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Abstract 
This paper describes a number of design issues 

relating t o  the implementation of low-power asyn- 
chronous signal processing circuits. Specifically, the 
paper addresses the design of a dedicated processor 
structure that implements a n  audio FIR filter bank 
which is part of a n  industrial application. The algo- 
rithm requires a fixed number of steps and the moder- 
ate speed requirement allows a sequential implementa- 
tion. The latter, in combination with a huge predom- 
inance of numerically small data values in the input 
data stream, is the key to  a low-power asynchronous 
implementation. Power is minimized in two ways: by 
reducing the switching activity in the circuit, and by 
applying adaptive scaling of the supply voltage, in or- 
der to  exploit the fact that the average case latency 
is 2-3 times better than the worst case. The paper re- 
ports o n  a study of properties of real life data, and dis- 
cusses the implications it has o n  the choice of architec- 
ture, handshake-protocol, data-encoding, and circuit 
design. This includes a tagging scheme that divides 
the data-path into slices, and a n  asynchronous ripple 
carry adder that avoids a completion tree. 

1 Introduction 
Recent research has demonstrated that asyn- 

chronous circuit techniques have now matured and can 
be used to design integrated circuits with low power 
consumption - the most noteworthy examples being 
the DCC error corrector designed at Phillips Research 
Laboratories [l, 21 and the Amulet processors designed 
at Manchester University [3, 41. 

Asynchronous circuits obtain their low power con- 
sumption for one or both of the following reasons: 

0 Circuits implementing algorithms whose compu- 
tational complexity is data dependent enjoy a re- 
duced switching activity because unused modules 
are not activated. Or to put it another way: NO 
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data latches are enabled unless there is new data 
to be stored in them. This reduced switching ac- 
tivity minimizes power consumption. 

0 If the typical/average computation takes less time 
than the worst-case computation, power con- 
sumption may be reduced by the use of adaptive 
voltage scaling [5]. A technique that converts ex- 
cessive speed into a corresponding power saving. 

The DCC chip takes advantage of both mecha- 
nisms: The number of steps in its Reed-Solomon al- 
gorithm is highly data dependent, and in the typical 
case entire sections of the algorithm may be skipped. 
This again allows the supply voltage to be reduced. 
The Amulet design exploits issues in instruction set 
processing. 

Exploiting these mechanisms requires an experi- 
enced designer with a detailed understanding of the 
algorithm to be implemented as well as the data being 
processed by the circuit. Building up this base of ex- 
perience and insight calls for more design experiments 
than the rather few reported up to now. The purpose 
of this paper is to contribute to this by considering a 
different application area that exhibits different opti- 
mization opportunities. 

We are currently working on a low-power asyn- 
chronous implementation of an audio FIR filter bank 
that is part of an industrial battery powered appli- 
cation. Unlike the above mentioned designs, the fil- 
ter algorithm does not exhibit any data dependent 
variations in the RTL level specification - the algo- 
rithm always requires the same fixed number of steps. 
Instead we exploit: (1) a highly non-uniform signal 
transition probability distribution (caused by a high 
correlation among input data), and (2) the fact that 
most data values have small magnitude. Both char- 
acteristics are found in many signal processing appli- 
cations, and in combination with a highly sequential 
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implementation, this makes it possible to design a low- 
power asynchronous circuit whose average speed is 2-3 
times better than the worst case. Using adaptive scal- 
ing of the supply voltage, it is possible to convert this 
excess speed into a corresponding power saving. De- 
tails can be found in [5 ] .  

The paper is organized as follows. Section 2 de- 
scribes the filter algorithm and the architecture used 
to implement it. Section 3 discusses characteristics 
that are exploited to minimize power consumption, 
and their implications on choice of communication 
protocol. Section 4 describes a number of imple- 
mentation issues that contribute to minimizing power 
consumption. Section 5 demonstrates the speed and 
power advantages of the suggested architecture. Sec- 
tion 6 discusses the advantages of the asynchronous 
design and compares it to a synchronous, and finally, 
section 7 concludes the paper. 

2 Algorithm and architecture 
This section introduces the filter bank algorithm, 

motivates and describes the overall architecture of the 
circuit, and briefly outlines how the circuit can be em- 
bedded in an adaptive supply scaling environment. 

2.1 Algorithm 
The filter bank considered consists of a tree-like 

structure of interpolated linear phase FIR filters [6] .  
Explaining the details of the algorithm is beyond the 
scope of this paper. We only mention that much effort 
has been devoted to minimizing the number of mul- 
tiplications, and to simplifying the multiplications by 
approximating the filter coefficients by numbers whose 
binary representation uses a minimum number of ones 
- a standard technique that significantly speeds up the 
multiplications. In this study we assume a maximum 
of 3 ones in the filter coefficients. Further more, a sub- 
stantial number of the coefficients are zero and thus do 
not require an actual multiplication. Figure 1 shows 
a FIR filter with an additional complementary out- 
put, yc. In the filter bank the two outputs are used 
to construct a binary tree structure. The outputs at 
the leaves of the tree delivers seven band-pass filtered 
versions of the input signal. 
2.2 Architecture 

The modest speed requirement of the application 
considered allows for highly sequential implementa- 
tions. The algorithms can be serialized in several di- 
mensions: using bit-serial arithmetic units and/or by 
serializing in the time domain by mapping the arith- 
metic units depicted in figure 1 onto a smaller set of 
hardware units. 

&- k l  

Figure 1: Interpolated linear phase FIR filter. The 
filter has two outputs, and the entire filter consist 
of a binary tree like structure of such FIR-blocks. 

To avoid excessive power consumption due to hand- 
shaking overhead, bit-serial implementations should 
be avoided [7]. Also, structures where data is copied 
unchanged from one register to the next should be 
avoided. This means that a straight forward data- 
flow implementation with a hardware structure sim- 
ilar to the illustration in figure 1, should be avoided 
in practical/&cient implementations. This is espe- 
cially the case when a large number of the coefficients 
are zero, because this requires a substantial amount of 
data shifting before the values are actually used. 

These simple arguments hint that a processor like 
structure consisting of one or more memory blocks and 
one or more arithmetic units is the optimal choice. 
Figure 2 shows a structure that can implement the 
filter shown in figure 1, as well as the full binary tree 
structure we are currently designing. 

All the delay elements (registers) in the binary tree 
filter structure are mapped onto a single dual-port 
RAM. The filter coefficients are stored in another 
RAM, and the computation is performed by a dedi- 
cated add-multiply-accumulate unit. Once an input 
data sample (or an intermediate result) is written into 
the RAM it stays in the same location. When time 
progresses one step and a new data sample is input 
to the filter, it is stored in the location that holds the 
oldest data sample (that is no longer needed). 

The main task of the control unit is to generate the 
rather irregular sequence of read and write addresses 
that are needed. We do not discuss its implementa- 
tion in this paper, it can be implemented in several 
ways. We only notice that it is possible to schedule 
the add-multiply-accumulate operations in such a way 
that a write to the memory from a FIR-block is not 
immediately followed by a read of the same location 
by some other FIR-block. If a pipelined implementa- 
tion of the data-path is used, the pipeline would stall, 
waiting for the write to finish before the read could be 
performed. The absence of such tight loops allows the 
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Figure 2: Architecture of the FIR filter bank pro- 
cessor. 

control unit to be pipelined and to meet almost any 
speed requirement. 

Also, the self-timed RAM is not described in this 
paper. We are currently studying a number of self- 
timed low-power register-file designs. 

Finally, we cannot disclose exact figures for the fil- 
ter bank that we are considering, but in order to pro- 
vide some indication of the approximate size we men- 
tion that the filter bank calls for a RAM to hold sev- 
eral hundred data-samples. The number of coefficients 
are significantly smaller. The data-samples, the filter- 
coefficients and the internal busses are in the 10-20 bit 
range. The input is linear up to approximately lOOdB 
sound pressure level. 

2.3 Adaptive scaling of supply voltage 

With the highly sequential implementation outlined 
above, variations in computation time due to data de- 
pendencies directly affect the total latency, i.e. the 
time it takes to process one input sample. Conse- 
quently the average case latency may be significantly 
smaller than the worst case. On the other hand the 
circuit must be designed for the worst case in order to 
cope with the fixed sampling rate. 

A circuit of this nature is ideally suited for adaptive 
scaling of the supply voltage [5] - a technique that 
enables average “excess speed” to be converted into 
a corresponding power saving. In addition to data 

DCIDC 

SYNCHRONOUS 

Figure 3: Self-timed circuit in synchronous envi- 
ronment using adaptive supply scaling. 

dependent variations in latency, this technique also 
exploits process variations and operating conditions. 

The key idea is illustrated in figure 3 and briefly ex- 
plained below. For more details the reader is referred 
to [5].  

The system consists of the data processing circuit 
itself, two FIFO-buffers, a state detecting circuit, and 
a DC-DC converter for scaling down the supply volt- 
age. The converter can be anything from a resistive 
device (a transistor on the chip) to a more sophisti- 
cated lossless device. Alternatively, the circuit may 
switch between different fixed supply voltages. 

The state detecting circuit monitors the state of 
one of the buffers, for example, the input buffer as 
shown in Figure 3. If the buffer is running empty, the 
circuit is operating too fast and the supply voltage 
can be reduced. Similarly, if the buffer is running full, 
the supply voltage must be increased. In this way the 
supply voltage is adjusted to the lowest possible value 
that satisfies performance requirements. 

3 Data dependencies 
The input data stream to the filter is character- 

ized by a huge predominance of small signal values 
as well as some correlation among the data samples. 
This means that the individual bits in a data-word 
have highly non-uniform switching probability. This 
section reports on an analysis of typical real life in- 
put data, and discusses the implications it has on the 
choice of number representation and communication 
protocol. 

3.1 Characteristics of sampled input data 
Figure 4 shows the signal transition probabilities in 

a five seconds recording of several people speaking at 
the same time, using a 17.5 KHz sampling rate, 16 bits 
resolution, and 2’s complement representation. The 
figure shows a clear pattern that is typical in signal 
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Figure 4: Switching activity profile of 5 seconds of 
sampled speech using 2’s complement represen- 
tation. 

processing applications. The most significant bits 0 
through 3 are outside the dynamic range of the signal 
and correspond to the sign and sign extension bits of 
the signal. These bits change whenever the sign of the 
data changes. Bits 8 to 15 are the least significant bits 
and they all have a 50% switching probability, which 
corresponds to uniform white noise. The rest of the 
bits correspond to the transition region between the 
least significant bits and the sign bits. The data here 
show that bits 0 through 3 can be discarded during 
processing, the information required is carried in bits 4 
through 15. A switching profile like this is common to 
many signal processing applications and has been used 
by Landman and Rabaey to develop accurate high- 
level power estimation CAD-tools [8]. 

The analysis of switching activity shown in figure 4 
is based on several people speaking at the same time 
for five seconds. However, for the application in ques- 
tion this is not the typical case. Most of the time the 
filter is idle, processing only background noise. De- 
pending on the environment the background noise can 
have a number of different activity profiles, but com- 
mon to most environments is that the sound pressure 
level is fairly low (otherwise we would not find them 
pleasant to be in). A sound pressure level around 40 
dB is quite common. 

A further analysis of switching activity shows that 
even during a normal conversation, the filter is idle, 
processing background noise for 20-40 percent of the 
time due to pauses in the conversation. In fact, the 
battery lifetime is dominated by the power consumed 
in the idle mode. 
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Figure 5: Switching activity profiles at the mem- 
ory and multiplier output interfaces. 

3.2 Number representation 

The transition overhead of the sign bits shown in 
figure 4 is fairly small. The input.values are highly 
correlated and the sign changes about each 10th time. 
But, these statistics are only valid for the input data. 
Inside the processing unit the activity profile is en- 
tirely different. Figure 5 shows the circuit activity at 
one of the memory output ports and at  the multiplier 
output (the 16 most significant bits) when the data set 
displayed in figure 4 is applied. In both cases the pro- 
files have been simulated using both a 2’s complement 
representation and a sign magnitude representation. 
The upper part of the graphs shows the 2’s comple- 
ment and the lower part the sign magnitude. 

From this figure it is obvious that the 2’s comple- 
ment representation has a much higher switching ac- 
tivity at module interfaces than the sign magnitude 
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representation. The overhead at the multiplier out- 
put is more than loo%, and as the dynamic range of 
the signal decreases the transition overhead can eas- 
ily exceed 200%. In large circuits with heavily loaded 
busses, this overhead can have a significant impact on 
the power consumption of the circuit. 

Choosing a sign magnitude representation instead 
reduces the interconnect power consumption, but 
power consumption inside the modules may increase. 
This is because a sign magnitude addition is a more 
complex operation to implement than a 2’s comple- 
ment addition. Adding two sign magnitude numbers, 
one positive and the other negative, may yield an in- 
termediate negative result in 2’s complement represen- 
tation (involving a full sign extension). This interme- 
diate result is then converted into sign-magnitude rep- 
resentation in a second addition (involving a full sign 
extension). For small numbers the transition over- 
head of the sign extension bits can be dominating. 
The choice of number representation is therefore not 
as obvious as figure 5 hints -both representations may 
lead to unnecessary switching activity on the most sig- 
nificant bits. 

It was mentioned that most of the time the filter is 
in the idle state, during which only a small part of the 
bits actually carry important information. This sug- 
gests splitting the data-path into two or more slices 
and activating only the required parts of the data- 
path. In this way the transition overhead caused by 
sign bit extension can be minimized and at the same 
time the speed of the system can be increased. This 
can be implemented by augmenting the data words 
with a tag that indicates whether the full word is valid 
or only the bits corresponding to the least significant 
slice. Adders and other arithmetic units can use the 
tags associated with the operands to suppress switch- 
ing activity (and carry propagation) in the most sig- 
nificant slice. The logic that deals with the tags is 
described in the next section. 

The analysis of switching probabilities presented 
above shows that at  least two operating modes can 
be identified: (1) processing of background noise, and 
(2) processing of actual sound. Slicing of the data path 
accordingly is one obvious solution. It might be worth 
dividing the processing of the actual sound into more 
than just one category, for instance, normal speech sel- 
dom amounts to more than 60 to 65dB. This suggests 
3 operating modes: signals in 0 to 40dB range (back- 
ground noise), signals in 40 to 65dB range (speech), 
and signals in 65dB to max range for all other types 
of sound. 

It turns out that the add-multiply-accumulate 

Protocol 
4-phase dual-rail 
2-phase bundled data 
4 ~ h a s e  bundled data 

data-path in the filter is dominated by additions. A 
2’s complement representation in combination with a 
sliced and tagged implementation is therefore chosen. 

3.3 Handshake protocol and data encod- 
ing 

Asynchronous circuits normally use one of the fol- 
lowing three combinations of handshake protocol and 
data encoding: (1) 4-phase dual-rail (delay insensi- 
tive), (2) two-phase bundled data (micropipelines), 
and (3) Cphase bundled data. Table 1 shows the 
number of wires and the number of signal transitions 
(including the req and ack signal wires) when com- 
municating an N-bit data word from one module to 
another. 

For the bundled data protocols the number of signal 
transitions depends on the transition probability of 
the individual bits. The worst-case value quoted in 
table 1 is when all bits have an uncorrelated switching 
probability P = 0.5. 

For the 4-phase dual-rail protocol the number of sig- 
nal transitions is independent of the switching proba- 
bility of the data-bits. For every data-word transferred 
over the interface, N of the 2N data-wires make an up- 
going transition followed by a down-going transition. 
This makes the switching activity 4 times larger than 
the worst case switching activity in the bundled data 
protocols. 

Although the above simple arguments do not con- 
sider the switching activity inside circuit modules, it 
is fairly obvious that the 4-phase dual-rail protocol 
suffers from a significant transition overhead - four 
times larger than the worst case for the bundled data 
protocols. Also, it is not able to take advantage of 
the reduced switching activity found in many real life 
data as illustrated above. (Due to the slicing of the 
data-path this difference is less important in our de- 
sign). The choice between the 4-phase and the 2-phase 
bundled data protocol is also a simple one. In our 
experience, register implementations for the 2-phase 
bundled data protocol are significantly larger or sig- 
nificantly slower than the ordinary latches that is used 

# wires # transitions 
2 N + 1  2 N + 2  
N + 2 < N/2 + 2 
N + 2 < N / 2 + 4  

Table 1 : Simple comparison of asynchronous pro- 
tocols. 
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in 4-phase designs. The same is true for control cir- 
cuitry used to implement conditional sequencing. The 
reader may find more details and circuit level insight 
on these matters in [7]. Further more, if the decision 
is on precharge logic rather than static logic, then the 
four phase protocol comes as a natural choice: one 
handshake for the logic evaluation and one for the 
precharge operation. 

The above is admittedly a simplistic picture, and 
because speed and power can be viewed as two sides 
of the same question, several protocols are often used 
in different places of a circuit. Our design is based 
on the 4-phase bundled data protocol, however, inside 
some modules the 4-phase dual-rail protocol is used 
(refer to section 4). This decision conforms with what 
seems to he a general trend when focus is on power aEd 
area (and possibly also speed): Philips Research Lab- 
oratories have re-targeted their Tangram Silicon Com- 
piler from 4-phase dual-rail to 4-phase bundled data 
circuitry [2, 91, and the Amulet Group at Manchester 
University use 4-phase bundled data circuitry in the 
second version of their asynchronous ARM micropro- 
cessor (where the first version used 2-phase bundled 
data circuitry). 

Finally we mention, that when Pphase bundled 
data circuitry is used, the difference between syn- 
chronous and asynchronous data processing circuitry 
has diminished - asynchronous circuits can be viewed 
as synchronous circuits with a high degree of fine- 
grain clock gating, derived from the local request- 
acknowledge handshaking. There is one important dif- 
ference however: asynchronous design techniques offer 
a systematic approach to obtain this fine-grain clock 
gating. 

4 Implementation of the data-path 

The previous section showed that sign extension 
can be very costly power wise. In this section we de- 
scribe in detail the implementation of an add-multiply- 
accumulate data-path that takes advantage of the typ- 
ical case dynamic range of the data. This includes slic- 
ing the data-path and suppressing most of the unnec- 
essary sign extension activity in the most significant 
slice of the data-path. This scheme has the additional 
benefit that the circuitry computes faster when data 
with a small magnitude is input to the filter. 

The term break-point is used to denote the border- 
line between the most significant slice and the least 
significant slice of the data-path, and terms like break- 
point adder and break-point multiplier are used to de- 
note components operating with tagged operands and 
conditional activation of the most significant slice. 

I Opl-tag Op2-tag I Res-tag 

Table 2: Tag state table for an adder. 

As this section shows, the data-path can be im- 
plemented entirely using adders. Special attention is 
therefore given to the efficient implementation of a 
self-timed break-point adder. 
4.1 Tagging the operands 

When a new data sample is input to the filter the 
value of its tag is computed and appended to the data 
word. If the MS part of the operand carries redundant 
sign extension information, the tag is set to 0, other- 
wise it is set to 1. As data flows down the data-path 
the magnitude of the operands may change, meaning 
that tag bits can change value as well. A full exploita- 
tion of the break-point concept therefore requires the 
modules to compute both the result and the associated 
tag. This represents a significant complication of the 
circuitry and a significant increase in power consump- 
tion. 

Since all operands have zero tags in the typical case, 
we use a simple scheme where a module sets the result 
tag to 1 when one or more of its input operands have a 
nonzero tag or whenever an overflow occurs. More so- 
phisticated schemes are not worthwhile, because they 
involve checking all bits above the break-point, and 
their higher complexity increases power consumption. 
With this simplification, the output tag state table 
for an adder is shown in table 2, leaving only the case 
where both input operands have zero tags unspecified. 

For the case where both operands have zero tags 
we may do one of two things: 

1. For the adder (marked ADD) in figure 2, we take 
advantage of the following observations: (a) an 
addition can only extend the result with one bit, 
(b) the adder is followed by a multiplier, and (c) 
all multiplications involve a filter coefficient in 
the range ]0;0.5]. On the output of the adder 
the break-point is therefore moved one position 
towards the most significant bit. After the multi- 
plier the break-point is safely set back to the orig- 
inal position due to the third observation. The re- 
sulting and very simple tagging control logic for 
the add-multiply part of the data-path is shown 
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Figure 6: Tag control logic for ADD-MULT module. 

in figure 6 .  The figure shows that only one OR- 
gate is required in the adder, and no circuitry is 
required in the multiplier. 

2. A more general scheme, that is proposed for the 
accumulator, keeps the break-point in a fixed po- 
sition. In the case where both input operands 
have zero tags, the result tag is set whenever an 
overflow occurs in the least significant slice. 

4.2 A break-point adder. 
The design of the break-point adder involves a tag- 

ging scheme and a carry completion scheme. These 
issues are addressed below. 
4.2.1 The tagging scheme. The overall structure 
of a break-point adder implementing the more gen- 
eral tagging scheme is shown in figure 7. The adder 
has one break-point, which effectively divides it into 
two: AddMS and AddLS. Each of these adders have 
regular binary inputs and outputs, but the carry is 
represented using dual-rail encoding. Both adders 
use precharge logic. AddLS is controlled directly by 
ReqAB, the request signal associated with the A and B 
operands. The request input to AddMS is generated 
by the control circuit described below. To support 
this, AddLS generates a dual-rail encoded overflow 
signal, Ow. 

The TagCtl-circuit located between Add-MS and 
AddLS in figure 7 generates a dual-rail encoded con- 

trol signal, Ctl. Inputs to TagCtl are the tags of 
the operands (TagA and TagB), the overflow sig- 
nal (0w.t and Ow.f), and the input request signal, 
ReqAB. The true output, Ctl.t, is used directly as 
the result tag, TagSum, and it also indicates when to 
request/activate AddMS. At the ReqSum output, a 
multiplexor determines which request to select based 
on the dual-rail Ctl signal. When Ctl is valid the MUX 
selects one of the inputs, otherwise the output is low. 

The boolean equations implemented by the TagCtl 
circuit are: 

Ct1.t = (TagA + TagB) . ReqIn + 0w.t (1) -- 
Ctl. f = TagA e TagB e Ow. f 

The MUX circuit implements the following 
equation: 

ReqSum = Ctl.t. Req-MS 
+ Ct1.f .  ReqLS 

For completeness we also list the boolean equations 
for the overflow signals. In two’s complement repre- 
sentation overflow occurs when the carry out of the 
most significant (sign) position is different from the 
carry into that position. If the most significant adder 
in AddLS is denoted “m” and the carry “cy” the 
equations are: 

0w.t = cy,.t * cy,-1.f + cy,.f. cy,-1.t (4) 
0w.f  = q m . t  + qm-1.t + q m - f .  qm-1.f  ( 5 )  

In sign magnitude representation, overflow is simply 
the carry into the most significant (sign) position. 

One situation is not accounted for in the above 
description of a two’s complement implementation. 
When Add-MS is activated it is necessary to per- 
form sign extension of operands with a 0 tag. For 
this reason the A X S  and BMS inputs of Add-MS 
must be equipped with multiplexors that can select 
between the direct {A,B}_MS inputs or the sign ex- 
tension of {A,B}LS. The control signals, SelA and 
SelB, for these multiplexors are: 

SelA = TagA- (TagB + 0w.t)  (6) 
SelB = TagB . (TagA + 0w.t)  (7) 

The circuitry represented by equations (1) to (7) 
constitutes the control overhead associated with the 
tagging scheme - a few small complex gates only. Fur- 
thermore, it should be noted that the sign extension 
circuitry represented by equations ( 6 )  and (7) does not 
consume power in the typical case, it is only activated 
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Figure 7: A self-timed break-point adder. 

when the circuit is dealing with full length operands. 
With these observations we conclude that the power 
consumption of the overhead circuitry associated with 
the tagging scheme is negligible. 

4.2.2 Completion detection. Because of the pre- 
dominance of small data values and the serial imple- 
mentation of the algorithm it is possible to exploit 
data-dependencies in carry propagation. For this rea- 
son a dual-rail carry signal is used. However, as the 
adder is of significant size, the speed (and power) 
penalty of a carry completion tree is likely to be sig- 
nificant. To avoid this, we suggest a hybrid scheme 
that avoids completion trees. A simple scheme is used 
in which the completion of an addition is indicated at 
the carry outputs of AddMS or AddLS depending on 
the input operands. 

Figure 8 shows an N-bit adder using this scheme. In 
the design two full adder types are used, one that ex- 
ploits the carry kill/generate states in the truth table, 
marked KG, and one that always waits for all of its 
operands, marked P (propagate). The adder works as 
follows: If FA(N/2) can generate a carry output with- 
out waiting for its incoming carry, this carry is gen- 
erated, and ripples/propagates through all the more 
significant adders and eventually CoUt becomes valid. 
This signals the end of the computation. Assuming 
equal delay in the two adder types, the delay through 
adders FA(N/2) up to FA(N-1) matches or exceeds any 
carry propagation delay in adders FA(0) to FA(N/2- 
I), and the correct operation of the adder is therefore 
ensured. In this way the carry propagation delay in 
the entire adder ranges from N/2 (in 50 % of the cases) 
up to N. Add-LS is implemented in this way. 

The same principle is applied again to the entire 
adder, consisting of AddNS and AddLS. Th’ is means 
that Add-MS is similar to the upper half of the adder 
in figure 8. Therefore, when the magnitude of the data 
is above the break-point, the computation time ranges 

from 50% to 100% of the worst computation time. 
When data is below the break-point the computation 
time ranges from 25% to 50%. 

The break-point solution suggested here is a simple 
but effective one when most data have a small magni- 
tude, as in our case. Other more complex break-point 
schemes can be used to gain a better speed (which can 
be traded for power) but at the expense of more cir- 
cuitry. The best trade off can only be determined after 
extensive investigations, but in many cases it turns out 
that the better solution is the simplest one. 

4.3 A break-point multiplier 
It was mentioned previously, that the filter coef- 

ficients are approximated with values whose binary 
representation contains at most three 1’s. This signif- 
icantly simplifies the multipliers, resulting in smaller 
area and higher speed. Figure 9 shows a possible im- 
plementation which is both small, fast, and has a data 
dependent computation time. The coefficients have 
been replaced by the control signals Cl-C3 that con- 
trol the input shifters and Se1 which controls the out- 
put multiplexer. 

The adders framed by the dotted line are connected 
in such a way that the second adder starts computa- 
tion immediately after the first bit has been computed 
in the first adder. This gives a computation time close 
to one addition, however, a full length carry propa- 
gation is required in the AddLS part of the second 
adder. The multiplier has been further optimized for 
coefficients containing only one 1 (which frequently 
occurs in the present application) by adding a multi- 
plexer at the multiplier output. In this case the addi- 
tions can be skipped entirely, thus saving transitions 
and speeding up the computation. 
4.4 A break-point accumulator 

The accumulator is simply a break-point adder with 
a feed back loop. The main concern with the accumu- 
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Figure 8: Carry propagation scheme (used in Add-LS) 
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Figure 9: Self-timed break-point multiplier 

lator is: will the magnitude of the accumulated value 
be larger than the break-point value. However, look- 
ing at the frequent sign change of the operands at the 
multiplier output (refer to figure 5), it is highly likely 
that the magnitude of the accumulated value does not 
change that much. 

Further simulations confirm this theory - simulat- 
ing the switching probability in the accumulator gives 
a probability profile almost identical to that of the 
memory output port shown in figure 5. 

5 Performance evaluation 
To demonstrate the performance of the architec- 

ture presented, a 16 bit filter design is evaluated. The 
design is assumed to have four extra bits in the accu- 
mulator, and 30% of the coefficients are simple shift 
operations (the numbers have close resemblance to the 
application considered). Each pass through the data- 
path requires a computation time equal to the sum 
of each of the three modules in the data-path. If no 
pipelining is applied, the total computation time per 
data sample is determined by the number of iterations 
required, n: 

n 

tsample = tadd -k tmultiply -k taccumulate (8) 
i=l 

In the following analysis we assume that n is high. 
In that case the total computation time tsample ap- 
proaches the sum of the average computation time of 
each of the modules. With these assumptions a statis- 
tical analysis of the filter gives the results in table 3. 
The analysis does not include the overhead of the 
handshake control circuitry, neither does it include the 
delay in the multiplier shifters and multiplexer. The 
adder worst case computation time of the 16 bit input 
adder is thus 16A, where A is the delay of one adder. 
In the fastest case data only propagates 4 places, and 
in the average case carry propagates 4.8 places (the 
average case corresponds to processing of background 
noise). Due to the switching probability profile of the 
input data, the average performance is very close to 
the best performance. Summing up the statics of each 
of the modules shows that the average performance of 
the data-path is 56/18.6 = 3.0 times faster than the 
worst computation time of this architecture. It might 
be worth considering a pipelined solution to increase 
the speed of the system and lower the supply volt- 
age even further. However, the speedup will not be 
proportional to the degree of pipelining - one of the 
stages is likely to constitute a bottleneck. Which stage 
may vary due to data dependent variations in the la- 
tency of the stages. This argument suggests that the 
total computation time per data sample, assuming a 3 
stage pipeline, can be approximated by the following 

Worst case I Best case I AV. case Module 
Adder 
Multiplier 
Accumulator 6A 
Filter 5 6 4  18.6A 

Table 3: Estimated computation time of the filter 
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equation: 

This shows that the gain in speed will be moderate. A 
factor of 1.5 rather than the expected factor of 3 is a 
good estimate. Also, both the handshaking overhead 
and the number of signal transitions in the design in- 
creases due to the latches introduced. It therefore re- 
quires a careful analysis to determine whether or not 
the extra speed can be traded for power by further 
scaling of the supply voltage. 

The power savings that can be obtained, depends 
on the supply voltage of the system, VDD. For large 
values of VDD, the circuit speed scales linearly with 
V’D, but as VDD approaches two times the transistor 
threshold voltage I,&, the circuit speed slows down 
dramatically [5]. In a standard 1 micron CMOS pro- 
cess with vDD=5v, a factor of three typically makes it 
possible to halve (or more) the supply voltage, which 
in the best case reduces the dynamic power consump- 
tion by a factor of four (not considering short circuit 
currents and velocity saturation which makes it even 
more attractive [5] ) .  

The power consumption also depends on the switch- 
ing activity in the data-path. Assuming a two’s com- 
plement representation the switching activity inside 
the data-path is close to 50% (c.f. figure 5 )  and there- 
fore the power reduction is almost proportional to 
the slicing of the data-path. Splitting the data-path 
into two slices with identical width as in the example, 
nearly halves the power consumption in the data-path. 

The combined effect of reduced switching activity 
and scaling of the supply voltage, as discussed above, 
reduces power consumption by a factor of 8. Even 
though no absolute estimates of the power consump- 
tion are available at this early stage, this significant 
factor is more than enough to justify the design. 

6 Discussion 
Comparing the architecture presented in this pa- 

per with a synchronous architecture, the handshaking 
overhead and the extra logic needed for slicing of the 
data-path has to be considered. 

If the asynchronous data-path is implemented with- 
out pipelining (as we propose), the overhead of the 
handshaking is minimal. With the bundled data pro- 
tocol it is only one C-element per stage (adder, mul- 
tiplier or accumulator) in the data-path. To gain a 
speed-up in a synchronous implementation, similar to 
that of the non-pipelined asynchronous solution, it is 

necessary to use pipelining or carry look ahead arith- 
metic, and both techniques represents a significant 
overhead in terms of area and power. 

If pipelining was to be used in the asynchronous 
data-path, the speed penalty of the handshaking is 
likely to increase. Without pipelining only one of the 
modules is active at a time, and the inactive modules 
have plenty of time to return to the initial state be- 
fore the next computation. With pipelining, the reset 
phase of the handshake is likely to enter the critical 
path, and limit the performance gain. Considering the 
area and power overhead, it is therefore unlikely that 
pipelining of the asynchronous data-path will pay of. 

The proposed slicing of the data-path could also be 
used in a synchronous design, but only as a means to 
reduce the switching activity. The associated speed 
advantage can not easily be exploited. The syn- 
chronous equivalent to what we are doing would be 
to vary the period of the clock signal, which is much 
less feasible than clock gating. 

The control circuitry needed to slice the data-path 
(described in section 4) does affect the latency of the 
data-path. However, in view of the significant gain in 
average case performance, this is not an issue. Also, it 
should be noted that almost the same circuitry would 
be needed in a synchronous implementation, and in 
that sense it does not constitute an overhead. 

In summary the non-pipelined asynchronous imple- 
mentation has a number of unique advantages, and its 
circuit overhead is negligible. 

7 Conclusion 
This paper has described a number of issues relat- 

ing to the design of a low-power asynchronous FIR 
filter block. Like many other signal processing appli- 
cations, this algorithm does not exhibit data depen- 
dencies at the RTL level - the number of steps is fixed. 
Instead the key to a low-power implementation lies in 
a highly non-uniform switching profile of the data that 
is processed - something that is also common in signal 
processing applications. 

The paper has showed by example, how this can be 
exploited to obtain an implementation in which the 
switching activity is minimized and the speed is maxi- 
mized by taking advantage of data dependent compu- 
tation times in the functional units. In our case the 
typical speed is 3 times better than the worst case, 
and using adaptive scaling of the supply voltage, this 
excess speed can be turned into a corresponding (ad- 
ditional) power saving. 

Another important point to make is that a syn- 
chronous implementation cannot exploit these data 
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dependencies using clock gating. The equivalent to 
what we are doing would be to vary the period of the 
clock signal, which is much less feasible than clock 
gating. 

Circuit design is ongoing and the ultimate goal is a 
speed and power comparison with an industrial syn- 
chronous design (fabricated on the same wafer). The 
design has two challenging areas, besides the data- 
path reported in this paper: Design of a low-power 
memory/register file, and design of the addressing and 
control unit. Work on these issues is ongoing. 
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