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Abstract—A tutorial study of an oscillator built from a loop of
two active RC integrators and an ideal inverter. As a reference
the linear harmonic oscillator is modeled as a LC circuit and
as an ideal two integrator loop. The nonlinear amplifiers of the
active RC integrator circuits are assumed to be linear with time
varying gain and the eigenvalues are found as function of time.
A design strategy based on the time-constants of the integrators
is presented.

I. INTRODUCTION

In the recent 20 years the classic circuit theory with analysis
and synthesis of linear electrical circuits has more or less dis-
appeared from the curriculum of the electrical and electronic
engineering students. The digital systems dominate over the
analog systems. But in the future possibly nonlinear analog
systems will be used instead of or as a supplement to digital
systems due to lower power consumption and higher speed
[1]. The aim of this tutorial is to demonstrate that the classic
circuit theory with poles and zeros (eigenvalues) may be used
to gain insight in the behavior of nonlinear circuits.

Fig. 1. Harmonic Oscillator Models.
x = V(3) = V(1) = cos(t), y = I(L) = V(2) = sin(t)

Fig. 2. Comparison of Harmonic Oscillator Models.
FFT analysis. V(1) = V(3) = cos(t), V(2) = sin(t)

II. HARMONIC OSCILLATOR MODELS

The harmonic oscillator may be modeled as a capacitor
coupled in parallel to a coil, Fig. 1(a). If the initial condition
is a voltage across the capacitor and a current equal to zero
through the coil the voltage becomes a cosine of time and
the current becomes a sine of time. The capacitor may be
modeled as a current source controlled by the time derivative
of its voltage. The coil may be modeled as a voltage source
controlled by the time derivative of its current. As variables
we choose the voltage across the capacitor: x, and the current
through the coil: y, (state variables). We choose voltage V
and current I as variables because they are easy to measure
(signals). We should use charge q = C ∗V and flux φ = L∗ I
as variables because they represent the energy in the system.
Unfortunately they are difficult to measure. In the real world
charge and flux are nonlinear functions of voltage and current.
Note that current is time derivative of charge I = dq/dt and
voltage is time derivative of flux V = dφ/dt. Charge provide
the coupling between the chemical world and the electrical
world (electrolysis). Flux provide the coupling between the
mechanical world and the electrical world (generators, mo-
tors). Capacitors and coils are memory elements. The resistor
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with memory - the memristor φ = M ∗ q - has recently been
implemented in the real world [2].

Fig. 3. Comparison of Harmonic Oscillator Models.
Time analysis. V(1) = V(3) = cos(t), V(2) = sin(t)

Now the harmonic oscillator may be modeled (defined) by
means of two first order differential equations

L
dy

dt
= + x (1)

C
dx

dt
= − y (2)

The two equations may be combined into a second order
differential equation.

d2x

dt2
+

x

LC
= 0 (3)

The roots of the characteristic polynomial - the eigenvalues -
are a complex pole pair s = ±j ∗ ω on the imaginary axis
where ω = 2πf . With ω2 = 1/(LC) the frequency becomes
f = 1/[2π

√
(LC)]. The amplitude is given by the initial

condition.
An ideal integrator may be modeled as a capacitor loaded

current source. The voltage of the capacitor is the time integral
of the current source. By means of two ideal integrators the
harmonic oscillator may be modeled as shown in Fig. 1(b).

The figures Fig. 2 and Fig. 3 show a PSpice comparison of
two 100kHz oscillators with the following component values:
L3 = 1.591549431μH, C3 = 1.591549431μF and
C1 = C2 = 1.591549431μF . With an accuracy of
RELTOL = 1μ = 1e − 6 in PSpice a very close agreement
between the models is observed.

Linear steady state oscillators are mathematical fiction. In
the real world linear systems are always damped due to
losses. Some kind of non-linearity must be introduced in order
to obtain steady state oscillations. Oscillators are non-linear
systems. It is to be expected that oscillators based on a double
integrator will behave very close to sinusoidal so they have
been reported frequently in the literature [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12]. In the following a double integrator
oscillator based on operational amplifiers is investigated.

Fig. 4. Double integrator oscillator. V (1) = − V (5)

III. DOUBLE INTEGRATOR OSCILLATOR

The circuit is a dedicated analogue computer circuit
based on the definition of the sine and cosine functions:
d(sin(t))/dt = cos(t) and d(cos(t))/dt = −sin(t). Input
to the first integrator is −sin(t) which give rise to input
cos(t) of the second integrator with output sin(t) to be
inverted for feed-back to the first integrator (see Fig. 4).
Assuming ideal operational amplifiers (A1 = A2 = ∞) the
relation between the components and the frequency becomes
ω2

0 = (2πf0)2 = 1/(τ1 ∗ τ2) where τ1 = R1 ∗ C1 and
τ2 = R2 ∗ C2 are the time constants of the integrators. If
we choose R1 = R2 = R = 10kΩ and C1 = C2 =
C = 15.91549431nF the nominal oscillating frequency be-
comes fo = 1 kHz, τ1 = τ2 = τ = 159.1549431e − 6,
ωo = 1/(RC) = 6.283185308e + 3 = 2πfo.

Fig. 5. Frequency spectrum. Logarithmic y-axis.

A. PSpice analysis

Now the two ideal operational amplifiers are replaced with
PSpice op-amp macro-models, μA741 and an ideal PSpice
inverter model (EVA3 1 0 5 0 -1) is introduced. The power
supply is ±22 volts.

Figure 5 shows the frequency spectrum of the oscillator in
steady state (FFT analysis over 800ms). Higher harmonics may
be observed. In this case - where the resistors R1 and R2 are
chosen equal and the capacitors C1 and C2 are chosen equal
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Fig. 6. Amplifier output voltages V (3), V (5) and Power supply currents.

- clipping of both amplifier output voltages V (3) and V (5) is
observed, Fig.6.

Figure 6 shows that energy is transferred to the amplifiers
as very narrow pulses at the maximums of the output voltages.
This behavior is very similar to the behavior of the pendulum
clock where the escape mechanism [13] delivers the energy as
pulses when the angel from vertical is zero and the weights
go down a step changing potential energy into a kinetic
energy impulse. For small swing - i.e. when x and sin(x)
are almost equal - the pendulum clock is very close to a
damped linear oscillator with very high quality factor and
no harmonics. A strategy for design of electronic oscillators
with minimum distortion could be optimization of the energy
impulses observed.

Fig. 7. Frequency spectrum. Logarithmic y-axis.

A large number of PSpice simulations have been made with
various combinations of the values of the two resistors and
the two capacitors. Apparently it is possible to remove the
energy impulses in connection with one of the amplifiers so
that the harmonics in the output voltage becomes smaller. The
following PSpice results demonstrates this assertion and gives
more insight in the behavior of the oscillator.

By means of the following values a number of PSpice simu-
lations have been made: R1 = 8.333333333kΩ, C1 = 10.0nF,

Fig. 8. Amplifier output voltages V (3), V (5) and Power supply currents.

Fig. 9. Amplifier voltage gains and output voltages.
V(3) = A1 output voltage, V(5) = A2 output voltage

R2 = 12.0kΩ, C2 = 25.33172448nF, time constant amplifier
A1: τ1 = R1∗C1 = 83.33333333e−6, time constant amplifier
A2: τ2 = R2 ∗ C2 = 303.9806938e − 6, ω2 = 1/(τ1 ∗ τ2) =
39.47619124e6 = (2πf), f = 0.9999718022kHZ.

A comparison of Fig. 7 with Fig. 5 shows that the harmonics
of the output voltage V (5) of amplifier A2 have been reduced.
Figure 8 shows that the power is supplied to amplifier A1 with
an almost constant current of 2.44mA and pulses of 15μA in
the short clipping time intervals. The power is supplied to
amplifier A2 with an almost constant current of 2.438mA. A
comparison of Fig. 8 with Fig. 6 shows that the pulses in
the power supply currents of amplifier A2 have disappeared.
This result depends of course on the op-amp macro-model
used. Experiments with LM741 instead of uA741 did not
show pulses but reduction of harmonics was obtained. Figure
9 shows the amplifier gains as functions of time over two
periods. It is seen that the gain is varying slowly in the interval
±5000 in the whole period except at the maximums of the
amplifier output voltages where it vary between very large
and very small values in very short time intervals.

B. Eigenvalue calculation

A study of the eigenvalues of the time-varying Jacobian of
the linearized differential equations may give some insight in
the behavior of the oscillator [14]. The linear time-varying
approach (LTV) is a method to to calculate the time-varying
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eigenvalues (dynamic eigenvalues) of a nonlinear circuit [15],
[16], [17], [18], [19]. To calculate the dynamic eigenvalues, the
Riccati equation must be solved. In the following it is assumed
that a nonlinear circuit can be treated as a time-varying linear
circuit.

If it is assumed that the amplifiers are perfect - i.e. the
input impedance is infinite and the output voltage is equal to
the input voltage times a time varying constant A i.e. Vout =
(V+ − V−) ∗ A(time) - the characteristic polynomial of the
circuit becomes

s2 + 2α s + ω2 = 0 (4)

where

2α =
C1R1(1 + A1) + C2R2(1 + A2)
C1R1C2R2(1 + A1)(1 + A2)

and

ω2 =
1 + A1A2

C1R1C2R2(1 + A1)(1 + A2)

The roots are

p1,2 = − α ± j
√

(ω2 − α2)

The roots of the characteristic polynomial (the poles) are
found as function of time by means of a table of the gains
as function of time found by means of PSpice. The result is
shown in Fig. 10. It is seen that the imaginary part is close

Fig. 10. Complex pole pair as function of time. ω0 = 2π*1k.

to ωo = 1/
√

(R1C1R2C2) = 6.283185308e + 3 = 2πfo

and the real part is close to zero most of the time. Only in
the short intervals - where the energy pulses come from the
power supply - the complex pole pair goes to the real axis in
the right half plane and split-up into two real roots which via
zero and infinity comes back and unite into a complex pole
pair as expected. The result is in agreement with the very little
phase noise observed.

IV. CONCLUSION

It is demonstrated that the classic circuit theory with poles
and zeros (eigenvalues) may be used in connection with the
design of a double integrator oscillator. The non-linear circuit
is treated as a linear time-varying circuit. The parameters are
chosen in such a way that the imaginary part of the poles

of the linear time-varying circuit is as close as possible to
ω0 over a period. The time constants of the integrators are
chosen different in order to obtain minimum distortion of the
output voltage of one of the amplifiers. The circuit is used
mainly for low-frequency oscillators. The structure may be
a candidate for IC implementation because it is based on
resistors and capacitors only.
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