

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Current Trends in High-Level Synthesis of Asynchronous Circuits

Sparsø, Jens

Published in:
16th IEEE International Conference on Electronics Circuits and Systems (ICECS)

Link to article, DOI:
10.1109/ICECS.2009.5411011

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sparsø, J. (2009). Current Trends in High-Level Synthesis of Asynchronous Circuits. In 16th IEEE International
Conference on Electronics Circuits and Systems (ICECS) (pp. 347-350). IEEE. DOI:
10.1109/ICECS.2009.5411011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICECS.2009.5411011
http://orbit.dtu.dk/en/publications/current-trends-in-highlevel-synthesis-of-asynchronous-circuits(bd30523a-0579-47e5-8aa4-85119b6fa744).html

Current Trends in High-Level Synthesis of
Asynchronous Circuits

Jens Sparsø
Department of Informatics and Mathematical Modelling, Technical University of Denmark

Richard Petersens Plads, Building 322, DK-2800 Kgs. Lyngby, Denmark
Email: jsp@imm.dtu.dk

Abstract— This paper is a survey paper presenting what the
author sees as two major and promising trends in the current
research in CAD-tools and design-methods for asynchronous
circuits. One branch of research builds on top of existing asyn-
chronous CAD-tools that perform syntax directed translation, e.g.
the Haste/TiDE tool from Handshake Solutions or the Balsa tool
from the University of Manchester. The aims are to add high-
level synthesis capabilities to these tools and to extend the tools
such that a wider range of (higher speed) micro-architectures can
be generated. Another branch of research takes a conventional
synchronous circuit as the starting point, and then adds some
form of handshake-based flow-control. One approach keeps the
global clock and implements discrete-time asynchronous opera-
tion. Another approach substitutes the clocked registers by asyn-
chronous handshake-registers, thus creating truly continuous-
time asynchronous circuits that operate without a clock. The
perspective here is that the substitution/conversion is done as the
final step in an otherwise conventional synchronous design flow.

I. INTRODUCTION

Asynchronous circuits use local handshaking to control the
transfer of data between components (down to the level of
combinatorial blocks and registers). This gives asynchronous
circuits a range of characteristic features which can be ex-
ploited in different contexts to obtain one or more of the
following properties: high speed, low power consumption,
easy implementation of (dynamic) voltage scaling and a high
degree of modularity. Furthermore, in the SIA ITRS 2007 [1]
asynchronous circuit techniques are listed among the measures
which can be used to cope with parameter uncertainty and
timing variability. The use of asynchronous circuits tackles the
effects of correlated variability sources, such as supply voltage,
operating temperature, and large-scale process variations, and
provides solutions to system-wide interconnect.

Asynchronous circuit techniques have been employed in
products for many years, and a number of current start-up
companies are providing a range of chips, IP-cores and inter-
connect fabrics [2], [3], [4], [5], [6]. In most cases, when using
these predesigned components and chips, a system designer
does not need to know about the underlying asynchronous
design techniques.

In order to enable more widespread use of asynchronous
design, efficient and easy to use high-level CAD-tools are
required. Over the years many different researchers, primarily
at universities, have addressed this problem and many funda-
mental problems have been solved. But few groups have had
the resources necessary to bring the work beyond what can

be described as demonstration prototypes or elements which
could be integrated in a complete design flow. In order to bring
research closer to practical use, it seems natural and necessary
to tie into some existing design flow. This paper reviews two
such efforts.

So far the most commonly used and most powerful tools
for synthesis of large-scale asynchronous circuits are based
on a technique known as syntax directed translation. The
Haste/TiDE tool from Handshake solutions [5] and the Balsa
tool [7], [8] from the University of Manchester are two well
known examples. These tools perform a one-to-one mapping
of the syntax-tree of the source program, into a corresponding
structure of handshake components and this essentially means
that no optimizations are performed. Furthermore the circuits
operate in a control driven manner, and this tends to limit the
speed. Several research groups are currently addressing these
deficiencies as explained in section II.

Another and very different class of research, aims at con-
verting a clocked circuit – synthesized using conventional
CAD-tools – into an equivalent asynchronous circuit, by em-
ploying a set of transformations and component substitutions
as explained in section III. While this may not enable a
designer to fully exploit the potential of asynchronous design,
it may be what is needed to obtain circuits which better tolerate
variability, and which suffers less from dynamic voltage (IR)
drops and power grid noise caused by synchronous clocking.

It should be emphasized that the four-page format does
not allow a comprehensive coverage of all current research –
many more approaches than the above two are being pursued
including [9], [10]. While these often involve the development
of new tool-flows, the approaches presented in this paper
deliberately aim at supplementing and building on top of
existing and mature design tools. Finally a pointer to a recent
and quite extensive survey of asynchronous design flows that
can tackle large designs seems appropriate [11].

II. EXTENDING SYNTAX-DIRECTED-TRANSLATION

As mentioned above, the most commonly used and most
powerful tools for synthesis of large-scale asynchronous cir-
cuits are based on a technique known as ”syntax directed
translation”; a process in which a description in a CSP-
like language [12] is mapped directly into a hardware im-
plementation composed of so-called handshake components.
Using conventional EDA-tools for technology mapping, a

978-1-4244-5091-6/09/$25.00 ©2009 IEEE 347

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 28,2010 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

Translate

HASTE
program

(a)

(c)

Simulink
model

 Optimization/

std. cells

HASTE
program

Netlist of
Handshake
components

Tech. map

Netlist of

 synthesis
 Source−to−source

 optimization/synthesis

(b)

Fig. 1. (a) Handshake Solutions’ Haste/TiDE design flow. (b-c) Several
possible behavioural/high-level synthesis front-end tools for the Haste/TiDE
design flow.

standard cell netlist is then produced. One such tool which
have recently been made commercially available is the Haste
design language and the associated TiDE design environment
from Handshake Solutions [5]. The tool was formerly known
under the name Tangram [13], [14]. Figure 1(a) shows the
Haste/TiDE design flow. The translation performed by the
Haste/TiDE tools is essentially a one-to-one mapping of the
syntax-tree of the source Haste program, into a corresponding
structure of handshake components. This transparency is both
an advantage and a disadvantage. The disadvantage is that in
order to explore alternative implementations, the designer is
required to actually program these. The advantage is that the
designer has full control over the resulting circuit. And as
we will see in the following subsections, this can exploited by
automatic synthesis and optimization tools, as it allows precise
specification of an implementation at a high level.

A. Haste-to-Haste optimizations

Research at the Technical University of Denmark [15],
[16], [17] has resulted in the development of a behavioural
synthesis frontend to the Haste/TiDE tool as illustrated in
figure 1(b). Input to the tool is a behavioural description
in the Haste language, and output from the tool is a Haste
program describing the synthesized implementation consisting
of a datapath and a controller. Figure 2 shows a generic
example of such an implementation template using handshake
components.

The synthesis tool performs the following sequence of
operations: (i) extraction of a control data flow graph (CDFG)
representation of the source Haste-program, (ii) synthesis of
an implementation which meets the required constraint, and
(iii) generation of a Haste-program describing the synthesized
implementation. The synthesis step solves the classic prob-
lems of resource sharing, scheduling and binding. Although
the scheduling is done using a discrete-time model (as in
synchronous design), it should be stressed that the implemen-
tation illustrated in figure 2 explicitly implements the actual
dependencies among the operations performed. The tool has

;

;

Asynchronous
DatapathAsynchronous

Distributed

Controller

Write

Read

Function
control

||

||

"+"

control

control

;

L0 L1

ALU

IN

OUT

selection
Read

Functional

Variables

Write
selection

unit(s)

Fig. 2. Implementation of a datapath and its associated controller using
handshake components.

been used to optimize a number of well known benchmarks
The results show that it is possible to achieve an average 30%
area reduction when optimizing for area, and an average 40%
increase in speed when optimizing for speed.

Research at the University of North Carolina at Chapel Hill
considers a similar Haste-in Haste-out front-end, figure 1(b),
but with the aim of optimizing the speed of the circuit
[18]. This is done using techniques like loop unrolling and
pipelining.

It is interesting to note that the two approaches de-
scribed above complement each other: A designer using the
Haste/TiDE design flow may use the tool presented in [18] in
order to automatically optimize for speed, and he may use
the tool presented in [17] to optimize for area, and more
generally, for constraint driven design space exploration. Fi-
nally, it seems to this author, that this kind of source-to-source
optimization/transformation using syntax-directed-translation
tools like Haste/TiDE represents a promising direction for
further research.

B. A Simulink to Haste front-end

Some designers may find the Haste language ’unconven-
tional’, and to remove this barrier the use of more well known
and widely used languages must be considered. Furthermore
there is a continuing evolution towards specifying designs at
higher levels of abstraction. One example is tools which are
capable of synthesizing circuit implementations directly form
MATLAB/Simulink models. Such tools exist for synchronous
design, and as Simulink is based on a data-flow model of
computation, one could expect that asynchronous synthesis
tools could be developed as well. In [19] researchers at
Politecnico di Torino and Handshake Solutions have explored
this and outlined an approach for automatically generating
Haste code from Simulink specifications, figure 1(c).

348

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 28,2010 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

CL

CL

CL

{Data[n..1], Req, Ack}
Handshake channel

Handshake
combinatorial circuit

Fork

Handshake
latch or register

(a)

(b)

CL

CLCL

Fig. 3. (a) An example asynchronous circuit. (b) The same circuit to which
some pipeline registers has been added.

C. Data-driven circuits

While the Haste/TiDE and Balsa tools have been used
to produce circuits with interesting properties including low
power and inherent adaptation to supply voltage scaling, it is
widely accepted that it is difficult to design high-speed circuits
using these tools. The problem is that the synthesized circuits
are control driven. Both input and output ports on variables
(i.e., registers and or latches) are passive as indicated by the
unfilled circles on the ports of the variables in figure 2. Com-
ponents which are called transferrers, and which are controlled
by yet other handshake circuits are needed to actively pull (i.e.,
read) data out of the passive variable and to actively push
(i.e., write) data into the passive variables. While this tends to
limit the amount of data transfers to a minimum (thus saving
power), it also adds considerable latency. In order to enable
higher speed it is necessary to support a data-driven pipelined
design style as well. Research at the University of Manchester
[20] has addressed this by extending the Balsa language with
constructs that will allow a designer to express data-flow. This
must be supported by a set of data-flow handshake-components
such as combinatorial circuit blocks and variables, both with
passive input ports and active output ports, such that control-
less data-driven pipelined circuits may be generated.

III. TRANSFORMING SYNCHRONOUS DESIGNS

Asynchronous circuits are based on a token flow model
of computation [21] and most asynchronous circuits retain
their function if handshake latches/registers are added to the
circuit. What matters is the flow of data-tokens in the circuit.
This gives asynchronous circuits an elasticity which is not
found in simple synchronous circuits, where the addition of
a clocked register in some signal path will mess up the
computation performed by the circuit. Figure 3(a) shows an
example asynchronous circuit and figure 3(b) shows the same
circuit, which has been pipelined to gain additional speed. The
circuits in figure 3 exhibit the same functionality.

An interesting and promising body of research aims at
adding similar token-flow based elasticity to a clocked design
and eventually transforming a synchronous design into a
corresponding asynchronous one. The perspective is obvious; a
circuit can be designed using any existing synchronous CAD-
tool and finally transformed into an equivalent asynchronous
one.

A. Latency insensitive design

In deep sub-micron CMOS-technologies the latency asso-
ciated with wires is considerable and may not be known
until a post-layout simulation can be made, and long wires
may have latencies of several clock cycles. In response to
challenges such as these latency insensitive design [22] has
been proposed. The circuits are clocked and can be designed
using existing CAD tools, but they use request-acknowledge
based protocols and are designed such that addition of registers
does not change the functionality of the circuit. This ability
to break long combinatorial paths (logic as well as wires)
makes the design more modular. In [22] it is explained how
this enables a separation of computation and communication,
and how this allows a change from computation-bound to
communication-bound design, thereby offering a solution to
the design of complex systems designed by integrating many
predesigned components (so called IP-based systems-on-chip).
A design methodology is presented, where IP-blocks are
extended with buffered communication channels on their ports,
and where buffered channel repeaters (called relay stations)
can be inserted.

B. Synchronous elastic systems

The same ideas have been pursued and refined further in
[23] where the term synchronous elastic is used to denote
the architectures and handshake protocols. Synchronous elastic
systems may be seen as time-discrete asynchronous systems,
and they enjoy the same properties as fully asynchronous
systems . As stated in the abstract for a tutorial presented
at ASYNC’08 [24]: ”Such systems are ’time elastic’ in a
sense that they can tolerate dynamic and static changes
in latencies of computation and communication components.
Therefore, they enable new micro-architectural trade-offs, e.g.
a wider use of variable latency components targeting average
case optimization, rather than the worst case optimization
traditional to regular synchronous circuits. They also enable
correct-by-construction re-pipelining of wires and computa-
tion blocks – a useful feature that can simplify design and RC
scaling in the nano-scale technologies. In comparison with
continuous time asynchronous systems (operating without a
clock) synchronous elastic have a few advantages: complete
reuse of the synchronous CAD tools and design practices and
negligible overhead in area and delay (if constructed using an
efficient technique)”.

Having said this, it is still necessary to distribute a global
clock, and to solve the associated buffering and skew prob-
lems.

C. Synchronous handshake components

As an aside it is interesting to note that a synchronous back-
end exists for the Haste/TiDE tool described earlier. This back-
end maps a circuit described in Haste into a net-list of clocked
handshake components [25]. The resulting circuits are similar
to the above mentioned latency insensitive and synchronous
elastic systems, but there is also one important difference: they
are control driven (using passive variables) rather than data

349

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 28,2010 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

driven. As explained previously, this may impact (i.e., reduce)
speed and power consumption.

D. De-synchronization

The de-synchronization method described in [26] may be
seen as taking the above ideas one step further in the sense that
a synchronous circuit is transformed into a truly asynchronous
circuit by substitution of clocked registers by asynchronous
handshake-registers. The synchronous circuit is a pure clocked
circuit without any of the flow-control or handshaking de-
scribed above. Therefore, a key issue in this work is to ensure
that the functionality of the original circuit is maintained.
A notion of (data-token) flow equivalence is introduced and
used to formally prove that the transformation preserves the
functionality. De-synchronization has been used to implement
an asynchronous DLX-processor [27] and an effort to further
develop and commercialize the technology is underway [28].

IV. DISCUSSION AND CONCLUSION

The paper presented what the author sees as two major and
important directions of research aiming at providing CAD-
tools and design methods for asynchronous circuits.

One line of research builds on top of existing stable and
state-of-the-art CAD tools (Haste/TiDE and Balsa). The re-
search efforts described in this paper seek to extend the tools
towards higher levels of design. The fact that an intended im-
plementation can be expressed (at a high level) using the Haste
or Balsa languages, represents an important and interesting ad-
vantage/simplification when developing such high level tools.
The paper reviewed efforts addressing behavioural synthesis,
synthesis from modeling languages like Simulink, automatic
structural optimizations and language features supporting the
design of high-speed data driven circuits. More research in
this direction is envisioned and encouraged.

Another line of research aims at: (i) adding asynchronous
concepts to the synchronous design domain and/or (ii) trans-
forming synchronous circuits into equivalent asynchronous
ones. The synchronous elastic and the latency insensitive ap-
proaches are examples of the former and effectively involve the
design of discrete-time (i.e. clocked) asynchronous circuits. As
the circuits are designed to explicitly implement the intended
token flow, the author would expect that these circuits could
be transformed directly into fully asynchronous ones. Finally
de-synchronization is a technique which transforms a conven-
tional synchronous circuit into a fully asynchronous one. In
this process (token) flow equivalence is an important issue.
The perspectives here are that the sharp distinction between
synchronous and asynchronous design is fading, and that
conventional synchronous CAD-tools can be used to design
synchronous circuits, which are subsequently transformed into
asynchronous ones in a final step of the design flow.

REFERENCES

[1] Semiconductor Industry Association, “International Technology
Roadmap for Semiconductors,” http://www.itrs.net/home.html, 2007.

[2] Achronix Inc., http://www.achronix.com.
[3] Tiempo Inc., http://www.tiempo-ic.com.

[4] Fulcrum Microsystems Inc., http://www.fulcrummicro.com.
[5] Handshake Solutions Inc., http://www.handshakesolutions.com.
[6] Silistix Inc., http://www.silistix.com.
[7] D. Edwards and A. Bardsley, “Balsa – an asynchronous hardware

synthesis system,” in Principles of asynchronous circuit design – A
systems perspective, J. Sparsø and S. Furber, Eds. Kluwer Academic
Publishers, 2001, ch. 9–12, pp. 155–218.

[8] ——, “Balsa: An Asynchronous Hardware Synthesis Language,” The
Computer Journal, vol. 45, no. 1, pp. 12–18, 2002.

[9] D. Shang, F. Burns, A. Koelmans, A. Yakovlev, and F. Xia, “Asyn-
chronous system synthesis based on direct mapping using VHDL and
Petri nets,” IEE Proc., Comput. Digit. Tech., vol. 151, no. 3, pp. 209–
220, May 2004.

[10] G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein, “C to
asynchronous dataflow circuits: An end-to-end toolflow,” in Interna-
tional Workshop on Logic synthesis (IWLS), Temecula, CA, June 2004,
pp. 501–508.

[11] A. Taubin, J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters,
“Design automation of real life asynchronous devices and systems,”
Foundations and Trends in Electronic Design Automation, vol. 2, no. 1,
pp. 1–133, 2007.

[12] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978.

[13] C. Niessen, C. van Berkel, M. Rem, and R. Saeijs, “VLSI programming
and silicon compilation,” in Proc. International Conf. Computer Design
(ICCD). IEEE Computer Society Press, 1988, pp. 150–166.

[14] C. H. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The
VLSI-programming language Tangram and its translation into handshake
circuits,” in Proc. European Conference on Design Automation (EDAC),
1991, pp. 384–389.

[15] S. F. Nielsen, “Behavioral synthesis of asynchronous circuits,” Ph.D.
dissertation, Technical University of Denmark, Dept. of Informatics and
Mathematical Modelling, 2005, iMM-PHD-2005-144.

[16] S. F. Nielsen, J. Sparsø, and J. Madsen, “High-level synthesis of
asynchronous circuits using syntax directed translation as backend,”
IEEE Transactions on VLSI Systems, vol. 17, no. 2, pp. 248–261, 2009.

[17] S. F. Nielsen, J. Sparsø, J. Jensen, and J. Nielsen, “A Behavioral Syn-
thesis Frontend to the Haste/TiDE design flow,” in Proc. International
Symposium on Asynchronous Circuits and Systems. IEEE Computer
Society Press, 2009, pp. 185–194, (Best paper finalist).

[18] J. Hansen and M. Singh, “Concurrency-enhancing transformations for
asynchronous behavioral specifications: A data-driven approach,” in
Proc. IEEE International Symposium on Asynchronous Circuits and
Systems. IEEE Computer Society Press, 2008, pp. 15–25.

[19] M. Tranchero, L. M. Reyneri, A. Bink, and M. de Wit, “An automatic
approach to generate haste code from simulink specifications,” in 15th
IEEE International Symposium on Asynchronous Circuits and Systems.
IEEE Computer Society Press, 2009, pp. 175–184.

[20] S. Taylor, D. Edwards, and L. Plana, “Automatic compilation of data-
driven circuits,” in 14th IEEE International Symposium on Asynchronous
Circuits and Systems. IEEE, 2008, pp. 3–14.

[21] J. Sparsø and S. Furber, Eds., Principles of asynchronous circuit design
– A systems perspective. Kluwer Academic Publishers, 2001.

[22] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency
in SOC design,” IEEE Micro, vol. 22, no. 5, pp. 24–35, 2002.

[23] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of
synchronous elastic architectures,” in 2006 43rd ACM/IEEE Design
Automation Conference. IEEE, 2006, pp. 657–662.

[24] Mike Kishinevsky, “Synchronous Elastic Systems,”
http://async.org.uk/async2008/keynote-tutorials.html, 2008, Tutorial
presented at the ASYNC’08/NOCS’08 in Newcsstle, UK.

[25] A. M. G. Peeters and K. van Berkel, “Synchronous handshake circuits,”
in ASYNC, 2001, pp. 86–95.

[26] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desyn-
chronization: Synthesis of asynchronous circuits from synchronous
specifications coping with latency in soc design,” IEEE Transactions
on Computer-Aided Design, vol. 25, no. 10, p. 19041921, 2006.

[27] M. Amde, I. Blunno, and C. P. Sotiriou, “Automating the design of
an asynchronous DLX microprocessor,” in DAC ’03: Proceedings of the
40th annual Design Automation Conference. ACM, 2003, pp. 502–507.

[28] Elastix Inc., http://www.elastix-corp.com/.

350

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 28,2010 at 13:49:07 UTC from IEEE Xplore. Restrictions apply.

