear CLD based on three S-N curves was 
implemented to derive the S-N curves at different R ratios and the Palmgren-
Miner rule was used as damage accumulation metric. 

2.5.9 Aboudi 

Aboudi proposed in [119] an extension of a previously presented micromechanical 
model for static strength of composites [120] under plane stresses. The latter is 
based on a representative unit cell representing a simplified model of the fibre 
and surrounding matrix area. The stress state in the fibre and matrix areas is 
defined based on the properties of the constituents and the necessary correlation 
between the strength quantities of the constituents and those macroscopically 
observed is attempted through a stress concentration matrix B. 

The fatigue failure criterion proposed is based on the one proposed by Hashin and 
Rotem distinguishing between the fibre and matrix failure modes: 

( ) ( )

( )

( )

( )

( )

βγ βγ
βγ βγ

=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟+ =
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

11 F
11 f

2 2

F F
m m

S X (fibre)

S S
1 (Matrix)

X S
 (65) 

Where βγ=12, 21,22 are the three matrix areas of the representative volume. 

The ( )F
fX , ( )F

mX  and ( )F
mS  are fatigue failure functions of the fibre and matrix 

materials, depending on all fatigue parameters such as stress ratio, frequency 
and number of cycles. Since fatigue testing e.g. on fibre is difficult to perform, 
the respective fibre, transverse and shear properties of the UD ply are used, 
transformed through the (undefined) stress concentration matrix. The theory is 
implemented to UD and angle ply laminates of different types of composite 
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systems with relative success under simple loading conditions. Nevertheless, the 
generalization to varying loads is not considered. 

 

2.6 Lamina to Laminate Approaches 

2.6.1 Hashin and Rotem 

The fatigue failure model initially proposed by Hashin and Rotem for off axis 
laminates [108] and further developed to account for fatigue failure of angle ply 
laminates [121] was later extended to the general condition of multidirectional 
laminates [122]. Classical lamination theory is implemented to derive all in plane 
stresses in each lamina, rotated to its principal coordinate system. Three failure 
modes are distinguished: One for fibre failure, one for matrix failure and one for 
delaminations. The criteria are formulated as follows: 

τ

σ = σ

⎛ ⎞⎛ ⎞⎛ ⎞σ τ⎜ ⎟+ =⎜ ⎟⎜ ⎟⎜ ⎟σ τ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞σ τ⎜ ⎟+ =⎜ ⎟ ⎜ ⎟⎜ ⎟σ τ⎝ ⎠ ⎝ ⎠⎝ ⎠

c s
A A A

22c c
T

s s
T T

2 2c c
d d

s s
d d d d

f (fibre)

1 (Matrix)
f f

1 (Delamination)
f ' f

 
(66) 

Subscripts A, T and τ refer to fibre direction, transverse direction and to shear 
respectively. Superscript c denotes cyclic stresses, s static strength and subscript 
d refers to inter-laminar normal or shear stress and strength components. fA is a 
fatigue function under fibre failure mode, depending on fatigue life N, stress ratio 
R and testing frequency, determined experimentally from cyclic tests in the fibre 
direction of the unidirectional material. fT and fτ are the corresponding fatigue 
functions transversely to the fibre and in shear define through fatigue testing of 
the material in the transverse direction and under shear fatigue. 

For the simple case of uniaxial load applied on a laminate, the methodology 
results in simplified expressions, relating the principal stresses in each ply to the 
stress developing in the ply expressed in the global coordinate system ( σc

p x ): 

σ = ⋅ σ

σ = ⋅ σ

τ = ⋅ σ

c c
p A p xx p x

c c
p T p yy p x

c c
p p xy p x

k

k

k
 (67) 

The expressions p ijk  are functions defined in [121] depending on the laminate’s 

stiffness matrix, the layer’s elastic properties and its orientation angle. Simplified 
expressions are derived for the fatigue failure criteria. The inter-laminar shear 
stress is calculated by the formula proposed by Puppo and Evensen in [123] while 
the corresponding strength quantities, including the corresponding fatigue 
function are defined through tests on ±15 angle-ply laminates. The results show 
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a close correlation between inter-laminar shear to the shear fatigue properties of 
the lamina. Normal tension between layers can be neglected. 

Failure events are treated as causes of stress redistributions. The consequent 
change in the complex stress field of each ply is re-evaluated through CLT, 
introducing another stage of fatigue after each failure. The model was 
implemented for the case CA tests on symmetrically balanced E-glass/Epoxy 
laminates with acceptable results.  

2.6.2 Lawrence Wu 

Lawrence Wu [124] proposed a modified version of the Tsai-Hill failure criterion 
for triaxial stress states in order to simulate fatigue of CFRP in finite elements. Its 
form is: 

( ) ( ) ( ) ( )( )= σ − σ + σ − σ + σ − σ + σ + σ + σ
+ +

2 222 2 2 2
y z z x x y yz zx xy

3
f F G H 2L 2M 2N

2 F G H  (68) 

σx, σy, σz, σxy, σzx, σyz are cyclic stresses in the lamina and F, G, H, L, M, N are: 

⎛ ⎞= + + =⎜ ⎟
⎝ ⎠
⎛ ⎞= + + =⎜ ⎟
⎝ ⎠
⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

2 2 2 2

2 2 2 2

2 2 2 2

1 1 1 1 1
F L

2 Y Z X 2Q

1 1 1 1 1
G M

2 Z X Y 2R

1 1 1 1 1
H N

2 X Y Z 2S

 (69) 

X, Y, Z, Q, R and S are normal and shear strength components of the material, 
assumed to be functions of the fatigue life.  

Once the stresses are calculated and the above quantities defined as a function of 
cycles, the failure criterion can be arithmetically solved for life N. Final failure is 
assumed to occur when the failure criterion reaches unity. Even though the 
proposed methodology claims to predict life under CA and 3D fatigue stresses it 
neglects stress redistributions due to damage accumulation and assumes an FPF, 
which is usually extremely conservative. 

 

2.6.3 Fawaz and Ellyin  

The concept of Fawaz & Ellyin is generalized for multidirectional laminates under 
constant amplitude fatigue in [125]. The concept is an extension of their 
previously discussed approach for defining a generalized S-N expression for 
biaxial fatigue based on a reference S-N curve. The reference S-N curve this time 
(parameters m and b) refers to the constitutive lamina being constrained 
between off-axis plies while f is defined as previously as a function of the 
biaxiality ratios α1, α2 through an appropriate static stress failure criterion: 
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( ) ( ) ( )⎡ ⎤σ α α = α α ⋅ +⎣ ⎦1 2 1 2, ,N f , m log N b  (70) 

Using CLT the stresses in individual laminae are computed along with the 
corresponding biaxiality ratios. Using the above equation, the number of cycles to 
failure can be computed for each layer. The shorter life indicates the first ply 
failure after θ1

1N  cycles. Failure degradation is modelled at this point by neglecting 
its properties only in the direction normal to failure. The stress state is then 
altered accordingly for each ply (using again CLT) and new governing S-N 
equations are established. The number of cycles to failure of the laminate can be 
calculated from: 

θ θ

=

= +∑1 i

m

1 i
i 2

N N n
 (71) 

θi
in  is the remaining life of the ith ply that fails and can be given by the following 

expression: 

−
+

α
αα

−
θ + +

= + +
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m

m 3
i i 1 i 2
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n N N

N N N  (72) 

The latter can be considered as a cumulative damage model taking into account 
also sequence effects through the non-linear exponents αi. Each Ni is the fatigue 
life that corresponds to the mth lamina under the (i-1)th cyclic stress applied on it 
and ni is the number of cycles applied during the fatigue stage i. 

It must be noted that no procedure for determining the exponents αi is proposed, 
while the extension of the model to VA cyclic loads would be challenging.  

2.6.4 Jen & Lee 

The methodology developed by Jen and Lee [126], [127], is a CLT based 
approach using the Tsai-Hill failure criterion extended in order to account for 
failure under plane fatigue stresses. The proposed formulation is: 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ σ σ σ σ
+ − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

σ σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2

11 22 11 22 12
2

11 22 11 12

1
 

(73) 

The terms in the denominators are fatigue strength quantities in the principal 
directions and in plane shear assumed to be functions of the corresponding 
number of cycles and stress ratio, while frequency dependence is neglected. 
Different functions are implemented for each principal direction of the basic 
orthotropic ply depending on whether fatigue is in the tension or compression 
dominated regime. Their derivation is based on fatigue testing of the UD material 
at 0°, 90° and 45° (for shear) at various stress ratios, even though no specific 
methodology (e.g. CLD assumption) is proposed. Consequently, the criterion is 



 

36                                                                  Risø-R-1740 

 

divided into four parts according to the four possible combinations or the fatigue 
strength functions: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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Classical lamination theory (CLT) is implemented to derive the stresses of each 
layer in its principal coordinate system. The failure functions having been defined, 
the failure locus for specific fatigue lives is drawn in the σ11-σ22 plane and the 
corresponding fatigue life under the combined stresses is calculated using linear 
interpolation between the different loci.  

Fatigue damage is assumed to accumulate according to the linear Palmgren-Miner 
rule for each ply. In the case of failure of a ply, the stiffness reduction policy 
followed assumes zeroing of all stiffness components except from the fibre 
stiffness which remains unchanged. 

The predictions of the model of Jen and Lee have been verified against CA fatigue 
test results on quasi-isotropic [0/45/90/-45]2S, cross-ply [0/90]2S and angle-ply 
[±45]2S Carbon/PEEK laminates, producing satisfactory predictions in the case of 
fibre dominated laminates and conservative predictions for the angle-ply 
laminate. 

 

2.6.5 Shokrieh & Lessard 

Shokrieh and Lessard proposed the ‘generalized progressive fatigue damage 
model’ for the simulation of the fatigue process in multidirectional laminates 
under general (3-D) loading conditions [12] using the properties of the 
constitutive UD ply. The model is based on a previously proposed methodology 
for UD laminates under multiaxial fatigue [128].  

First, CLT is implemented to perform stress analysis of the multidirectional 
laminate under the current cyclic load. When the stresses and stress ratios at 
each principal direction of each lamina have been defined, the bell-shape CLD 
proposed by Gathercole et al. [40] is used to derive the number of cycles to 
failure corresponding to each principal stress component. Having calculated each 
cyclic stress and fatigue life they proceed by calculating the residual strength 
corresponding to the fibre, transverse and shear strength of each layer according 
to the interaction model of Adam et al. [74]. The stiffness characteristics of each 
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ply are assumed to change due to fatigue following a similar model as that of 
strength degradation. Subsequently, Hashin type failure criteria are used in order 
to distinguish between different modes of failure, where the strength is replaced 
by the residual strength previously calculated. For fibre fatigue failure in tension, 
the following equation is applicable: 

⎧ ⎫⎛ ⎞σ ⎛ ⎞σ⎪ ⎪+ δσ⎜ ⎟ + δσ⎜ ⎟⎪ ⎪⎛ ⎞σ ⎜ ⎟ ⎜ ⎟+ + =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟ + δ+ δ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎝ ⎠⎝ ⎠⎩ ⎭

1
2 22

xy 4 4xz
2 xy xz

xyxx xz
2 2

4t xy xz4
xzxy

xzxy

3 3
2E 4 2E 4

1
X S S 33 SS

2E 42E 4

 
(75) 

σxx, σxy, σxz, are the cyclic normal stress in the fiber direction, in-plane shear and 
out-of-plane shear respectively. Xt is the on-axis residual tensile strength of the 
UD ply, Exy and Exz are the residual shear moduli (in-plane and out-of-plane). Sxy, 
Sxz are the corresponding residual shear strengths. Finally, parameter δ is a 
constant, expressing the non-linear impact of the shear components on tensile 
fiber failure. Similar criteria are assumed for fatigue failure under fiber 
compression (σxx <0), fiber-matrix shearing (σxx <0), matrix tension, (σyy>0), 
matrix compression (σyy<0) ), normal tension (σzz>0)and normal compression 
(σzz<0). 

Whenever fatigue failure according one of these failure modes occurs, sudden 
degradation rules are imposed on the elastic and strength components of the 
corresponding ply. The rules for this degradation are summarized in the following 
table: 

Table 2 Sudden degradation rules according to failure mode for the model of Shokrieh & Lessard 

Failure Mode Strength Matrix Stiffness Matrix 

 Xt Xc Yt Yc Zt Zc Sxy Sxz Syz Exx Eyy Ezz Exy Exz Eyz vxy vxz vyz vyx vzx vzy 

Fiber Tension 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fiber Compression 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Matrix Tension   0        0  0     0 0   

Matrix Compression    0       0       0 0   

Fiber-Matrix 
Shearing 

      0      0   0   0   

Normal Tension     0       0        0 0 

Normal Compression      0              0 0 

This modeling approach incorporates in a phenomenological way the effect of 
some important mechanisms as discussed by other authors, e.g. Reifsnider, on a 
more mechanistic base. These are mainly the strength and stiffness degradation 
of the plies due to fatigue, the failure degradation imposed and the distinction 
between different failure modes of fatigue failure. Stiffness changes are causing 
stress redistributions between plies, while residual strength provides both a 
damage accumulation metric and a fatigue failure parameter through its direct 
application on the failure criteria. 

The required experiments for material characterization include static tests on the 
UD ply to define all its stiffness/static strength components as well as fatigue 
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tests (monitoring the stiffness degradation) to derive the CLDs in the fiber 
direction, transversely to the fiber and in shear, both in-plane and out-of-plane. 
Finally, residual strength tests are necessary in all principal directions of the basic 
ply, in order to fit the corresponding parameters. Simplified expressions and 
reduced experimental effort is required if plane stress fields are assumed. 

The generalized progressive fatigue damage model is implemented in FEM code 
and verified against the experimental tests on pin/bolt loaded, Graphite/Epoxy 
multidirectional composite laminates of Herrington & Sabbaghian [129] with 
satisfactory predictions (see [130]).  

 

2.6.6 Tserpes et al 

Tserpes et al. [131] developed another 3-D progressive damage model in a 
context similar to that of Shokrieh and Lessard. The failure analysis adopted in 
this case assumes quadratic failure functions for matrix tensile and compressive 
cracking, fibre-matrix shear as well as for two modes of delamination (in tension 
and compression), the later related to the normal stress component and out-of 
plane shear stresses. The sudden degradation rules, due to the different failure 
modes, are imposed only on the stiffness properties of the corresponding ply as a 
means of stress redistribution after failure. In contrast to the model of Shokrieh 
considering zeroing of both strength and elastic properties, in this case they are 
assumed to degrade according to constant degradation factors, which are 
summarized in Table 3. 

Table 3 Sudden degradation rules according to failure mode for the model of Tserpes at al. 

Failure Mode Stiffness Matrix 

 Exx Eyy Ezz Exy Exz Eyz vxy vxz vyz vyx vzx vzy 

Fiber Tension 0,07            

Fiber Compression 0,14            

Matrix Tension  0,2  0,2  0,2       

Matrix Compression  0,4  0,4  0,4       

Fiber-Matrix 
Shearing 

   0         

Delamination  

Tens.-Compr. 

  0  0 0       

For modelling fatigue modulus degradation in each direction of the constitutive 
ply, a linear function of the life fraction is assumed. Nfij is the fatigue life in the ij 
direction, S

ijE is the corresponding static modulus and A is a fitted parameter: 

( )
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟=

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ij

F S
ij ij

f

n
E n A E

N  (76) 

Residual strength is assumed to degrade following a second order polynomial, in 
which S

ijT and F
ijT  refers to static and residual strength respectively. B and C are 

fitted parameters. 
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⎝ ⎠ ⎝ ⎠⎣ ⎦ij ij

2

F S
ij ij

f f

n n
T n B C T

N N  (77) 

The methodology has been implemented in FEM code and validated satisfactorily 
against experimental data from multidirectional laminates.  

2.6.7 Himmel 

Himmel introduced in [132] an engineering lamina to laminate methodology 
based on the ‘critical element’ philosophy to predict the fatigue behaviour of 
tubular ±45 specimens under pure torsion cyclic loads.  

The S-N formulation adopted is in the following form, where α0, β, σΕ and n0 are 
constant parameters fitted on the fatigue data: 

( ) ( )Ε+ = α − β σ − σ0 0 maxlog N n log
 

(78) 

In order to generalize the fatigue life estimation to arbitrary stress ratio, the Bell 
shape CLD of Harris initially proposed was finally rejected due to its numerical 
intensity. Instead a linear Goodman formulation based on the R=0.4 S-N curve 
was finally implemented.  

The stiffness degradation model assumes linear dependence on the number of 
cycles n: 

( )
= − Δ2

2
2

E n n
1 E

E N       where     ( )Δ = σ
b

2 maxE d
 

(79) 

ΔΕ2 is the transverse stiffness degradation at failure, assumed to be a non-linear 
function of the applied external stress (torsional shear stress in their case). d and 
b are constants. 

Subsequently, a plane stress fatigue failure criterion must be used. Himmel 
chooses the following quadratic Tsai/Wu type formulation, where the 
denominators denote residual strength components in the corresponding principal 
direction of the ply and a12 is a fatigue life function ideally defined through biaxial 
tests on UD laminates. Practically however, ( )=σ1,zf N 1  and ( )=σ2,zf N 1  are taken as the 

corresponding stress components on the UD layer calculated from static strength 
tests on the MD laminate. 

( ) ( )

( )

( )

( )

( )

( )

( ) ( )
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= =
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Finally, the non-linear residual strength equation proposed by Reifsnider for the 
critical element is adopted, in order to model damage accumulation under varying 
cyclic stresses. 

 

2.6.8 Passipoularidis & Philippidis 

Another formulation following the same concept of progressive damage fatigue 
modelling has been proposed by Passipoularidis & Philippidis in [133].  

Stiffness degradation due to fatigue is assumed to be described by the following 
expression, which applies with different fitting parameters k, λ to all moduli of 
each ply in the laminate: 

( ) ( )
λ

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

i

i0

E n n
1 1 k

E N  
(81) 

Strength is degrades according to the linear strength degradation model of 
Broutman and Sahu, since the impact of choosing between different strength 
degradation formulations was previously shown to be limited [36] while 
significant cost is saved from residual strength characterization of the UD lamina.  

The failure criterion adopted is based on the static failure criterion of Puck [134], 
[135], [136] and accounts for 5 different damage modes: The first two refer to 
fibre failure in tension and compression: 

T 1
E(FF) 1 f12 f 12 2

T f1

E1
f +( m - ) 1

X E σ

⎡ ⎤
= σ ν ν σ ≤⎢ ⎥

⎣ ⎦  

(82) 

( )2C 1
E(FF) 1 f12 f 12 2 6

C f1

E1
f +( m - ) 10 1

X E σ= σ ν ν σ + ε ≤
 

(83) 

Regarding matrix -or inter fibre- failure (IFF), three distinct cases are taken into 
account by the failure criterion. The first one is mode A described by eq.(3) and is 
caused by tensile stresses in the transverse direction. The other two refer to 
compressive stresses in the transverse direction and the first one, called mode B 
(eq.(85)) initiates for relatively high values of in-plane shear and results in matrix 
cracking transversely to the normal stress direction that tends to close. When 
transverse compressive stress increases with respect to the shear stress the 
failure mode changes to a more damaging one, called mode C described by 
eq.(86), which causes cracks at a plane that is not perpendicular to the one 
defined by the in plane stresses. This explosive failure mode could lead to 
delaminations and/or local buckling. 

2 62 2
A ( ) ( )6 2 2 1
E(IFF) II II

T 1D

Y
f 1 p p 1

S S Y S
+ +Τ
⊥ ⊥

⎛ ⎞σ σ σ σ⎛ ⎞ ⎛ ⎞
= + − + + ≤⎜ ⎟⎜ ⎟ ⎜ ⎟ σ⎝ ⎠⎝ ⎠ ⎝ ⎠  

(84) 
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(86) 

XT, XC, YT, YC stand for the on-axis and transverse tensile and compressive 
strength respectively. E1 and v12 are the on-axis Young modulus and Poisson ratio 
of the UD ply while Ef1 and vf12 are the respective quantities of the fibre. The term 
mσf accounts for a stress magnification effect caused by the difference between 
the moduli of fibre and matrix. S is the in-plane shear strength of the ply. The 
term σ1/σ1D accounts for matrix damage due to statistical fibre breakage before σ1 
reaches its ultimate XT, while factors ( )

IIp +
⊥  and ( )

IIp −
⊥ represent the slopes of the 

failure locus (σ2, σ6) at σ2=0+ and σ2=0- respectively. Finally, parameter ( )p −
⊥⊥  

stands for the inclination of the above mentioned failure locus at zero transverse 
stress. 

At inter-fibre failure of a ply, sudden degradation is imposed using a degradation 
coefficient, being a function of the inter-fibre failure effort (i.e. the value of the 
corresponding failure criterion): 

r
r

E(IFF)

1
1 c(f 1)ξ

− η
η = + η

+ −  

(87) 

The discount policy according to each damage mode is resumed in the Table 4. 

Table 4  Discount policy due to failure assumed by Passipoularidis & Philippidis 

Failure Mode Degradation Imposed 

IFF(A) 
E2 = ηE2 

G12 = ηG12 

IFF(B) G12 = ηG12 

IFF(C) 
E2 = 0.1 E2 

G12 = 0.1 G12 

The model was implemented to CA fatigue data in on-axis and off-axis MD 
Glass/Epoxy laminates with satisfactory results. 

 

2.6.9 Dzenis 

Dzenis suggests in [137] a stochastic meso-mechanics model. Each ply of the 
multidirectional laminate is attributed stochastic (normally distributed) in-plane 
elastic characteristics. Based on these and on the randomly distributed thickness 
and orientation angle of each ply, the stochastic effective properties of the 
laminate can be calculated. Then, the externally applied plane stress field, 
assumed to be a quasi-stationary cyclic process, can be used to calculate the 
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mathematical expectations ( εi , ε& i ) and dispersions ( εi
D , ε&i

D ) of the laminate’s 

strains and strain derivatives: 
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K are the autocorrelation functions and ijS  are current laminate compliances. 

Stresses and strains in the plies are subsequently calculated using CLT. Once the 
stochastic stress-strain field of each ply is calculated, the model proceeds with 
the calculation of the probability of failure, given by: 

( ) ( )
⎛ ⎞

= − − τ τ⎜ ⎟
⎝ ⎠
∫
t

0

p t 1 exp v d
 (89) 

Where v(τ) is the mathematical expectation of the mean number of excursions of 
the failure condition (Ξ) by the value of the failure criterion used (ξ) per unit 
time. 
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Φ is the Laplace function. Both ξ and Ξ are assumed to be stochastic processes 
described by their mathematical expectations ξ , Ξ  and their dispersions ξD , ΞD . 

Three failure criteria are proposed, maximum stress, maximum strain and the 
Tsai-Hill failure function.  

The above concept is applied on a mesovolume scale, i.e. to a structurally 
homogeneous part of the ply, small enough to satisfy the condition of stochastic 
homogeneity of the stress and strain fields. Stiffness degradation in each ply is 
then evaluated through the assumption that the relative fraction of broken 
mesovolumes is proportional to the probability of failure p(t) for each ply, 
introduced this way as a damage function. 

The model uses explicit integration over each cycles thus claiming to account for 
effects such as the shape of the cycle, frequency etc. Theoretical predictions are 
produced for simple CA cyclic loads. 
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2.7 Counting Algorithms 

Cycle counting is the first procedure any loading spectrum must undergo in order 
to be analyzed and processed in terms of constant amplitude fatigue cycles. 
Several methods have been proposed for counting the cycles of a spectrum. A 
review of such methods can be fount in [138]. 

Level Crossing Counting. According to this method the load axis is divided into a 
number of preset stress levels and one counting is recorded each time the load 
exceeds one. When all level crossings have been recorded, cycles can be formed 
by constructing first the largest possible cycle, then the second largest etc until 
all level crossings have been used. This way the spectral loading is transformed 
into a series of decreasing amplitude cycles. Of course, once this -most 
damaging- counting scenario has been obtained, the cycles can be rearranged in 
any desired order inducing secondary load-sequence effects.  

Peak Counting. As in the above case, the procedure focuses on the identification 
of peaks and troughs of the considered spectrum. Once all these have been 
obtained, the first cycle is constructed by combining the highest peak with the 
lower trough etc, until all peaks have been used.  

Both peak and level crossing counting methods yield most damaging cycle 
counting results, since they focus on the construction of the largest cycles 
possibly obtained from a specific spectrum. Further on, they totally neglect the 
order of occurrence of each loading event and thus load sequence effects, which 
depending on the shape of the spectrum could have a considerable effect, cannot 
be taken into account. 

Simple Range Counting. This most simple method considers a range, i.e. the 
difference between two successive load reversals, to be one half cycle. Even 
though the order of occurrence of loading events is retained during counting, 
large cycles having a major impact on fatigue analysis may not be recorded by 
this counting procedure if they include smaller load fluctuations which will divide 
them into several smaller ranges. 

Rainflow Counting. This name represents a family of methodologies developed 
from the early 1960s in an effort to analyze a spectrum into loading cycles as 
accurately as possible, i.e. based on stress-strain events (hysteresis loops) 
occurring inside the material during fatigue. The method has been introduced 
almost simultaneously by Matsuishi and Endo [139] (accessible in English in 
[140]) and de Jonge [141] the latter calling the algorithm range-pair method. 

A schematic interpretation of how a rainflow algorithm records cycles is shown in 
Fig. 62, in which a part of a loading spectrum (left) is interpreted in terms of 
stress-strain curves on the right hand side. The result counts three cycles (BC, EF 
and GH) while the segment AH that remains once closed cycles points are 
discarded is called residual. 
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Fig. 7  Load time history and corresponding qualitative stress-strain graph, showing the hysteresis loops (BC, EF and 
DG) counted by Rainflow algorithm. 

When all loops have been counted, it is possible that a number peaks and troughs 
(called residual) still remain. different strategies can be followed in treating the 
residual. 

Considering several alternatives for counting cycles of stress-strain histories 
Dowling proposed the Rainflow (or Range-pair method) to give the most accurate 
cycle content for fatigue analysis [142]. Actually the two algorithms give very 
similar results in most situations while the results are identical when the 
sequence is rearranged starting with the maximum peak or minimum valley. 

Downing and Socie [143] proposed two slightly alternate algorithms. The first 
one, ‘Algorithm I’, requires rearrangement of the spectrum so that it starts with 
its maximum or minimum value. ‘Algorithm II’ counts a history of peaks and 
troughs, without rearranging them, in sequence as they occur. The closed loops 
are recorded immediately after completion while the remaining peaks and troughs 
are processed again. 

Glinka & Kam [144] proposed an alternate Rainflow algorithm for counting long 
time-series by dividing them into smaller parts called blocks. No spectrum 
rearrangement is required according to their method. 

Rychlik provided in [145] an alternative definition of the rainflow counting process 
based on comparing each peak in the spectrum with all the signal’s previous and 
following down- and up-crossing respectively, resulting in counting full or half 
cycles depending on simple rules. This approach has been used in attempts to 
implement the rainflow algorithm in the frequency domain, as will be discussed 
later on. 

Another alternative algorithm for counting the cycles using rainflow has been 
proposed by Hong [146]. The residual can either be treated as half cycles or 
rearranged so that it starts and ends with its maximum peak. 

Amzallag [147], suggests two alternative ways of treating the residual: Either add 
the residual to itself and extract a number of full cycles (decomposition of residue 
into cycles) or reconstruct the residual as a loading sequence by inserting cycles 
into it simple rules. 

A 

B 

C 

D 

E 

F 

G 

 

A 

B 

C 

D 

E 

F 

 

G 

H 

Lo
ad

 H 

Time Strain 

S
tr

es



 

Risø-R-1740                                                                                                                                              45 

 

The modification of Rainflow proposed by Anthes [148] is an attempt to keep the 
load sequence by considering rising half cycles that do not form a hysteresis loop 
as ‘virtual hysteresis loops’ that either close later by a decreasing segment or are 
combined with subsequent virtual loops. The reasoning is to appoint the damage 
events in an order of occurrence as accurate as possible. 

A number of efforts have been recorded for the generalization of rainflow 
counting algorithm under multiaxial stress states. In the multiaxial case the 
identification of closed hysteresis loops is difficult, while out of phase cycling 
further complicates the problem. Consequently, most approaches use equivalent 
stress quantities to reduce the multiaxial problem to a uniaxial one, which 
restricts such solutions to isotropic materials. 

Bannantine and Socie [149] considered the fatigue process in metals to be driven 
by shear stresses and used assumed reasonable to reduce the problem to uniaxial 
rainflow counting of the maximum shear component. 

Wang and Brown [150] suggested a critical plane based approach to propose a 
multiaxial rainflow algorithm for non-proportional loadings. 

Chu & Chu CC, [151] introduced the incremental damage concept, defining the 
cycles indirectly using two simple rules for tracking the damage rate in respect to 
the stress amplitude. This alternative definition of closed hysteresis loops can be 
generalized for multiaxial fatigue stresses provided an equivalent stress is 
assumed (to reduce the problem to a uniaxial one). The one they propose is the 
flow stress, representing the ‘equivalent’ hysteretic behaviour under such 
loadings. 

Langlais et al. [152] use again a critical plane based approach to reduce the order 
of the problem in the general case of non-proportional cycling. According to their 
modification, before discarding a counted cycle, information from all directions 
(channels) must be considered in order to choose the most damaging case. 

A different concept has been used by Beste et al. In [153] according to which, 
cycles are counted for every possible linear combination of the plane stress 
components. Subsequently, the damage is assessed for each combination so that 
the most critical set of parameters is determined. This method is similar to the 
definition of an equivalent stress with the coefficients of the stress components 
optimized for maximum fatigue damage, once rainflow counting has been 
performed on each occurring series of the equivalent quantity. The procedure of 
course is computationally intensive.  
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3 FREQUENCY DOMAIN 

3.1 Introduction 

 

In general, fatigue calculations of composite structures undergoing random loads 
is performed in the time domain. The required input is load-time series which are 
produced by applying random loads of specific characteristics (e.g. stochastic 
wind loads) to the structure, component or structural detail using a simulation 
procedure. In this procedure a number of issues are inherently involved: The first 
has to do with the realistic representation of all the random load’s characteristics 
to the time-load series generated. This may require the simulation of a long time 
period in order to include peaks that are more damaging but less frequent. A 
second issue is that fatigue calculations in the time domain are time consuming, 
especially regarding large structures with complicated geometry where the 
calculation must e performed at a large number of points. Furthermore, different 
fatigue load cases must each time be considered, which multiplies the effort and 
time, while the things become even more complicated when accounting for 
multiaxial fatigue in laminated structures and progressive damage approaches. 

When the random input signal itself is available in the form of a power spectral 
density function or psd, i.e a scalar function that describes how the power of the 
time signal is distributed among frequencies, significant time could be saved if 
fatigue calculations could be performed directly in the frequency domain. Such a 
task requires the expression of cycles experienced by the material during fatigue 
as a function of the imposed load’s statistical characteristics as well as the 
calculation of the fatigue damage induced by these cycles based on fatigue 
properties of the material and some sort of cumulative damage rule. 

The former task can be performed by correlating the fatigue response of the 
material with the nth order moments of the input signal’s power spectral density 
(PSD), which are functions of the following form: 

( )
∞

λ = ∫ n
n

0

f G f df  (91) 

Where f is the frequency in Hz and G(f) is the one sided PSD of a stationary zero 
mean stress process x(t). Various observable quantities of the signal x(t) can be 
related to spectral moments. For instance, the root mean square ( RMSS ), number 
of zero crossings with positive slope (v) and rate of peak occurrences nP, are 
expressed as functions of spectral moments, provided that the stochastic process 
is Gaussian: 

= λ

λ
=

π λ

λ
=

λ
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S

1
v

2
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 (92) 
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It is also possible to define the irregularity factor α, relating the rate of zero 
crossings to the rate of peak occurrences, as: 

λ
α =

λ λ
2

0 4
 (93) 

In order to formulate a spectral fatigue damage method one must assume an S-N 
curve equation which must be fitted to experimental fatigue data for the material, 
e.g. the log-log S-N curve: 

= mN KS  (94) 

In order to account for the different amount of fatigue damage induced by cycles 
of different characteristics a damage accumulation rule must be assumed. This is 
usually the previously mentioned Palmgren-Miner rule described by the following 
expression for the total fatigue damage after k cycles: 

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

k
i

i 1 i

n
D

N  (95) 

In order to develop a spectral method for deriving the total fatigue damage 
directly through the signal’s PSD, the probability distribution of the number of 
cycle ranges, corresponding to the considered spectrum, must be obtained. When 
the latter is known (P(S)), it is possible to derive the number of cycles 
corresponding to a specific stress range S, at a given time period T, through the 
following expression: 

( ) ( )= Sn S n TP S  (96) 

nS is the expected number of range occurrences per unit time. Subsequently the 
expected fatigue damage over period T due to the stochastic load can be 
calculated through: 

( )
( )

( )
( )

∞ ∞

= = =∫ ∫S
0 0

n S P S
D dS n T dS 1

N S N S  (97) 

In the above expression, N(S) is known through the S-N curve of the material. 
The expected rate of stress ranges for instance can be reasonably assumed equal 
to the rate of peaks in the spectrum, which is calculated above as a function of 
the PSD moments. The problem often encountered, has to do with the calculation 
of the probability distribution of stress ranges corresponding to the signal’s PSD. 
Even though analytical solutions have been approximated for certain types PSD 
types, the probability distribution of the stress ranges cannot be derived 
analytically directly from the signal’s PSD, especially the ranges counted by 
Rainflow algorithm, providing the best possible count available. This is the major 
drawback of spectral methods. A indirect way to derive P(S) is by simulating long 
time series based on the stochastic signal and then perform counting of the 
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ranges obtained in the time domain, using a rainflow algorithm. The result is a 
simulated PDF for the counted ranges, according to which the fatigue damage can 
be calculated by the above expression Eq.(97). 

In order to overcome or bypass this problem in an efficient way, thus improving 
the speed of fatigue calculations, several methods have been proposed for simple 
or more general cases of stochastic signals (i.e. different PSD functions). A review 
of those methods, referred to in general as spectral fatigue methods, is 
attempted in the following paragraphs. 

A common approach in literature is assuming for different cases of stochastic 
processes. An overview of such methods is given below. 

 

3.2 Narrow-band Processes 

A narrowband process (α→ 0) is characterized by one dominant central 
frequency. A signal of this type is shown in the following figure. It can be seen 
that each peak is followed by a trough of nearly the same amplitude and opposite 
sign. This implies that the probability density function (PDF) of stress ranges can 
be approximated by that of peak occurrences, which can be calculated 
analytically. 

 

 

Fig. 8  : Narrow-band stochastic process 

Provided that the input signal is Gaussian and narrow-band, the PDF of stress 
ranges is proved to follow a Rayleigh distribution depending only on the zero 
order moment [154], [155]: 

( ) ⎛ ⎞
= −⎜ ⎟λ λ⎝ ⎠

2

0 0

S S
p S exp

2  (98) 

This formulation, known as Rayleigh approximation, and has been widely used in 
literature. Since a zero-mean stationary process of this kind corresponds to an 
alternating load having one peak frequency, the Rayleigh method formulates, in 
the frequency domain, the fatigue process of stochastic amplitude at R=-1 under 
constant frequency. Different stress ratios can be accounted for through use of a 
Goodman type equation (CLD). The expected damage from a single cycle [ ]Δ iE D  

is: 



 

Risø-R-1740                                                                                                                                              49 

 

[ ] ⎛ ⎞Δ = Γ +⎜ ⎟
⎝ ⎠

m
m2

i RMS

1 m
E D 2 S 1

K 2  (99) 

where RMSS is the root-mean-square stress and Γ is the gamma function. 

The Rayleigh approximation formulated above is derived under the assumption of 
Palmgren-Miner rule and log-log S-N curve. Nevertheless, in composites the 
former has been widely criticized for not taking into account sequence effects, 
while different expressions could be chosen for the latter. 

In order to investigate the effect of S-N curve equation used, Sakrani considered 
in [156] narrow-band stochastic loads in damage accumulation using the Rayleigh 
approximation in FRPs assuming three S-N curve formulations (lin-log, log-log 
and bi-linear) along with the linear Palmgren-Miner rule. The conclusion was that 
for all S-N curves, predictions were (similarly) poor compared to the stochastic 
fatigue tests data, which were performed on different types of bolted joints.  

Regarding the validity of the linear damage accumulation rule, Sakrani et al. 
[157], investigated the application of different non-linear damage accumulation 
methods (formulated in the time domain) validated against the spectral Rayleigh 
method. Residual strength and stiffness degradation based models were used for 
the comparison. Narrow band stochastic stress histories were simulated, 
concluding that similar (conservative) predictions are obtained for all damage 
rules. 

Younesian et at [158] implemented the Rayleigh approximation method to steel 
train bogies and compared the results with a load time series derived through 
FEM simulation. Their results showed the Rayleigh method results to be less 
conservative than those from the simulation. 

When the adjacent peaks are not perfectly correlated the Rayleigh approximation 
results deviate from the corresponding rainflow count. Yang [159] generalized the 
method for non-perfectly correlated signals, using a formulation that involves the 
hypergeometric function. Krenk for the same case [160] used a correction factor 
λk=αm-1 (m is the S-N curve slope and α the irregularity factor) for the damage 
predicted by the Rayleigh method, while a different correction factor is proposed 
by Winterstein and Cornell [161]. 

3.3 Broad-band Processes 

Assuming equality of peak and cyclic range probability distributions for the 
general case of bi-modal or broad-band PSD functions usually large conservative 
errors occur since that fundamentally implies that one stress range per peak is 
assumed. This inefficiency becomes evident in the following figure, where a 
bimodal signal is displayed in the time domain. If the peak rate of the signal in 
the upper part of the figure is equated to its counted stress-range rate, the 
ranges shown in grey in the lower part would implicitly be assumed. This 
suggests a far worst scenario, leading to conservative life estimates. 
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Fig. 9  Bi-modal narrow-band stochastic signal and signal count using the peak counting assumption (bottom). 

 

Various efforts to develop spectral methods correcting this effect for this 
particular type of PSD have appeared up to-date. Braccesi [162] lately divided 
these approaches in three categories. The first engulfs theories that implement 
coefficients based on spectral moments to generalize the narrow-band 
approximation to other types of power spectral densities. The second includes 
theories trying to express the PDF as a function of basic probability distributions, 
whose parameters can be defined experimentally as functions of the spectral 
moments. Finally, efforts for deriving analytically the PDF of rainflow counted 
ranges are distinguished. 

The presentation of methodologies regarding broad-band stochastic processes 
attempted herein distinguishes between (a) those that implement a correction 
factor to the narrow band approximation, (b) those that use analytical 
expressions for the PDF of peaks modified accordingly to express the PDF of the 
counted ranges, (c) combinations of standard distributions to describe the above 
PDF and (d) methods for analytically deriving the PDF of the counted cycles. 

 

3.3.1 Correction Factors 

Wirsching [163] introduced an indirect approach to deal with the problem of 
fatigue damage accumulation under broad-band stochastic loading. The idea was 
to approximate the stochastic load by a narrow-band to simplify the procedure 
and using modification factors to amend the initial result: 

[ ] ⎛ ⎞Δ = Γ +⎜ ⎟
⎝ ⎠

m
m2

i RMS

1 m
E D Cor 2 S 1

K 2  (100) 

The correction factor λw is a function of the bandwidth parameter ε = − α21  and 
the S-N curve slope m: 
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( ) ( )( ) −
= − + − − ε

1.587m 2.323
Cor 0.926 0.033m 0.074 0.033m 1  

(101) 

Madsen et al. used [] for the same purpose another correction factor: 

( )= + α
m5Cor 0,93 0,07  

(102) 

Madsen et al. suggested that under boad-band processes it is not appropriate to 
pair every positive peak with an equal negative valley [164]. Alternatively, they 
proposed the counting of the number of up-crossings of a random level. Their 
narrow-band approximation results in a correction factor for the expected 
damage, equal to the irregularity factor α. The expected damage is: 

[ ] ⎛ ⎞= α Γ +⎜ ⎟
⎝ ⎠

m
m2

P RMS

1 m
E D n 2 S 1

K 2  (103) 

In the same work, the expected damage for the case of Range counting algorithm 
instead of Rainflow is derived and found to be related to both the irregularity 
factor and the S-N curve slope, through a correction factor Cor=αm. 

It is interesting to note that according to Tovo [165] the damage induced by 
performing Rainflow counting has a lower bound, which is the damage calculated 
by the above expression (using range counting Cor= αm), and an upper bound 
which is the damage assuming level up-crossing (Cor= α). In that sense Eq.(103) 
provides a non-conservative boundary solution. The problem of course is that the 
spread between these two bounds is usually quite large. This is especially true for 
composites where m is in the order of 10. The expected damage approximating 
rainflow counting that he proposes [183] is based on an intermediate value of the 
correction factor: 

( ) −⎡ ⎤= α + − α⎣ ⎦
k 1Cor b 1 b  (104) 

where the parameter b is approximated by: 

⎧ ⎫α − α λ
= α =⎨ ⎬− α λ λ⎩ ⎭

1 1
1

1 0 2

b min ,1 where
1  (105) 

Another correction factor based on the Rayleigh approximated PSD is also 
proposed by Ortiz and Chen [166], where b=m/2: 

+

⎛ ⎞
= ⎜ ⎟α ⎝ ⎠

1
2

2 b

0 2 b

m m1
Cor

m m  
(106) 

Lutes et al. [167] uses the Rayleigh approximation to propose the Single Moment 
(SM) method (based on a single PSD moment) in order to improve the Rayleigh 
method results for bimodal psd functions. Their correction factor is: 
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= λm 2
2 mCor  (107) 

Jiao and Moan [168] extended the narrow-band approximation for the case of 
stochastic processes with two separate peaks in the PSD distribution. The 
correction factor is: 

+
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(108) 

mij stands for the ith order moment of the narrow band process represented by 
the corresponding peak j of the bimodal PSD function and m is the slope of the 
log-log S-N curve equation. 

A similar concept was adopted by Kihl at al. [169] based on narrow band, 
normally distributed loads to predict broad-band, non-Gaussian stochastic loads 
by multiplying the expected value for damage of the former by a factor λ, defined 
numerically through simulation using Rainflow analysis. 

 

3.3.2 Analytical Expressions 

While retaining the peak counting assumption, various researchers tried to 
express the peak (and counted ranges) distribution for the case of broadband 
PSD functions. An analytical expression to this end has been proposed and is 
known as the Rice distribution [170]: 

( ) ( )

( )
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−
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2 22 12 2 2

2
where erf u e dt

 (109) 

where σ is the RMS value of the stochastic signal (or else its zeroth moment). This 
equation for a narrow-band (a=1) and a wide band signal (a=0) reduces to the 
Rayleigh and Gaussian PDF distribution respectively. 

Wirsching and Light [171] based on the above distribution proposed an 
approximation of the fatigue damage caused by a broad-band stochastic fatigue 
process x(t), assuming the peak approximation in the broad-band signal under 
consideration. The incremental damage is: 
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(110) 

α is the irregularity factor discussed above. The integral in the above expression 
can only be evaluated numerically.  

Also based on the Rice distribution, Chaudhury and Dover in [172], proposed the 
following expression for fatigue damage, through the assumption of a fixed value 
for the error function (erf=1/2) of the peaks PDF. The expression for its expected 
value: 

[ ] ( ) ( ) +⎧ ⎫− α⎪ ⎪+ +⎛ ⎞ ⎛ ⎞= σ Γ + αΓ⎨ ⎬⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠⎪ ⎪
⎩ ⎭

m 2
2

m

p

11 m 1 m 2
E D n 2 2 0.75

K 2 22  (111) 

Using the above formulation they suggested an ‘weighted average stress range’, 
equivalent to a cyclic range that would induce the same fatigue damage when 
applied for the same number of cycles as during the stochastic process. According 
to their data from offshore structures under different sea states, the damage 
calculated by the above expression is close to the one obtained through Rainflow 
counting of a simulated time-series. 

Kam and Dover [173] proposed in a subsequent publication a different expression 
for the error function, being a 7th order polynomial of the irregularity factor for 
α<0.96 and erf(x)=1 for α>0.96. Kam also proposes in [174] other possible 
formulations for the error function and performs a comparison between different 
models in the crack growth rate under different broad-band signals. 

Abdo and Rackwitz [175] analytically derived the expected damage given above 
by Kam and Dover, yielding: 

[ ] ( ) ( ) +⎧ ⎫− α ⎛ ⎞⎪ ⎪+ + α⎛ ⎞ ⎛ ⎞= σ Γ + αΓ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠ − α⎝ ⎠⎪ ⎪
⎩ ⎭

m 2
2

m

p v 2

11 m 1 m 2
E D n 2 2 T v

K 2 22 1  (112) 

Tv is the Student’s central t-distribution with v=m+2 degrees of freedom. Abdo 
and Rackwitz also suggested an expression to derive the expected value only of 
positive peaks, since negative peaks do not assumingly contribute to damage. 
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3.3.3 Using a Combination of Distributions  

The second category includes semi-empirical methods that approximate the 
stress range distribution through a combination of basic distributions for the 
peaks. The most characteristic method in this category is Dirlik’s formula [176], 
using for this purpose one exponential and two Rayleigh distributions. The 
formula is: 
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The formula of Dirlik has been applied to fatigue life prediction of WT rotor blades 
by Bishop et al. [177], [178] 

Another alternative for the same approach was proposed by Lutes (see Appendix 
of [179]) by approximating the distribution of the peaks of a normal process by a 
linear combination of a Gaussian and a Rayleigh distribution. The resulted 
incremental fatigue damage in this case is: 

[ ] ( )
( ) ( )
⎡ ⎤− α ⎛ ⎞α α + α +⎛ ⎞ ⎛ ⎞Δ = − − Γ + Γ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ α + απ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

3m 2
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11 1 1 m 2 1 m
E D 2 S 1

K 1 3 4 2 1 2  (114) 

Sakai and Okamura [180] considered the case of PSD functions with two 
dominant vibration modes and used two Rayleigh distributions to evaluate fatigue 
life by applying appropriate weighting factors. The two frequencies however must 
be well separated. The predicted fatigue life is: 

⎛ ⎞ + ++⎜ ⎟
⎝ ⎠
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1 2

2 K 1
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2
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λ
i,j
 stands for the ith moment of the j Rayleigh distribution 

Fu and Cebon [181] also focused on bimodal psd functions. As Sakai et al. they 
assumed two Rayleigh distributions for the ranges corresponding to the two 
peaks of the psd.  
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Zhao and Baker in [182] assumed the stress range distribution to be a 
combination of a Weibull and a Rayleigh distributions. Specific values are 
attributed to the Weibull shape and scale parameters depending on the value of 
the irregularity factor. The expected damage at cycle N is: 

[ ] ( )( )−⎡ ⎤+ +⎛ ⎞ ⎛ ⎞= Ν Γ α + − Γ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

m m
m b

1 b m 2 m
E D 2 w 1 w 2

K b 2  (117) 

Where the weighting factor w is: 
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3.3.4 Counting  

All previously discussed spectral methods try to solve the problem of deriving the 
PDF of the stress ranges from a broadband PSD, using different assumptions 
based on the correlation between the distribution of peaks and the distribution of 
stress ranges. A number of methods on the other hand, focus directly on the 
problem of counting the stress ranges from the PSD, proposing solutions for the 
theoretical derivation of its PDF. The most adequate solution to the problem 
should incorporate counting of the hysteresis loops applied on the material. This 
is, as already discussed, the most accurate way of transforming a random 
sequence of peaks and troughs to fatigue cycles and is usually performed through 
rainflow counting. This derivation however is very complex and no analytical 
solution has been proposed to date. 

An alternative to the rainflow counting is range counting, assuming a half cycle 
event between each peak and trough of the stochastic signal. This half cycle is 
subsequently paired with a same half cycle of the opposite direction, thus forming 
one full cycle. In that case the problem is the derivation of the probability 
distribution between two neighbouring extremes of the spectrum which has been 
approximated analytically [183], with the following result, as presented by Tuna 
[184]: 
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μ, S is the mean stress and stess range, while p(μ,S) is joint probability function 

Despite the analytical expression available for the range counting spectrum, as 
discussed in [185], their result in terms of fatigue damage is the lower bound of 
the rainflow counting result which expresses the inefficiency of Range counting 
and leads to non-conservative predictions. This is why special interest is shown in 
developing techniques to calculate the probability distribution of rainflow-counted 
stress ranges. 

The most widely cited approach in this direction is the procedure proposed by 
Rychlik [145]. Based on this definition of the rainflow process Rychlik et al. 
attempted to approximate the probability of each spectrum’s peak to satisfy the 
counting criterion through a Markov chain [186]. Using this assumption one can 
numerically calculate the conditional probability of the signal crossing a certain 
level having already crossed it before (see [187],[188]).  

In an effort to simplify the above process, Bishop and Sherratt [189] proposed to 
derive the transition probability matrix using the Kowalewski probability density 
function for the dependence between adjacent peaks, though they note this is an 
approximate solution. 

Olagnon [190] based on the same approach as above, performed computations 
leading to algorithmic expressions for the elements of the Markov chain transition 
matrices. This way the probability of each peak satisfying the criteria proposed by 
Rychlik can be calculated based on the construction of a transition (from-to) 
probability matrix, which is in turn based on the probability of a peak or trough 
being of a specific level. 

 

3.3.5 Complex Stresses 

Taking into account complex stress effects during stochastic fatigue of isotropic 
materials, in the frequency domain, has been investigated by a number of 
researchers. The first approach has been proposed by Preumont and Piefort [191] 
based on Von Mises equivalent stress. Since the stochastic process defined by its 
well known quadratic relation is not Gaussian and zero mean, in order to be 
reasonably approximated by one of the spectral methods discussed previously, 
they transform its mean-square value into the frequency domain. This way the 
multiaxial stress problem is reduced to a uniaxial one.  

The use of Von-Mises equivalent stress is reasonable when the in-plane stresses 
are in-phase (constant principal directions) as discussed in [192], however when 
stress components are treated as independent random processes the principal 
directions change and different fatigue criteria must be implemented, usually 
based on a (randomly changing) critical plane where the shear stress is 
maximized, or criteria involving stress tensor invariants. Such an approache is 
considered by Pitoiset et al [193] who implement Matake’s and Crossland’s failure 
criteria in the frequency domain.  
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In [194] Pitoiset and Preumont compare time domain spectral fatigue predictions 
with the previously proposed spectral method based on Von-Mises equivalent 
stress and a frequency domain formulation of the multiaxial rainflow count 
procedure proposed Dressler et al [153], [195]. The latter is obtained through 
transformation of the (scalar) equivalent stress, defined by any possible linear 
combination od the stress components, to the frequency domain and 
implementation of the same procedure as for the Von-Mises stress case. The 
authors conclude that significant reduction of computational time is achieved this 
way. 
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