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Recognition of Isolated Handprmted Characters

Bo Martins
Department of Telecommunication, Techmcal Umvermty of Denmark*

Abstract

Handprinted characters are of unequal® complexity
and a common description of all alphabet sym-
bols seems therefore unobtainable. - However, ,let—
ters which are confused by human beings and by
man-made OCR systems usually have approximately
the same appearence and may therefore be modeled

jointly. We part the set of bitmaps into types, where... .
each type has its unique. feature space. The bitmaps

belonging to some type is modeled independently

from bitmaps belonging.to. other: types The feature

vector of a bitmap initially constltutes a lossy repre-

sentation of the contour(s) of the bitmap. The initial -
feature space is usually too large but can be reduced -

automatically by use of a predlctwe code length or
predictive error criterion.

1 Introduction

The nature of scripts is such that the symbols of

the alphabet (letters or words) are of highly uneven

complexity. This is quite natural; since the images

which we associate with spec1ﬁc Jetters have been

chosen to be easily distinguishable to human be-
ings. This fact has let to the emergence of recog-
nition systems that consist. of |A}*different models,
{pi(y),1 =0,1,---,|A| — 1}, where A denotes the al-

phabet and y is a vector of observable data (features) -

associated with the unknown symbol.
With these multiple, unconnected models ‘the
problem is to pick the feature space so that the rules

of classification result in a low error rate. It seems

appealing to pick symbol ¢ if
p;i{y),J # 1, even though it i ;
when the prior probablhtles of

ties are very skewed. The modelhng tools bemg
are frequently Hidden Markov Models (HMM)[1]
or neural networks with a fixed architecture[3]. To

*This work was carried out at IBM Almaden Research Cen-
ter, California. I am much obliged to Drs. J. Rissanen, R.
Arps, and A. Kornai for their help and good advice.
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try out a-search in archltecture space for good mod-

each model is very ti consuming::
ible models like Hidden Markov Models:
networks cannot fully compensate for the motre or: -
less blind choice of feature space.

To combine predictions:on letter level to pred1ct1on
of Words the multlple models method'fsuﬁ"ers from not,

proach tha 5 ak
tion as, say 'n’, i : :
long term bas1s In many apphcatlons thls approach ;
is sufficient since the vocabulary and grammar is so -
restricted that the Hamming distanée between valid
words and/or word combinations is large. :

The recognition scheme reported here is one that - -
seeks to bring the data on such a form that enables
us to build joint models for several characters, thus-~
enabling estimation of p(s [y) without foreing scripts
of very ven complexity to live in'the same.para- -
metric World. R

1.1 PreViouS’ Wo.rk’

Singer.and Tishby [4] [5 ] demonstrated that cursive
scripts can be modelled extremely well when ‘one uti-
lizes the fundamental model of the w
that of coupled oscillators of the H 5. The
parameters of the:oscillator mod} an be reduced
to only 45 indicators, which are constant between
breakpomts deﬁn d in ve10c1ty space and 6 param-

i(y) is larger than. e

: deﬁned the breakpoints as high ctirvature pomts in
~ the bitmap of the script, the breakpoints were joined
by cubic splines and breakpoints and spline parame-
ters together formed the féature set. Takahashi and -
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Griffin[3] got excellent recognition results on hand-
printed capital letters using neural network classifiers
where the features were computed on a low resolution
bitmap of the original bitmap. The features were a
mixture of the position of high curvature points and
of frequency counts of 2 by 2 pel patterns belonging
to regions of predetermined position and size. Only
the 14 patterns of non-uniform color were consid-
ered and their frequency counts were collapsed into
4 counts to reduce the number of features.

2 The Raw Data

We considered preprocessed handprinted isolated
characters from the NIST database. The prepro-
cessing was done by Andras Kornai, IBM Almaden
Research Center, and others, and is described in [2].
The preprocessing transforms bitmaps of uneven size
to bitmaps of size M = 24, N = 16. The transform
is an uneven subsampling which distorts the original
shape (reducing legibility) and removes the absolute
size information, but also to a very high degree re-
moves noise. As shown in Fig. 1 even simple letters
have highly varying appearence.

Uy UubZ DU Jun v
VYV VY VYV VIR

Figure 1: Examples of input data with correct clas-
sification u (top line) and v (bottom line).

3 Types and Features

The basic idea of our recognition system is to part
the set of bitmaps into a number of types defined as
one or more sequences of inflexion points (IP) in the
bitmap. An IP-sequence describes coarsely an inner
‘or outer contour in the bitmap and is thus a rough
curve description of the script. By grouping scripts
by their IP-sequences we have roughly separated the
bitmaps in what may be interpreted as similar look-
ing letters and highly skewed their prior probabili-
ties. Moreover, our IP definition allow us to further
represent the bitmaps by a detailed, type dependent
description that is both compact and accurate. A
classifier is built for each type.

The contour between each pair of neighbouring IPs
is represented as integers which note the frequency
counts of 2 by 2 pel patterns along the contour [3].
We suspect that the very reason for their success is

their implicit representation of the bitmap as pieces
of curves. We define an IP as a local extremum point
in horizontal or vertical direction ! (refer to Fig. 3.
IPs are marked in boldface).

-To connect two IPs, A and B, and to get the de-
scription of the curve connecting them we trace the
contour. The procedure depends on the identity of
A. Assume that A is a Black.-up. By Fig. 2 the iden-
tity of B may be only a Black_right or a White_down.
Stepping from a Black-up to a Black.right or a
White_.down can be done in a unique way if we de-
fine the primary direction as to-the-right and the sec-
ondary direction as down. Let the point P denote a
point on the contour and let its initial position be
that of the Black_up. Transversing from A to B we
at each step register the local shape of the contour
expressed as a 2 by 2/bit pattern. For a given A
there are 4 different patterns 2 (see Fig. 3). Pick the
pattern that matches the bitmap when the boxed 1
covers P, update the count for this pattern. Try to
move P one step in the primary direction. If P lands
on a 0 then the step is illegal and we have to choose
the secondary direction. Continue like this until the
next IP is reached. This happens when a boxed 1 or
a boxed 0 covers B. If point A is a White_* we first
have to pick the one of the 4 patterns that matches
the bitmap when the boxed 0 is placed on top of A,
the boxed 1 is the initial position of P.

A bitmap may have more than one IP-sequence.
They are found by scanning the bitmap in raster scan
order for non-visited Black_up’s or White_up’s. .

4 Modelling Bitmaps of Equal
Type ‘

At this point an unknown bitmap belonging to type
c of dimension j is represented by the pattern count
vector Yo = Yc0- " Ye,j—1- We may create a proba-

1The choice in [6] for the IPs, although stable and low
in number, cannot be used because the contour between IPs
would be too complex to describe by pel pattern frequency
counts. We would have to introduce other more questionable
IPs or choose a different description of the contour altogether.

2The main advantage of our representation as compared to
the original Takahashi features is the introduction of meaning-
ful breakpoints. However, our choice of IPs gives us another
advantage because the number of 2 by 2 pel patterns between
adjacent IPs is usually only 4 so that we do not have to col-
lapse frequency counts to bring down the number of features.
A sufficient requirement for having only 4 different patterns
between IPs is that we do not have any 2 by 2 checker board
patterns in the bitmap. These possibly troublesome bitmaps
may be handled by filtering out the checker board patterns,
when they provoke a state of error during the process of find-
ing and linking the IPs.
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Block.up: . 0 ol Na
White_up: 1 >~ .
Black_down: 2 'é©5
White_down: 3 '
“Black_left: 4 R :
Lo
White_left: 5 -
Black_right: 6 o
White_right: ~ 7 N

Figure 2: Valid inflexion point(IP) transitions

bilistic model p(ily.), ¢ € S., where S, is the set of
alphabet symbols that in the training data occurred
in type c. In the following we shall omit subscript ¢
where there can be no ‘confu‘sion about the type. We
use the notation: y =y .

In the training body some of the -alphabet sym-
bols will usually have been of the current type..
Number these alphabet symbols 0,1,+:-,r and let

their frequency counts in the tramlng set be denoted,

ng,ny - - n. To clagsify the current bitmap we.only
consider these r + 1 possibilities. The features found
during construction of the IP-sequence(s) are not
necessarily well-suited for classification even though
we have tried to choose features that reflect-the writ-
ing process, because the dimensionality of the model
should depend on j, ng,n1 -+ -n,, and on the type.
We shall consider automatic ways of reducing the
feature space dimensionality so as to obtain the best
possible prediction. The number of bitmaps in the
training data that belong to a type is a small num-
ber (usually 20 to 200), so we must take special pre-
cautions so as not to overfit the models which must
themselves be extremely simple.

4.1 The Kullback-Leibler (KL) Model

A multi-nomial model requires estimation of mean
values only. If we COIlSIdeI‘ (Yo, ,Yj—1) as the out-
come of m = 37!y independent throws with a
j—dimensional dice with the probability distribution

Qi =(Qi0,**, Qi,j—1) then by [7] we have:
P o2 PP ()
Hete P = (Fy,- ) denotes the normalized em-

pirical probablhty dlstrlbutlon for the current feattire

vector, thus P - m. = y.. The Knllbackaeibler dis-.

tance, D, between Q; and P is defined as:

PHQ Zleogz

still be valid-to some- extent, only -

-this Yeffective m’ makes:it:

(2)

; ;:]gﬂrgﬂé)dorjpolnts‘équence' S

A i :
- Blackup.  Whitte: aown Whl‘re nghf~

5
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7 Blosk et [ ’BIc:cT( up)
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Figure 3: Constructmn of the\contour dependent fea~ -
ture set. The. typeis c.= {065624037 0),1537(1)}..
The 10 4+ 4 TP transntlons give rise to a feature set ’
Ve, of dimension j =4: (10 + 4)

Qi is computed as-the average value of P over the
n; instances of symbol i in the training set. When
the j. components of y are strongly dependent.as
certainly .is the case we. hope that the model will:
ith g 'smaller
knowledge of*

to explcut the.

eﬁegtwe., value’ of .

fact that the prior probabilit e skewec
have" a, ﬁxed type,-c, The dec131en rule,,
Kullback-Leibler model is:th :

D(PHQ) mm{D(P] Q ;
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k=1
k=1 Wipi(-’”o )
1|z = 4
plilzs™) mopo(zh ") + - + mopr(zh ) @

k=1 _ 1
PeT) =
exp(=5 (¢ — )T - ) (9

where x = 2~ is a linear combination of the origi-
nal features y, x = Zy. .
Decision rule: Pick letter i if p(ily3™") =
ma,x{p(O!y{)_l), T ,p(r|y€)_1)}.
The estimator for the prior probability of symbol
1 generated in type c is:

)
no + - +n, + 52

(6)

™

This estimator has unique properties[8] with respect
to convergence when the distribution of the prior is
multi-nomial. The mean, p,, and the covariance ma-
trix, ¥;, are estimated by their maximum likelihood
estimates over the n; (training) bitmaps.

4.2.1 Choosing the Transform matrix

We considered two ways to pick the rows of the trans-
form matrix. In one case (PC) we used the principal
components of all the bitmaps of type c, i.e. bitmaps
belonging to different letters. This method, although
heavily used in classification tasks is not guaranteed
to get any results and were merely used as a refer-
ence. In the other case (GG) we used a greedy search
to pick out the components of the original feature
vector y that would contribute the most informa-
tion. In the pricipal components case the transform
coefficients of a row are real valued, in the greedy
case a row has a single 1, the rest of the coeflicients
are zeroes. The task is to pick the right position for
the 1. We considered two greedy criteria. Assume in
both cases that the k& — 1 first rows of the transform
matrix have been picked already.

1. Predictive minimum description length (pmdl).
Choose the position of the 1 so as to mini-
mize the code length of a string stating the cor-
rect classifications of the training data given the
model. Does the new row help to reduce the
code length? If not we stop at the k — 1 rows.

2. Predictive errors (pe).
Choose the position of the 1 so that the number
of errors classifying the training data is mini-
mized. If there is more than 1 best position
then choose the position that offers the lowest

Type Training: b °° | Test: baggg |
c Ny,c Ny,c Nyu,c Ny,c
06240653(0) 38 102 69 | 107
0624065374(0) 126 22 69 16
062403(0) 24 393 | 20 | 395
030624(0) 12 133 10 | 142
06240374(0) 79 34 64 34

Table 1: Binary alphabet (uv) - how IP-sequence
grouping skew the prior probabilities. The table dis-
plays frequency counts of alphabet symbols corre-
sponding to bitmaps with 5 most frequent types.

code length. Does the new row help to reduce
the number of errors? If not we stop at the k=1
rOWS.

5 Empirical Results

5.1 Binary Alphabet

It is our observation that whenever human beings
are in doubt as to the classification of an unknown
character the choice stands between two candidates
only - the rest of the alphabet symbols are {correctly)
dismissed as possible candidates. Many man made
OCR systems also have the property of being able to
reduce the large number of possible alphabet symbols
to 2 or 3 with a low error rate. Both cases prompt
attention to the binary alphabet case. So as to better
understand the properties and possible defects of our
approach we first concentrated on a binary alphabet
(uv). We considered u’s and +’s because u-v confu-
sions is a likely source of human errors, and because
uw's and v's have usually only one contour, so that
the recognition within a type becomes of significant
importance. We considered a file of 4000 bitmaps,
b3°%9, where b3°9 and 3393 are bitmaps of u's and
the rest of v’s.

Table 2 sheds some light on the dangers of overfit-
ting the models. The significant difference between
the recognition results on the training data and the
test data when applying the Gaussian models is an
indication of overfitting. The steady performance of
the Kullback-Leibler model indicates that we do not
overfit that model. The Gaussian models are much
more vulnerable to overfitting as they require esti-
mates of the covariance matrices, ¥ and X;. Over-
fitting occurs when the estimated covariance matri-
ces have one or more small eigenvalues: we know
that the resolution of the data is 1 because they are
counts, hence, all healthy variance estimates should
be approximately 1%, certainly not much less. Ex-
periments not reported here showed that the impact

- 2241 —
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Type Training - | Test - Errors

c ' ' KL [ PC T GG
062403(0) bg% T TR | 351 20 | 23
062403(0) bLo99 bloes. ] 331 18| .30
062403(0) b§3§38 b3332 1 39 {22 |11
062403(0) b2o9® B0l 73 138 | 36
06240653(0) 65999 5% 10| 13 5
06240653(0) | b3°%° b3Sl 34! 35| 31
06240653(0) | 63353 b3%8S | 37.]--30| 12
06240653(0) | b8°%° - .| b3°%° | 53| 50 |23

Table 2: Binary alphabet. | Recognition of «’s and v's

of two frequent types in a file, b3%%° where 53%° and
b29%% depict w’s and the rest depict v’s. -Overfitting

occurs for methods PC and GG (A = 1079): For
method PC the error rates are those that would have
been obtained had we known the optimal number of
principal components.

of bad estimates of the covariance matrices totally
ruins the performance of the Gaussian models when
applied to a larger alphabet. We patched the prob-
lem of bad covariance matrix estimates by foreing the
eigenvalues to be at least A,ini: To do that we de-
composed 3; into its eigenform. VAV’ changing only
the diagonal matrix A. Experiments showed that the
value of A.in should be-adjusted according. to: the
greedy criterion (Table 3). Another case of overfit-
ting-occurs when we allow the transform matrix to
be picked too freely. For method PC the transform.
coefficients constitute a:large set of free parameters
being estimated from very little data. The (severe)
difficulty lies in determining a proper model order %.
We found no solution to that preblem. The greedy
build-up of the transform :matrix.is dangerous.be-

cause it is an adaptive algorithm: Experiments with-

the binary alphabet and a'16 letter alphabet(see be-
low) established the greedy Gaussian algorithm as
the overall best choice of ‘the three. All our mod-
els suffer from the drawback that we cannot have
more than one cluster in feature space for the same
letter. A mixture density model is particularly de-
sirable in the frequent. cases where the preprocessing

‘clip’ some letters and leave others in their original

cycloidal form. (Many bitmaps of «'s suffer from this
distortion.)

5.2 Bank Cheque Alphabet

To make a rough evaluation of ‘the: performance: of:
our system as compared to established OCR systems:

we joined our system with one’of the OCR-systems
described in [2], where the alphabet was the bank
cheque alphabet (efghilnorstuvwiy):

Each letter had appeared 1000 times in the train-

6V5VVVVVUVVUKVVVVVVVUVVJd
UUUUUUUUUUUUUUUUUUUUUUUUU
#VVVVVUVHVHVVUVVVVUVVWVUJ

Yoy~ o

-UUUUUUUUJUUUUUUUUUUUUUUUU'

vUvu U TRU v v dey
UJVVVVVUVVVVVUVVUVVVVVV#V'
Yroldvuw/guud -
UUUUUUUUUUUUUUUUUUUUVUUUU;

VIOV UV LY

Figure 4: Recognition. e’xamples for ws and v's of ‘
type, ¢ = 06240653(0). Rows 1-4: training body
b5, test body b3°%°. Rows 5<8: training body 63999,
test body 53338 Rows 9~12: training body b3°%, test ,
body b3%%°." Rows 1,5,9: examples of correctly rec-
ogmzed 7’s. Rows 3,7,11: examples of cor ’ctly tec-
ogmzed w's. Rows 2,6,10: errors Where'v g are',taken
for ws. ‘Rows 4, ,8,12: etrors where ws are taken for-
v's. Classification by the ‘ereedy Gaussiah algorlthm'“
using pmdl to pick the tra,nsform matnx /\mm = 2 O

‘Type, é ; ST Briors
i T Amin = 50 Dnin =1.5 [ Amm =7, o

' o “pe | pmdl“ iipe T pmdl Tpe | pmdl

06240653(0) | 43 | 31 |37 [ 29736 | 33
0624065374(0) | 19| I3° 13 AT 14 | 15
062403(0) 118 19 1922 |+ 19
030624(0) ~ |13 | .6 | - 6 | 9

-06240374(0) | 1»4; ,14, 144 »‘1,3 [413 |21

Table 3 Bmary alphabet (uv) Recognltlon results
for bltmaps with, the 5 most frequent IP-sequences. .
using the greedy. Gauss1an algorlthm o

ing set and each letter except g appea d‘ 1000 tlmes’
in the test set - "there were 939 ¢'s in the test set. =
The hybrid system switches between the two purev
systems, letting ours do the prediction if the type of
the present bitmap has occurred more than; T times
in the trammg set, T bemg some threshold and the -
HMM do the predlctlon other 'se On the larger al-
phabet the, predlctlve etror criterion were, much bet-
ter than the predlctlve code. length crlterlon much
so this is what we used. ‘The results. comparmg the
pure HMM system with the hybrld system is glven
in Table 4. ;

~The preprocessing cases a lot of = l confusmns by
filling the gap between-thé.body and-thedotofian s
The y's-arepoorly recognized by the"HMM for no ob-
vious reason. The #'s and‘fs-are badly récognized by -
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correct | errors | errors | correct | errors | errors
value | HMM | hybrid | value | HMM | hybrid
e 120 72 r 169 178

f 106 138 s 106 71

g 138 143 t 302 306

h 120 91 u 318 240

i 491 403 v 166 144

1 185 138 w 102 66

n 160 142 x 124 | 81

o 39 33 y 331 243

Table 4: Bank cheque alphabet (efghilnorstuvwzy).
Recognition results for the pure HMM OCR-system
and for the hybrid system using the greedy Gaussian
algorithm with the predictive error criterion. T = 80

our mechanism because bitmaps of pen strokes that
are intended to be horizontal or vertical are likely to
be inflicted by unstable local extrema. The results
for s and v’s are surprisingly good for the HMM. Vi-
sual inspection of the errors reveals that the r-v and
u-v confusions that occur are forgiveable, indeed, a
human being might make a few mistakes here. The
most striking shortcoming of our frequency count
. representation is its possibly inadequate description
of curves connecting far spaced IPs, e.g. the curve
(cycloid) connecting the White.down and Black.up
in u's and n’s of type 03062124(0). This problem
may be fixed by allowing further refinement of the
curve description. The refinement should express the

phase of the cycloid (see [5]). The threshold, T', may -

be made type dependent and its value computed as
part of the training. We did not do that.

6 Conclusion

A new approach towards optical character recogni-
tion has been proposed. Results indicate that the
fundamental hurdle of unequal number of strokes
for different handprinted characters can be (partly)
overcome, making the field of optical character recog-
nition open to methods that build combined mod-
els for similar looking alphabet symbols. The basic
idea is to part the set of bitmaps into a number of
types defined as set of sequences of connected inflex-
ion points in the bitmap. The contour between each
pair of neighbouring inflexion points is represented
as 4 integers which note the frequency counts of 2
by 2 pel patterns along the contour. Bitmaps of dif-
ferent inflexion point sequences (types) are treated
as independent. To classify bitmaps of a specific
type a model for the frequent alphabet symbols of
that type is built in a subspace of the space of pat-
tern counters. A greedy algorithm may be used to

pick the subspace using a predictive code length or
a predictive error criterion. Different, simple model
classes were investigated. Fitting Gaussians in the
pattern counter subspace found by the greedy algo-
rithm gave the overall best results both for a binary
alphabet case {(uv) and for the bank cheque alphabet.
Our system was combined with a traditional HMM-
based OCR-system so that our system would do the
prediction when the type of the present bitmap had
occurred frequently, and the HMM would do the pre-
diction otherwise. The hybrid system was somewhat
better than the pure HMM-system reducing thé er-
ror rate by 16 per cent. Using the original NIST data.
instead of the preprocessed data would probably im-
prove the results.
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