
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Validation of an Actuator Disc Model

Réthoré, Pierre-Elouan; Sørensen, Niels N.; Zahle, Frederik

Published in:
EWEC 2010 Proceedings online

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Réthoré, P-E. M., Sørensen, N. N., & Zahle, F. (2010). Validation of an Actuator Disc Model. In EWEC 2010
Proceedings online European Wind Energy Association (EWEA).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/validation-of-an-actuator-disc-model(1e8884ed-6ba9-4fa9-8d2d-3e45d0b09ac7).html


Validation of an Actuator Disc Model

P.-E. Réthoré N. N. Sørensen F. Zahle
pire@risoe.dtu.dk nsqr@risoe.dtu.dk frza@risoe.dtu.dk

Wind Energy Division · Risø DTU · Denmark

Abstract

Wind turbine wake can be studied in CFD with the
use of permeable body forces (e.g. actuator disc,
line, surface). This paper presents a general flexi-
ble method to redistribute wind turbine blade forces
as permeable body forces in a computational domain.
The method can take any kind of shape discretization,
determine the intersectional elements with the com-
putational grid and use the size of these elements to
redistribute proportionally the forces.
The special case of the actuator disc is successfully
validated with an analytical solution for heavily loaded
turbines and with a full rotor computation in CFD.
Keywords: Conway’s Actuator Disc, Bessel Laplace
Integrals, CFD.

1 Introduction

As computational power becomes more af-
fordable, Computational Fluid Dynamics (CFD)
methods become attractive solutions for mod-
elling wind turbine and wind farm wakes. The
most cost effective CFD wind turbine wake
models are based on the concept of applying
the wind turbine blades forces in the computa-
tional domain through permeable body forces.
There are three main categories based on this
concept, the actuator disc, line and surface (for
a literature review, see [8, 15, 18, 22, 23]). All
these concepts follow the same two-step ap-
proach. Firstly, the blade forces are estimated
from the local flow information using different
types of methods. Secondly, they are then
redistributed in the computational domain. This
article focusses on the second step.

As there is practically no physics involved in
the second step, the vast majority of the papers
describing the different actuator methods does
not mention this issue. However, the speed and

accuracy of the solution can be deeply affected
by the approach used to redistribute the forces.
A poor approach can slow down significantly
the code at each iteration, and can require a
finer grid to obtain grid independence.

Moreover, because of the general lack of
literature on the subject, there is also a need for
validation methods for this step. Some papers
validate this step indirectly by comparing the
wind turbine wake with measurements (e.g.
[1]). By doing so, both steps (force estimation,
and force redistribution) are used together with
a turbulence model to generate the flow field.
When combining several complex methods
together there is always the risk that multiple
errors compensate each other. It is therefore
considered safer to validate each of the models
independently.
One way of doing this is to compare with other
types of wind turbine wake models that can
provide the blade loadings, such as analytical
solutions or full rotor computations. Such
comparison of actuator methods with analytical
solution can be found in the literature (e.g.
comparison with the heavily loaded actuator
disc mode of Wu [13] and Conway [19]). It
seems, however, that there is not any paper
that discusses the comparison of full rotor
computation with actuator methods.

This paper describes a general method
(Sec.2) to redistribute body forces in a com-
putational domain, which is implemented in
EllipSys [12, 20]. The method has a low
initialization time and need a relatively small
amount of domain cells to redistribute correctly
the forces. The model is based on three
levels of discretization. The actual shape,
defined by a grid, the computational domain
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grid, and the intersectional grid between the
shape and the computational domain grids.
This independent description of the shape and
the domain gives a wide flexibility of possible
shapes and motions (e.g. disc, rotating lines,
moving kites, trees). An indirect application
of this method is to define immerse boundary
conditions such a turbulence generator grids [9].

The special case of the actuator disc model
is validated in Sec.3 with respect to the analyti-
cal solution for heavily loaded actuator discs of
Conway [6], and a full rotor computation. Both
comparison show excellent agreement between
the different models presented in Sec.2. This
shows that using actuator discs, with the proper
loading, gives an accurate description of the
wind turbine wake. Moreover, it is found that a
coarse discretization (as low as 10 cells per ro-
tor diameter) gives a relatively acceptable wake
development in comparison with finer meshed
full rotor computation.

2 Actuator Shape Model

2.1 General Idea

The actuator shape model is based on three dif-
ferent types of discretization.

1. The shape is defined by a grid, where each
cells is somehow associated to a force vec-
tor.

2. The computational grid is where the shape
forces are redistributed and solved with the
Navier-Stokes equations.

3. The intersectional grid between the shape
grid and the domain grid is used as a
weight to redistribute the shape forces into
the domain grid.

The independent shape grid and the domain
grid gives a flexibility of the shape motion in the
domain and a simple domain grid definition.

The shape position is defined by three vectors
(one for the relative position with the domain,
and two for the orientation of the shape). These
vectors can be changed dynamically during the
simulation.
The discretization of the shape can be done in
3 different ways: 1D cells (segments), 2D cells

Figure 1: Illustration of the different elements con-
sidered in the intersectional polygon search algorithm
(with 2D shape cells).

(quadrilaterals), 3D cells (hexahedrons). Each
of the points are defined in 3D. The relative po-
sition vector mentioned previously is relating the
domain grid origin to the shape grid origin.

2.2 Initialisation Phase

The initialisation phase, during which the inter-
sectional grid is redefined, is carried out each
time that the shape definition is changed. The
intersectional grid is built on a two-step process.

Firstly, each of the shape grid points are
associated to the domain cell they are lo-
cated into. The search routine is based on a
spreading recursive dichotomy methodology. A
recursive dichotomy is first used to dive into the
domain grid. When one shape point is found
in a domain cell, the neighboring shape points
are first tested in the same domain cell, then on
the neighboring domain cells until all the points
are found. This approach reduces dramatically
the number of iteration needed to associate all
the shape points with domain cells, and has
the advantage to be reusable. When the shape
definition has changed, the previous shape
point - domain cell association is used as a first
guess to the update.

Secondly, based on the “shape point - domain
cell” association, the algorithm is looking for all
the “shape cell segments - domain cell faces“
and “shape cell faces - domain cell segments“
intersectional points (see Fig.1). These points
are defining the intersectional grid. The inter-
sectional points are then rearranged into inter-
sectional cells.
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Figure 2: Active phase scheme.

2.3 Active Phase

The active phase is executed at every solv-
ing iteration. The iterative scheme, illustrated
in Fig.2, is basically solving the Navier-Stokes
equation, extracting the shape velocities, from
which the shape forces are estimated and finally
redistributed in the computational grid. The step
of interest, in this paper, is the redistribution of
the shape forces.
The redistribution of the forces is done by using

the intersectional grid. According to the inter-
sectional cell type, its relative size (i.e. length for
1D segments, area for 2D polygons, or volume
for 3D polyhedrons) compared to the associated
shape cell is used as a proportional weight to
scale the shape cell force vector. All the inter-
sectional cell force vectors associated to a do-
main cell are then added together to obtain the
equivalent domain cell force vector (see Fig.3) .

3 Validation

3.1 Methods

EllipSys Flow Solver

EllipSys is an in-house incompressible finite
volume Reynolds averaged Navier-Stokes flow
solver developed at Risø-DTU [20] and DTU-
MEK [12]. The flow variables are collocated in
the mesh to facilitate complex mesh geometries.
The SIMPLE algorithm [14] is used to solve the
Navier-Stokes equations. The convective terms
are discretized using the QUICK scheme [10].
The pressure equation is solved using a mod-
ified Rhie-Chow algorithm to avoid odd/even
pressure decoupling with body forces [15–17],
and is accelerated by a multigrid technique [20].
The system is parallelized in a multiblock struc-
ture, where the blocks can be solved on a differ-
ent processor. The communication of the block

ghost cells between each processor is done
through the MPI libraries. The turbulence model
used in this paper is Menter’s k-ω SST [11].

Actuator Disc Model of EllipSys

The actuator disc model is based on the actua-
tor shape model described in the previous sec-
tion. The shape grid is a coplanar polar disc of
11 radial and 62 angular elements. The force
vector associated to each of the disc cells are
found by the two other models describe in the
following sections respectively.

Conway’s Actuator Disc

In a series of articles [4–7, 19], Conway has de-
scribed an exact actuator disc model for a heav-
ily loaded propeller or a wind turbine. The model
is based on the idea of axially discretizing the
slipstream azimuthal vorticity of a wind turbine
into vortex disks. As there are ways to express
the flow behaviour induced by vortex disks, if the
vortex distribution of the slipstream is known, it
is possible to derive an exact formulation of the
induced flow features.
This method is relatively complex to implement
as it requires solving Bessel-Laplace integrals
using recursive rules in order to get an ex-
pression in terms of complete elliptic integrals
and other associated functions. This section
presents a concise explanation on how to setup
this solution and gives some analytical expres-
sions needed to solve the special case of a
parabolic wake profile.

Conway has derived in [6] a solution for the
special case of a parabolic wake profile includ-
ing the slipstream expansion, where the vorticity
distribution is taken as

ωφ = ar, (1)

where ω is the vorticity, φ is the tangential di-
rection, a is a free parameter and r is the radial
coordinate. In this special case, the velocity pro-
file in the ultimate wake is known to be

Uz(r,∞) = U∞ + a(R2
∞ − r2)/2, (2)

where R∞ is the ultimate width of the slip-
stream. In this case, the stream function Ψ and
the axial and radial velocities Vz and Vr can be
found by solving
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(a) Shape cells. The colour indicates the force
by area of each shape cell.

(b) Intersectional polygons between the shape
cells and the domain domain cells. The colour
indicates the magnitude of the polygons area

Figure 3: Force discretization algorithm.

Ψ(r, z) =
U∞r2

2
+

ar

2

∫ ∞

0

ζ(−1,2,1) dz′, (3)

Uz(r, z) = U∞ +
a

2

∫ ∞

0

ζ(0,2,0) dz′, (4)

Ur(r, z) =
a

2

∫ ∞

0

±ζ(0,2,1) dz′, (5)

ζ(λ,µ,ν) = R2
w(z′)I(λ,µ,ν)(Rw(z′), r, z − z′), (6)

where Rw(z) is the slipstream boundary radial
position at an axial distance z from the disc
(also defined as the wake width function), U∞ is
the freestream inflow velocity and I(λ,µ,ν) is the
Bessel-Laplace integrals (BLI) introduced by
Conway [5] and defined as Eq.7. The analytical
expression of I(−1,2,1), I(0,2,0) and I(0,2,1), as
well as the method used to derive them are
described in the Appendix A.

I(λ,µ,ν) =

∫ ∞

0

e−s|z|sλJµ(sR)Jν(sr) ds, (7)

where λ, µ and ν are integers and Jα are Bessel
functions of the first kind.
In order to find the wake width function Rw(z),
Conway proposes in the appendix of [6] a recur-
sive method based on the idea that the stream
function Eq.3, is constant along the slipstream
boundary, so that

Ψ
(

Rw(z), z
)

= Ψ(D/2, 0). (8)

The loads on the disc are estimated by Con-
way’s model from the stream function Eq.3, us-
ing Eq.9 [6].

L(r) = aρ
[

Ψ(RT , 0) − Ψ(r, 0)
]

, (9)

where L is the axial loading, a is the free
parameter and ρ is the density.

To implement them into EllipSys, they are dis-
tributed over the disc grid and then inserted in-
side the computational mesh as described in
Sec.2.

Full Rotor Computation

The complete geometry of the rotor and nacelle
of a Nordtank 500 kW wind turbine is simulated
up to a steady state solution [25] using EllipSys
and the k-ω SST turbulence model [11]. The
wind turbine is equipped with three LM 19.1 m
blades and has a cylindrical nacelle (2 m
diameter, 8.9 m length). In order to simplify the
simulation, the geometry is lightly smoothed,
the tower is not considered and the spinner
and nacelle where rotated along with the rotor.
Moreover, the simulation is carried out with a
uniform inflow without the ground boundary.

The computational mesh, illustrated in Fig.4,
is generated using Gridgen and HypGrid [21].
It is composed of 108 blocks of 323 cells (14.2
million cells). The y+ at the solid walls is
kept under 2. A no-slip boundary condition is
imposed at the wall of the structure.

The Nordtank turbine rotates at 27.1 RPM.
The inflow wind speed is set to 10 m/s. The
whole steady-state simulation takes approxi-
mately 4 hours on 56 2.2Ghz nodes.
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Figure 4: Illustration of the mesh surrounding the full-rotor computation. The colours illustrate the axial velocity
magnitude.

The blades skin friction is integrated at 11 dif-
ferent positions and recombined into force vec-
tors. These force vectors are then smeared over
the corresponding annular section of the actu-
ator disc grid. Finally, they are redistributed
in the computational domain using the method
presented in Sec.2 and in Fig.3.

3.2 Results

EllipSys vs Conway

Fig.5 presents the comparison of the CFD ac-
tuator disc model to Conway’s heavily loaded
actuator disc model. Conway’s model uses a
vorticity factor a = −4U∞/D2, corresponding
to CT = −0.4484 applied in the CFD-AD. The
model in EllipSys is used without any turbulence
model in order to obtain a result close to the in-
viscid formulation of Conway.
The results show that the two models are in very
close agreement, except for the radial velocity
directly at the disc.

Actuator Disc vs Full Rotor Computation

The actuator disc model does not give a de-
tailed description of the flow in the direct vicinity
of the rotor blades. Instead, its application is
to be used to model the far wake of a wind
turbine. The region of comparison between the
two kind of wind turbine flow model is chosen to

be x ∈ [−3D,−1D] and x ∈ [1D,3D]. The same
inflow parameters for both the mean velocity
and the turbulence are used in the actuator disc
model and the full rotor computation.

On Fig.6, the axial Ux and tangential Uθ

velocity components as well as the pressure
are compared along the radial direction r, at
different positions upstream and downstream of
the rotor. The results are satisfactory in terms
of mean velocity and pressure distribution.

However, the comparison in terms of tur-
bulence parameters shows a large difference
between the two models (not illustrated here).
Indeed, the turbulence generated by the actua-
tor disc lacks the detailed structures generated
by the blade and nacelle geometry that still
dominate in this region. The only turbulence
generated by the actuator disc is produced
through the mean velocity shear at the bound-
ary of the wake. As the inflow turbulence is
low, the production of turbulence is several
orders of magnitude smaller than the turbulence
generated by the blades and nacelle in the full
rotor computation. Compared to atmospheric
turbulence, the turbulence generated by the
rotor is nonetheless an order of magnitude
smaller and should not play a significant role in
the far wake.

The difference between the two actuator disc
computations (10 cells per rotor diameter (c/D)
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Figure 5: Actuator disc (parabolic wake case) compared to the analytical axisymmetric solution of Conway.

and 20 c/D) is visible, yet remains relatively
small.

4 Discussion

The overall good agreements obtained in the re-
sults section demonstrate that actuator disc can
be a cost effective way to model wind turbine
wake. While the vortex structures present in the
close wake region are not modelled correctly,
the far wake region (>3D) seem to be a close
match to a far more complex and expensive full
rotor computation.

The small discrepancy in the radial direction
at the rotor location probably comes from the
fact that the CFD actuator disc model has
a finite thickness, corresponding to the cell
dimensions, while the model of Conway is
infinitely thin. Moreover, the radial velocity
evolves very rapidly at the disc position, which
makes it difficult to precisely interpolate the
velocities at the correct disc position. This
was also commented by Schaffarczyk and
Conway [19] who did a similar comparison of
the analytical actuator disc with a CFD actuator
disc.
This can present a problem rarely mentioned
in the paper dealing with actuator discs. The
position where the velocities are estimated, at
the rotor, is a place where the velocity gradients
are relatively high. As those velocities are
necessary to estimate accurately the related

blade forces, the uncertainty associated with
estimating those velocities is going to be prop-
agated, through the forces estimation, in the
wake of the wind turbine. When considering
multiple wind turbines in cluster, the combined
uncertainty may then become significant.

The comparison between the two actuator
discs with 10 and 20 cells per rotor diameter in-
dicates that using only 10 c/D is enough for ob-
taining a good resolution of the close wake flow
features. In the far wake region, the gradients
become smaller and the cell size becomes less
critical. Using only 10 c/D open the possibility
to numerically carry out large wind farm compu-
tations. For example, an hypothetical cluster of
10 × 10 wind turbines (WT), with a wind turbine
spacing of 8D in each direction needs roughly
10 WT × 10D × 10 c/D =1000 cells in the two
horizontal directions. With 128 cells in the ver-
tical direction, this roughly needs 128M cells in
the center of the wind farm, in order to obtain a
good resolutions. These types of steady-state
simulations can be solved in less than 10 hours
on a large computer cluster.
However, please note that the studies presented
here have been carried out without considering
the large scale atmospheric turbulence. Com-
puting the interaction between the large scale
turbulence of the atmosphere and the smaller
scale of turbulence of the wind turbine wake is a
very complex task that only prohibitively expen-
sive large eddy-simulation seems to be able to
carry out [15].
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Figure 6: Comparison between the full rotor computation and the actuator disc model (with 10 and 20 c/D) of the
normalized axial velocity in a cross section at hub height and at different positions upstream and downstream of
the wind turbine.

5 Conclusion

This paper introduced the actuator shape
model, a cost effective method to redistribute
any kind of shape forces in a computer do-
main. The special case of the actuator disc is
validated through two fundamentally different
models, an analytical solution for an heavily
loaded actuator disc, and full rotor computation.
Both models give a close agreement with the
actuator shape model introduced. The results
show that even with a coarse resolution of the
disc, the far wake region is well defined, which
gives the possibility to carry out numerically full
wind farm wake computation.

This study seem to show that the actuator
disc is by itself a mature technology for the study
of wind turbine wake. However, the lack of
proper turbulence model that can account cost

effectively for both the large scale atmospheric
scales and the smaller wake scales, still limits its
use. More work is therefore needed on the topic
of multiscale turbulence in order to address this
problem.
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Appendix

A Bessel-Laplace Integrals

Conway [2, 5] has developed a recursive
method to express the Bessel-Laplace integrals
(BLI) of type I(λ,µ,ν) Eq.7 using elliptic integral
function to derive a numerical solution.
In order to solve the parabolic wake case, only
three basic BLIs are needed (I(−1,2,1), I(0,2,0)

and I(0,2,1)). While the analytical expression of
I(−1,2,1) is given in [3], the analytical expression
of I(0,2,0) and I(0,2,1) could not be found in the
literature. The recursive method is therefore
used to derive them. The algorithm used to
implement this method is briefly summarized in
the following.

First of all, it is interesting to notice the sym-
metrical property of the Bessel-Laplace inte-
grals [2],

I(λ,µ,ν)(R, r, z) = I(λ,ν,µ)(r, R, z). (10)

Furthermore, the Bessel-Laplace integrals
can be related to each other through recursive
relations and some initial start formulae. The
recursive relations are given as [2],

I(0,ν,ν) =
4(ν − 1)ω

2ν − 1
I(0,ν−1,ν−1)

− 2ν − 3

2ν − 1
I(0,ν−2,ν−2), (11)
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I(1,ν,ν) =
(2ν − 1)|z|k4

8Rr(1 − k2)
(

I(0,ν−1,ν−1) − ωI(0,ν,ν)

)

, (12)

I(0,ν+1,ν) =
r

R
I(0,ν,ν−1) +

r

2ν
(

I(1,ν+1,ν+1) − I(1,ν−1,ν−1)

)

, (13)

which is only valid for ν 6= 0,

I(0,µ,ν) =
2(ν + 1)|z|

r(ν + 1 − µ)
I(0,µ,ν+1)

− 2(ν + 1)R

r(ν + 1 − µ)
I(0,µ−1,ν+1)

+
(ν + 1 + µ)

(ν + 1 − µ)
I(0,µ,ν+2), (14)

and

I(λ,µ,ν) =
R

2µ

(

I(λ+1,µ+1,ν)

−I(λ+1,µ−1,ν)

)

, (15)

which is only valid for λ < 0 and where
ω = (R2 + r2 + z2)/(2rR) is the parame-
ter of an associated Legendre function and
k =

√

4rR/[(R + r)2 + z2] is the modulus of
an elliptic integral.

The initial start formulae are I(0,0,0), I(0,1,0)

and I(0,1,1) and can be found in [3],

I(0,0,0) =
kK(k)

π
√

rR
. (16)

if r < R,

I(0,1,0) =
1

R

[

1 − |z|kK(k)

2π
√

rR
− Λ0(|β|, k)

2

]

(17)

if r > R,

I(0,1,0) =
1

R

[

−|z|kK(k)

2π
√

rR
+

Λ0(|β|, k)

2

]

(18)

I(0,1,1) =
(2 − k2)K(k) − 2E(k)

πk
√

rR
(19)

where β = arcsin(|z|/
√

(|z| − R)2 + z2) is the
Jacobi amplitude, K(k) is the complete elliptic
integral function of the first kind, E(k) is the com-
plete elliptic integral function of the second kind
and Λ0(β, k) is Heuman’s Lambda function de-
fined as [2, 24],

Λ0(β, k) =
2

π

[

E(k)F (β, k′)

+ K(k)
(

E(β, k′) − F (β, k′)
)

]

, (20)

where k′ =
√

1 − k2 is the complementary
modulus for an elliptic integral of modulus k.

Using the recursive laws and the start formu-
lae, it is possible to create a recursive algorithm
to express any Bessel-Laplace integral in terms
of elliptic integral functions. The procedure
suggested is to first use the relation I(λ,µ,ν)

Eq.15 to find an expression where λ = 0. Then
use relation I(0,µ,ν) Eq.14 to reduce the gap
between µ and ν in order to use the relation
I(0,ν+1,ν) Eq.13 and finally I(0,ν,ν) Eq.11.
Whenever possible, a shortcut in the recursion
can be taken, using the symmetrical relation
Eq.10. This procedure is only valid for λ ≤ 0,
yet this encompasses all the cases described
by Conway’s actuator disc model.

In order to test the algorithm, one can com-
pare to some of the Bessel-Laplace integral
solutions given in [3].

Using this algorithm it is possible to express
I(−1,2,1), I(0,2,0) and I(0,2,1) with respect to el-
liptic integral functions. I(−1,2,1) is also given
in [3], if (r<R),

I(−1,2,1) = E(k)ΘE
(−1,2,1) + K(k)ΘK

(−1,2,1)

+
r

R2

(

zΛ0(β, k)

2
− |z|

)

(21)

if(r>R),

I(−1,2,1) = E(k)ΘE
(−1,2,1) + K(k)ΘK

(−1,2,1)

+
rz

2R2
Λ0(β, k), (22)

where the coefficients ΘE
(−1,2,1) and ΘK

(−1,2,1)

are given as,

ΘE
(−1,2,1) =

1

k

1

2π

√

r

R

[

4r

R
− 8(2 − k2)

3k2

]

,

(23)

ΘK
(−1,2,1) =

k

2π

√

r

R

[

(4 − k2)(4 − 3k2)

3k4

− r2

R2

]

. (24)
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I(0,2,0) is found using the recursive rules, if
(r>R)

I(0,2,0) =
E(k)ΘE

(0,2,0) + K(k)ΘK
(0,2,0)

k3π(rR)5/2

− Λ0(β, k)|z|
R2

, (25)

if (r<R)

I(0,2,0) =
E(k)ΘE

(0,2,0) + K(k)ΘK
(0,2,0)

k3π(rR)5/2

+

[

Λ0(β, k) − 2
]

|z|
R2

, (26)

where the coefficients ΘE
(0,2,0) and ΘK

(0,2,0) are
found as Eq.27 and Eq.28.

ΘE
(0,2,0) = −4rR

[

R
(

2
(

−2 + k2
)

r

+ k2R
)

+ k2|z|2
]

, (27)

ΘK
(0,2,0) = rR2

[

(

−16 + 16k2 − 3k4
)

r

− 2k2
(

−2 + k2
)

R

]

+ r
[

k4(r − 2R) + 4k2R
]

|z|2. (28)

I(0,2,1) is also found using the recursive rules,
if (r>R),

I(0,2,1) = E(k)ΘE
(0,2,1) + K(k)ΘK

(0,2,1)

+
Λ0(β, k)r

2R2
, (29)

if (r<R),

I(0,2,1) = E(k)ΘE
(0,2,1) + K(k)ΘK

(0,2,1)

+

[

2 − Λ0(β, k)
]

r

2R2
, (30)

where the coefficients ΘE
(0,2,1) and ΘK

(0,2,1) are
given as,

ΘE
(0,2,1) =

2|z|
kπR

√
rR

, (31)

ΘK
(0,2,1) = −

|z|
(

k2(r − 2R) − 4R
)

2kπR2
√

rR
. (32)
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