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ABSTRACT 

We present sensitivity-based pruning algorithms for 
general Boltzmann networks. Central to our methods 
is the efficient calculation of a second-order approxi- 
mation to  the true weight saliencies in a cross-entropy 
error. Building upon recent work which shows a formal 
correspondence between linear Boltzmann chains and 
Hidden Markov Models (HMMs), we argue that our 
method can be applied to  HMMs as well. We illustrate 
pruning on BoNzmann zippers, which are equivalent to 
two HMMs with cross-connection links. We verify that 
our second-order approximation preserves the rank or- 
dering of weight saliencies and thus the proper weight 
is pruned at each pruning step. In all our experiments 
in small problems, pruning reduces the generalization 
error; in most cases the pruned networks facilitate in- 
terpretation as well. 

1. INTRODUCTION 

There is an enormous body of simulation work demon- 
strating the value of architecture optimization for net- 
works for pattern classification, and this has properly 
led to  great interest in both theoretical foundations and 
in new algorithms. There are two basic viewpoints to- 
ward this issue: regularization (or penalty based) and 
sensitivity based. According to the viewpoint of regu- 
larization, one seeks to impose some desired property 
in the final solution, for instance smoothness. Thus in 
weight decay one penalizes large weights and therefore 
favors smoother decision boundaries. According to the 
viewpoint of sensitivity, one seeks to eliminate those pa- 
rameters (e.g., weights) that have the smallest effect on 
the training error, thereby restricting the model with- 
out severely penalizing the training error. For instance, 
Optimal Brain Damage (OBD) [l] and Optimal Brain 
Surgeon (OBS) [a] eliminate weights that are predicted 
to  have the least effect on the training error. 

In fact both views stem from a deeper notion con- 
cerning the incorporation of model priors or structural 
risk minimization [3]. Despite their fundamental unity, 
in computational practice it is convenient to  adopt one 
or the other of these views. For instance, regularization 
by weight decay is easy to  incorporate during learning; 
pruning by sensitivity-based methods is traditionally 
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performed after training with examples. (We note too 
that in practice one can use 60th methods when cre- 
ating networks.) In this paper we mention briefly the 
application of weight decay but our primary contribu- 
tion is a new sensitivity-based pruning algorithm for 
Boltzmann networks. 

Most pruning methods have been developed for net- 
works of nonlinear units - feed-forward or recurrent - 
typically trained by backpropagation or second-order 
methods. However pruning in another class of network, 
Boltzmann networks, has not received adequate atten- 
tion. Though typically slower and a bit more difficult 
to  train than feedforward neural networks, Boltzmann 
networks nevertheless have some desirable properties: 
natural handling of missing data (during training or re- 
call), pattern completion, and superior avoidance of lo- 
cal energy minima during training. Based on the close 
relationship between certain Boltzmann networks and 
Hidden Markov Models [4,5], we now know that such 
Boltzmann networks can posess benefits of HMMs too, 
most particularly dynamic time adjustment. 

Our paper is organized as follows: In Section 2. we 
provide a short review of Boltzmann networks. In Sec- 
tion 3., we show a second-order expansion of the cross- 
entropy cost function and present our sensitivity based 
pruning algorithm. In Section 4. we apply our method 
to  a Boltzmann architecture that is of particular inter- 
est for integration of two channels having different time 
scales. We conclude in Section 5. with some thoughts 
on future directions. 

2. BOLTZMANN NETWORKS 

Boltzmann networks are stochastic networks with both 
visible and hidden units (cf., [6] for an introduction 
and the notation we use here). We let the subscript cx 
denote the states of the visible units and p the states of 
the hidden units. The superscript + denotes iterating 
the network with the visible units clamped to a desired 
pattern, and - denotes the visible units running freely, 
or unclamped. The energy function for the Boltzmann 
network is usually defined as 
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where wij is the (bi-directional) weight connecting 
units i and j, and si is the (binary) state of unit i. At 
thermal equilibrium the probability of finding the units 
in a given state configuration aP when the visible units 
are unclamped is given by the Boltzmann distribution 

where Z is the normalizing partition function and Eap 
is the energy (dependent on the weights) when the vis- 
ible units are in states a and the hidden units are in 
states ,B; for clarity in the following, we have incor- 
porated the temperature into the energy term. Thus, 
the probability P; of finding the visible units in joint 
states a is found by summing over the possible hidden 
unit configurations P. 

When training Boltzmann networks we want the 
probabilities of the freely running network P; to match 
those of the environment/training examples P:. As a 
measure of the difference between the two probability 
distributions we use the Iiullback-Leibler measure, or 
relative entropy, as our cost function: 

(3) 

= - C P,+ In PL + const, 
a 

where const is a constant determined solely by the en- 
vironment, and is hence independent of the weights 
w. When training using gradient descent we need the 
derivatives of H(w) with respect to the bi-directional 
weights wij connecting units i and j: 

(4) 

= < sisj >- - < sisj >+, 
where < . . . >: is the mean value given that the visible 
units are clamped in states a ,  and < . . . >- is the mean 
when all units are free running. 

3. PRUNING 
The first derivatives lead to the traditional first-order 
training methods [6]. However, for training using 
second-order methods and for our pruning algorithm 
we need the second derivatives of the entropic cost. 
These second derivatives are calculated as: 

(5) 

The approximation in Eq. 5 is justified if we assume 
that the problem at hand is realizable, i.e., there exists 
a set of optimal weights w*,  for which P; = P; , V a  
[7]. For these weights, the term in Eq. 5 involving 
second derivatives of the unclamped probabilities P; 
reads 

= 0, 

where in the first step we used the fact that P,f = P; 
at w = w*, and in the last step that E, P; = 1. Thus, 
close to the optimal weights w* the term in Eq. 5 in- 
volving second derivatives vanish. The remaining term 
involves terms of a form calculated from Eq. 4: 

- 

(7) 

- - < s;sj >;t - < sisj >- . 

Thus we obtain the second derivatives: 

(8) 
d 2 H ( w )  d In P; d In P; 

dwij dwpq P,+.alo,, 

a 

- < S p S q  >- P,+ < sisj >;t 
a 

- < sisj >- P,s < spsq >;t 
a 

+ < sisj >-< spsq >- 
- - < sisjspsq >+ - < S F S ,  >-< sisj >+ 

- < sisj >-< spsq >+ 
+ < sisj >-< S p S q  >- . 

We note that the second derivatives involves only terms 
already computed when calculating the gradient, thus 
implementation is straightforward and yields little com- 
putational burden beyond that needed for gradient de- 
scent learning. 

3.1. 
Two well-known methods for pruning traditional feed- 
forward and recurrent networks are Optimal Brain 
Damage (OBD) [1] and Optimal Brain Surgeon (OBS) 

Pruning using OBD and OBS 
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[a]. Both methods use second-order expansions of the 
error to estimate the importance of the parameters. 
OBD uses a diagonal approximation to  the Hessian to 
calculate the saliency of a weight by estimating the 
change in error when the weight is set to  zero. OBS 
uses the full Hessian, and the change in training error 
is estimated including the effect of reestimating the re- 
maining parameters in the model to  a new minimum 
within the quadratic approximation. The rationale be- 
hind both methods is that if we remove the least salient 
weights according to  training error, we gracefully re- 
lieve the danger of overfitting, and thereby improve 
generalization. 

The method we present here is firmly rooted in the 
logic of OBD/OBS; the key novelty is the equation 
for second derivatives, Eq. 8. We note that for tra- 
ditional Boltzmann networks, removing a weight from 
the model is equal to  setting it to  zero, since the weight 
no longer provides contribution to  the energy (Eq. 1). 
Thus, the logic of OBD and OBS can be applied di- 
rectly for these models as well, though using the sec- 
ond derivatives derived above. Even though it is usu- 
ally intractable to compute the numerical value of the 
entropic cost (Eq. 3) ,  this does not affect the prun- 
ing methods since they only measure the change in 
cost ,- working from approximations using information 
already provided by the learning algorithms. 

3.2. Pruning Hidden Markov Models 
It has been shown that for certain tree-like connectivity 
of Boltzmann networks it is possible and computation- 
ally tractable to  compute the expressions in Section 2. 
and 3. exactly [8]; this, therefore, provides greater accu- 
racy for the saliency estimates provided by our method. 
Such computations have been used to  a specific topol- 
ogy of Boltzmann networks called Boltzmann chains 
[4]. It was shown that any first-order HMM can be 
represented by an equivalent Boltzmann chain [4]. It 
was furthermore shown that under the condition that 
all state sequences have a mandatory end state, Boltz- 
mann chains can be represented by first-order HMMs 
as well [5]. 

In traditional research on HMMs, the topology of 
HMMs for a given task has been chosen by hand or 
found by ‘exhaustive’ search. However we suggest that 
the topology can be optimized by converting the IIMM 
into a correspondang Boltzmann chain and performing 
pruning on this model. The resulting chain is then con- 
verted back into an HMM for reestimation of the re- 
maining parameters or, alternatively, the reestimation 
is done for the Boltzmann chain, only converting back 
the optimal model. 

Pruning a weight in a Boltzmann chain represent- 
ing an HMM should be equivalent to  setting the cor- 
responding transition probability in the HMM to zero, 
thus preventing hidden state sequences including the 
transition in question from contributing to the proba- 
bility of a given observation sequence. This means that 

the weight should be set equal to -CO if pruned in the 
Boltzmann chain, yielding zero contribution to  the par- 
tition function for state sequences including the transi- 
tion in question. This is consistent with the expressions 
in [4] for converting the parameters in an HMM into the 
weights of a Boltzmann chain, which is accomplished by 
applying the natual logarithm to the transition proba- 
bilites. 

When pruning Boltzmann chains representing 
HMMs we must modify our algorithms somewhat how- 
ever, since these methods estimate the effect on the cost 
when a parameter in the chain is set to  zero. Instead 
we are forced to  set the weights to -CO one by one and 
compute the resulting change in error. This is possible 
since we are able to perform exact calculations of the 
entropic cost function for this special topology of Boltz- 
mann networks. Also, we should be careful if/when 
pruning weights representing observation probabilities, 
since this means that the observation is no longer pos- 
sible when in a particular hidden state. 

4. EXPERIMENT 
It has been shown how to model correlated dis- 
crete time series on disparate timescales using cross- 
connected parallel Boltzmann chains [4], which we call 
Boltzmann zippers (Fig. 1). Thcse models can be in- 
terpreted as interconnected HMMs. Such models are 
of particular interest where one must integrate infor- 
mation from two time series having different inherent 
time scales, as for instance speechreading, where the 
fast acoustic information must be integrated with the 
slow visual information [9]. Here we use pruning to  
investigate the utilization of the cross-connection links. 

Figure 1. Topology of a Boltzmann zip- 
per. White circles represent groups of visible 
units/states, dark circles represent groups of 
hidden unit s/st ates. 

We generated synthetic patterns by two left-right 
HMMs. In order to generate observations on two dif- 
ferent time scales, a fast model was iterated twice as 
often as a slow model. The fast model had three hid- 
den states and three observation symbols, the slow had 
two hidden states and two observation symbols. The 
last states in the models were connected, increasing 
the probability of making transitions to  the last hid- 
den state in one model if the other model was already 
in its last state. Thus, the fast model was able to  make 
direct transitions to  its last state zJthe slow model was 
already in its last state. 

Three hundred pairwise sequences of lengths 14 and 
7 (respectively) were generated, and a fully connected 
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TRAINING AND TEST ERRORS WHEN PRUNING QUALITY OF SALIENCY ESTIMATES 

I $- 

Figure 2. Left panel: Cross-entropy error on 
training and independent test sets (150 patterns 
each) versus the number of bidirectional weights 
between units. Pruning proceeds from right to 
left, and at the extreme left (26 weights), all 
cross connections have been removed. Right 
panel: The true saliences in a full network ver- 
sus the saliencies estimated to second order. 
Note the excellent agreement over six orders of 
magnitude. 

Boltzmann zipper having the same number of hid- 
den and visible states as the underlying HMM-models 
was trained, using 150 examples for training and 150 
examples as a separate test set. The model, ini- 
tially having 32 parameters, was trained using gradi- 
ent descent followed by a second-order damped Gauss- 
Newton method. In order to ensure numerical stability 
and facilitate training, the entropic cost function was 
augmented by a small quadratic weight decay term. 

In order to investigate the utilization of the cross- 
connections in the zipper, we used our method (in the 
diagonal Hessian approximation) on these six weights. 
Since it is not clear how these weights relate to the 
transition probabilities in the HMMs we chose to limit 
the degrees of freedom by setting the weights to zero 
when pruned. The remaining weights were retrained 
by the second-order method after each weight elimina- 
tion. In the left panel of Fig. 2 we show the results of 
pruning. We note that the errors are left almost un- 
changed until we prune the final cross-connection, after 
which the errors increase significantly. This is consis- 
tent with the model from which the data was generated, 
and indicates that the sipper has captured the under- 
lying structure well. In fact, the lowest test error was 
obtained using only one cross connection, and the error 
rises dramatically if this last connection is also pruned. 

In the right panel of Fig. 2 we illustrate the qual- 
ity of the saliency estimates. For the fully connected 
zipper, we plot the estimated saliency for the cross con- 
nections versus the actual saliency computed by setting 
the weight to zero and calculating the resulting change 
in training error. We note that the estimates are ap- 
proximately equal to the actual saliencies. Note that 
the rank ordering of the estimated saliency is the same 
as the actual saliencies; and thus the correct weight is 
deleted. 

In 12 pruning experiments such as just described 
(in which the generating model had a single cross- 
connection link), we found that all 12 resulting net- 
works displayed better generalization than the un- 
pruned network. Of these, we found that 9 displayed 
best generalization using a single link, as expected. 

5. CONCLUSION AND FUTURE WORK 
We have derived the second derivatives of the en- 
tropic cost function and shown how to use these for 
sensitivity-based pruning of general Boltzmann net- 
works. We have described how to extend this approach 
to Hidden Markov Models by transforming these into 
equivalent Boltzmann chains. Finally, we illustrated 
the viability of pruning on the cross-connections of 
Boltzmann zippers. 

Clearly our method must be further demonstrated 
on large and realistic problems, such as speechreading. 
It will be interesting to see if our method, when applied 
to Boltzmann chains, is computationally more efficient 
than the exhaustive search method used throughout 
speech research for highly trained models. 
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