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USING THE GENERALIZED RADON TRANSFORM FOR 
DETECTION OF CURVES IN NOISY IMAGES 

Peter  A. Toft 

Electronics Institute, Technical University of Denmark, DK-2800 Lyngby. 
Email ptoft@ei.dtu.dk. Phone +45 45934207 

ABSTRACT 
In this paper the discrete generalized Radon transform 
will be investigated as a tool for detection of curves in 
noisy digital images. The discrete generalized Radon 
transform maps an image into a parameter domain, 
where curves following a specific parameterized curve 
form will correspond to a peak in the parameter do- 
main. A major advantage of the generalized Radon 
transform is that the curves are allowed to intersect. 
This enables a thresholding algorithm in the parameter 
domain for simultaneous detection of curve parameters. 
A threshold level based on the noise level in the image is 
derived. A numerical example is presented to illustrate 
the theory. 

1. INTRODUCTION 

In recent years the Hough transform [l] and the re- 
lated! Radon transform [2] have received much atten- 
tion. These two transforms are able to transform two 
dimensional images with lines into a domain of possible 
line parameters, where each line in the image will give 
a peak positioned at the corresponding line parame- 
ters. This have lead to many line detection applications 
within image processing, computer vision, and seismics. 

A natural expansion of the Radon transform is the 
(discrete) generalized Radon transform (GRT) [3, 4, 51. 
Analogous to the linear Radon transform, the GRT 
transforms curves in the image into a discrete multi 
dimensional parameter domain producing peaks posi- 
tioned at the corresponding curve parameters. In this 
way the GRT converts a difficult global detection prob- 
lem into a more easily solved local peak detection prob- 
lem. A major advantage of the GRT is that curves are 
allowed to intersect. Another major advantage that will 
be demonstrated in this paper, is that the GRT is very 
robust to noise. 

In this paper a probabilistic approach is used to 
show that the GRT can be used for curve detection if 
the noise in the image is below a certain level compared 
to the signal values on the curves. If noise is added to 

an image containing curves, the problem is that peaks 
in the parameter domain may or may not correspond 
to actual curve parameters. A threshold level, based 
on the noise level, is derived and applied for separa- 
tion of noise and curve information in the parameter 
domain. A numerical example is provided to illustrate 
the presented theory. 

2. THE GENERALIZED RADON 
TRANSFORM 

The Generalized Radon transform, GRT, of a digital 
image can be defined in many ways. One way is 

L-1 

g ( j )  = ~ g ( r # ) m ( W , $ n ( 4 ~ ) )  (1) 
l = O  

where g denote the GRT of the image g(m, n) and j is 
a multi dimensional vector containing the curve para- 
meters. The two curve functions $ m ( l , j )  and & ( Z , j )  
define the curve type and are (in principle) arbitrary'. 
A popular choice is the linear curve functions; e.g., nor- 
mal parameters j = ( p ,  e ) .  Another frequent choice is 
the (7,p)-parameters (known as slant stacking in seis- 
mics), where &(Z, ~ , p )  = I and &(I, ~ , p )  = p I + T .  

Even though the GRT can be applied to any given 
image, the main feature of the GRT is that an im- 
age, which contains a discrete curve matching the curve 
functions at one parameter vector j *  implies that the 
parameter domain g ( j ) ,  will show a peak at that spe- 
cific parameter vector j = j * .  The linearity of the GRT 
implies that each curve in the image will be transformed 
into a peak in the parameter domain. In this paper a 
curve in an image is defined by large image values of the 
same sign on the curve and otherwise (approximately) 
zero. 

Initially only two values of the GRT will be con- 
sidered. The first, g ( j * ) ,  corresponds to a curve in the 

An interpolation scheme is assumed implicitly; e.g., by round- 
ing the functions & ( I , j )  and $ n ( I , j )  to  the nearest sample 
point. 
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image. Another, g ( j - ) ,  corresponds to a parameter 
vector, that does not match a curve in the image. It is 
assumed that g( j*)  is the sum of a mean signal value p 
over all L samples, and g(j-)  covers (approximately) 
no samples of the curve(s) in the image. Both values 
of i j  are contaminated with noise due to noise in the 
image. Assume the noise in the image is nearly uncor- 
related with zero mean (e.g., by subtracting a DC-value 
from the image) and variance r2.  

A classical curve detection algorithm is to determine 
the parameter vectors from the positions of peaks in the 
parameter space 

The reason for choosing the significance level in this 
way is that Eq. 1 consists of a summation over L 
samples, and p* is a lower positive bound on the mean 
signal level on the curve; e.g, found by estimation. The 
purpose of the following is to estimate whether curves 
having the signal level p can be detected using Eq. 2, 
if the image is contaminated with the described noise. 

Due to the linearity, g consists of a curve part and 
a noise part. If L >> 1 the sum of the noise terms 
gnoise will approximately be Gaussian distributed with 
zero mean and variance Lg2 due to the Central Limit 
Theorem. This implies that the two considered values 
of the GRT are distributed as g ( j * )  = pL f gioise E 

N ( p L , L g 2 )  and g(j-)  = Siois E n/(0,Lo2).  Since 
Eq. 2 selects the large values in &e parameter domain, 
an important issue is the probability of detecting the 
correct parameter vector of the two considered 

Assuming that g(j*) and g( j - )  are independent, in- 
serting the joint probability distribution function, i.e, 
the product of the two individual Gaussian probability 
distribution functions, and using the trick of rotating 
the coordinate system 45 degrees, the integrals separ- 
ate into one dimensional integrals which easily can be 
expressed by the error-function, erf(.) 

Note that in this case Pdet 2 ,  shown on Fig. 1, only 
depends on one parameter A. Note that 1x1 > 4 gives 
an almost certain detection. This is the case if U -+ 0 
o r p - c o .  

When using the GRT to detect curves then the dis- 
crete parameter domain will not only have two, but J 
different parameter vectors, where J is the number of 
samples in the parameter domain. It is assumed that 

all the noise sources in the parameter domain are inde- 
pendent and in the following, the detection of a single 
curve is analyzed. Selecting the position of the highest 
peak in the parameter domain, the probability of the 
selected parameter vector being correct, can be approx- 
imated by 

.7 

The last simple approximation is valid if the detection 
probability is close to 1 as seen from Fig. 2. Several 
characteristics can be noted: The Figure shows a nar- 
row transition from low to high detection probability 
as a function of A, and J does not change the shape of 
Pdet  all significantly. If demanding a high Pdet all then 
Eq. 5 and Fig. 2 demonstrate that J should be held 
low; i.e., by reducing the number of samples in the para- 
meter domain to a minimum. It should be noted that 
this will involve a compromise on the range of para- 
meter vectors. 

0 65 - 

06- 

0 55 - 

Figure 1: The probability of detecting the right curve 
parameters of two possible as a function of A. 

Eq. 5 can be used to set requirements on, e.g., 
the absolute mean signal level p* of the curve(s) to be 
detected. Demanding a detection probability Pdet all 

greater than P* implies that p* = c/(A*&), where 
A* can be found by from Eq. 5 with a given detection 
probability, summation length L,  number of samples in 
the parameter domain J ,  and the standard deviation U 

(e.g., by found by estimation). Any 1pl less than the 
threshold level, p*,  can be considered as noise. In this 
way it is possible to give a statistically based estimate 
on the thresholding level in Equation 2. 

Even though the above theory is developed by ana- 
lyzing one curve in the image, the theory can be used 
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Figure 2: Solid lines show the probability of detecting 
the right curve parameter as a function of A, and dashed 
lines show the simple approximation. From left to right 
J= 1000, J=lOOOO and rightmost J=lOOOOO. 
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if the image contains few curves. Instead of having one 
peak in the parameter domain representing one curve 
in the image, each of the 2 curves in the image, where 
2 << 3, will give a peak in the parameter domain, 
even if the curves cross each other. With 2 curves each 
of corresponding 2 g-values must be larger than the 
rest in the parameter domain. If only a few curves are 
present, the rest of the parameter domain is dominated 
by noise, and the probability of detection for each of 
the 2 curves can be found from Eq. 5. 

The theory used to derive Eq. 5 is somewhat pessi- 
mistic in estimation of the influence of the noise. This 
is partly due to the assumption that all the GRT-values 
include summing noise over L samples. Normally some 
of the GRT-values will require summing up over a curve 
partially outside the image, where the image must be 
assumed equal to zero. Furthermore some correlation 
must be expected in the parameter domain, especially 
if the number of dimensions in the parameter domain 
is higher than two. Depending on the sampling para- 
meters, this implies that an effective J (less than the 
number of samples in the parameter domain) must be 
used in Eq. 5. 

3. AN EXAMPLE OF LINE DETECTION IN 
A VERY NOISY IMAGE 

To illustrate the potential of the GRT a very noisy 
image is generated, by adding Gaussian noise to the 
noise free image with zero mean and standard deviation 
U = 1. It can be seen from Figure 4, that the lines 
are hard to identify. Choosing Pdet  all = 0.95, Eq. 5 
gives A* = 6.53; i.e., only lines with 1pl > 0.65 should 
be detectable. This implies that all but line number 
eight should be detectable. The absolute value of the 
parameter domain obtained by the use of the GRT to 
the noisy image is shown in Fig. 5. 

Since the noisy image contains few lines with ab- 
solute curve amplitude IpI being of the same order of 
magnitude as 0 and has approximately zero mean, U 

was estimated from the image using the ordinary cent- 
ral variance estimator, which gave 6 = 1.04. Setting 
Pdet all to 0.95, Eq. 5 results in L p* = 65.7. This 
is used for thresholding of the parameter domain as 
shown in Figure 6. Seven of the eight line parameters 
are found despite the poor signal to noise ratio in the 
image. Note that some of the lines will be represen- 
ted by a few neighbor parameter vectors. This error 
be can corrected by clustering neighbor parameter vec- 
tors. The error is due to the sampling of the parameter 
domain and the finite image size. 

The theory predicted that only seven lines could be 
detected. The eighth line can be detected if the curve 
length can be increased or the noise variance can be 
reduced. If the theory is used with Pdet  very low, Lp* 
get lower and noise peaks will appear in the parameter 
domain along with parameters of the eighth line. In 
Fig. 7 the threshold level has been reduced to, e.g., 
0.7Lp* = 46.0. As it can be seen, noise will now give 
parameter vectors which do not represent a curve. As 
seen from Fig. 8 a further reduction of the threshold 
level to, e.g., 0.5Lp* = 32.9 gives a parameter domain, 
where all eight lines are present. Due to the noise level 
many false parameter vectors can also be observed. 

A noise free image containing eight lines with limited 
slope is created. The image, shown in Fig. 3, has 101 x 
101 samples. The curve sampling functions are chosen 
to &,, = 1 - 50 and q5n = p (1 - 50) + r and L is set to 
101. The offset is made in order to lower the sampling 
requirements in the parameter domain. The sampling 
distances in the parameter domain is set to AT = 1 and 
Ap == 0.01. The line parameters are listed in Tab. 1. 

4. CONCLUSION 

A statistically based noise analysis of the generalized 
Radon transform has been presented, which was used 
to derive a threshold level in order to separate curve 
information and noise in the parameter domain. A nu- 
merical example was provided to illustrate the theory. 
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Figure 3: Noise free image with eight lines. Figure 7: Threshold of the absolute GRT using 0.7 
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Figure 8: Threshold of the absolute GRT using 0.5 
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Figure 5: The absolute GRT of the noisy image. Note 
the peaks corresponding to the curves. 
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times the estimated threshold level. 
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Figure 6: Threshold of the absolute GRT using the es- 
timated threshold level. 
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