

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A low-power asynchronous data-path for a FIR filter bank

Nielsen, Lars Skovby; Sparsø, Jens

Published in:
Proceedings of the second International Symposium on Asynchronous Circuits and Systems

Link to article, DOI:
10.1109/ASYNC.1996.494451

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, L. S., & Sparsø, J. (1996). A low-power asynchronous data-path for a FIR filter bank. In Proceedings of
the second International Symposium on Asynchronous Circuits and Systems (pp. 197-207). IEEE. DOI:
10.1109/ASYNC.1996.494451

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ASYNC.1996.494451
http://orbit.dtu.dk/en/publications/a-lowpower-asynchronous-datapath-for-a-fir-filter-bank(b9186306-ead9-4973-aa13-1090f2b83d26).html

A Low-power Asynchronous Data-path
for a FIR filter bank

Lars S. Nielsenl)

Department of Computer Science
Technical University of Denmark

DK-2800 Lyngby, Denmark

Abstract
This paper describes a number of design issues

relating t o the implementation of low-power asyn-
chronous signal processing circuits. Specifically, the
paper addresses the design of a dedicated processor
structure that implements a n audio FIR filter bank
which is part of a n industrial application. The algo-
rithm requires a fixed number of steps and the moder-
ate speed requirement allows a sequential implementa-
tion. The latter, in combination with a huge predom-
inance of numerically small data values in the input
data stream, is the key to a low-power asynchronous
implementation. Power is minimized in two ways: by
reducing the switching activity in the circuit, and by
applying adaptive scaling of the supply voltage, in or-
der to exploit the fact that the average case latency
is 2-3 times better than the worst case. The paper re-
ports o n a study of properties of real life data, and dis-
cusses the implications it has o n the choice of architec-
ture, handshake-protocol, data-encoding, and circuit
design. This includes a tagging scheme that divides
the data-path into slices, and a n asynchronous ripple
carry adder that avoids a completion tree.

1 Introduction
Recent research has demonstrated that asyn-

chronous circuit techniques have now matured and can
be used to design integrated circuits with low power
consumption - the most noteworthy examples being
the DCC error corrector designed at Phillips Research
Laboratories [l, 21 and the Amulet processors designed
at Manchester University [3, 41.

Asynchronous circuits obtain their low power con-
sumption for one or both of the following reasons:

0 Circuits implementing algorithms whose compu-
tational complexity is data dependent enjoy a re-
duced switching activity because unused modules
are not activated. Or to put it another way: NO

Jens Sparspr1j2)

2, Department of Computer Science
University of Utah

Salt Lake City, UT84112, USA

data latches are enabled unless there is new data
to be stored in them. This reduced switching ac-
tivity minimizes power consumption.

0 If the typical/average computation takes less time
than the worst-case computation, power con-
sumption may be reduced by the use of adaptive
voltage scaling [5]. A technique that converts ex-
cessive speed into a corresponding power saving.

The DCC chip takes advantage of both mecha-
nisms: The number of steps in its Reed-Solomon al-
gorithm is highly data dependent, and in the typical
case entire sections of the algorithm may be skipped.
This again allows the supply voltage to be reduced.
The Amulet design exploits issues in instruction set
processing.

Exploiting these mechanisms requires an experi-
enced designer with a detailed understanding of the
algorithm to be implemented as well as the data being
processed by the circuit. Building up this base of ex-
perience and insight calls for more design experiments
than the rather few reported up to now. The purpose
of this paper is to contribute to this by considering a
different application area that exhibits different opti-
mization opportunities.

We are currently working on a low-power asyn-
chronous implementation of an audio FIR filter bank
that is part of an industrial battery powered appli-
cation. Unlike the above mentioned designs, the fil-
ter algorithm does not exhibit any data dependent
variations in the RTL level specification - the algo-
rithm always requires the same fixed number of steps.
Instead we exploit: (1) a highly non-uniform signal
transition probability distribution (caused by a high
correlation among input data), and (2) the fact that
most data values have small magnitude. Both char-
acteristics are found in many signal processing appli-
cations, and in combination with a highly sequential

197
0-8186-7298-6/96 $5.00 0 1996 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

implementation, this makes it possible to design a low-
power asynchronous circuit whose average speed is 2-3
times better than the worst case. Using adaptive scal-
ing of the supply voltage, it is possible to convert this
excess speed into a corresponding power saving. De-
tails can be found in [5] .

The paper is organized as follows. Section 2 de-
scribes the filter algorithm and the architecture used
to implement it. Section 3 discusses characteristics
that are exploited to minimize power consumption,
and their implications on choice of communication
protocol. Section 4 describes a number of imple-
mentation issues that contribute to minimizing power
consumption. Section 5 demonstrates the speed and
power advantages of the suggested architecture. Sec-
tion 6 discusses the advantages of the asynchronous
design and compares it to a synchronous, and finally,
section 7 concludes the paper.

2 Algorithm and architecture
This section introduces the filter bank algorithm,

motivates and describes the overall architecture of the
circuit, and briefly outlines how the circuit can be em-
bedded in an adaptive supply scaling environment.

2.1 Algorithm
The filter bank considered consists of a tree-like

structure of interpolated linear phase FIR filters [6] .
Explaining the details of the algorithm is beyond the
scope of this paper. We only mention that much effort
has been devoted to minimizing the number of mul-
tiplications, and to simplifying the multiplications by
approximating the filter coefficients by numbers whose
binary representation uses a minimum number of ones
- a standard technique that significantly speeds up the
multiplications. In this study we assume a maximum
of 3 ones in the filter coefficients. Further more, a sub-
stantial number of the coefficients are zero and thus do
not require an actual multiplication. Figure 1 shows
a FIR filter with an additional complementary out-
put, yc. In the filter bank the two outputs are used
to construct a binary tree structure. The outputs at
the leaves of the tree delivers seven band-pass filtered
versions of the input signal.
2.2 Architecture

The modest speed requirement of the application
considered allows for highly sequential implementa-
tions. The algorithms can be serialized in several di-
mensions: using bit-serial arithmetic units and/or by
serializing in the time domain by mapping the arith-
metic units depicted in figure 1 onto a smaller set of
hardware units.

&- k l

Figure 1: Interpolated linear phase FIR filter. The
filter has two outputs, and the entire filter consist
of a binary tree like structure of such FIR-blocks.

To avoid excessive power consumption due to hand-
shaking overhead, bit-serial implementations should
be avoided [7]. Also, structures where data is copied
unchanged from one register to the next should be
avoided. This means that a straight forward data-
flow implementation with a hardware structure sim-
ilar to the illustration in figure 1, should be avoided
in practical/&cient implementations. This is espe-
cially the case when a large number of the coefficients
are zero, because this requires a substantial amount of
data shifting before the values are actually used.

These simple arguments hint that a processor like
structure consisting of one or more memory blocks and
one or more arithmetic units is the optimal choice.
Figure 2 shows a structure that can implement the
filter shown in figure 1, as well as the full binary tree
structure we are currently designing.

All the delay elements (registers) in the binary tree
filter structure are mapped onto a single dual-port
RAM. The filter coefficients are stored in another
RAM, and the computation is performed by a dedi-
cated add-multiply-accumulate unit. Once an input
data sample (or an intermediate result) is written into
the RAM it stays in the same location. When time
progresses one step and a new data sample is input
to the filter, it is stored in the location that holds the
oldest data sample (that is no longer needed).

The main task of the control unit is to generate the
rather irregular sequence of read and write addresses
that are needed. We do not discuss its implementa-
tion in this paper, it can be implemented in several
ways. We only notice that it is possible to schedule
the add-multiply-accumulate operations in such a way
that a write to the memory from a FIR-block is not
immediately followed by a read of the same location
by some other FIR-block. If a pipelined implementa-
tion of the data-path is used, the pipeline would stall,
waiting for the write to finish before the read could be
performed. The absence of such tight loops allows the

198

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

Address
sequencing

and

Control

Figure 2: Architecture of the FIR filter bank pro-
cessor.

control unit to be pipelined and to meet almost any
speed requirement.

Also, the self-timed RAM is not described in this
paper. We are currently studying a number of self-
timed low-power register-file designs.

Finally, we cannot disclose exact figures for the fil-
ter bank that we are considering, but in order to pro-
vide some indication of the approximate size we men-
tion that the filter bank calls for a RAM to hold sev-
eral hundred data-samples. The number of coefficients
are significantly smaller. The data-samples, the filter-
coefficients and the internal busses are in the 10-20 bit
range. The input is linear up to approximately lOOdB
sound pressure level.

2.3 Adaptive scaling of supply voltage

With the highly sequential implementation outlined
above, variations in computation time due to data de-
pendencies directly affect the total latency, i.e. the
time it takes to process one input sample. Conse-
quently the average case latency may be significantly
smaller than the worst case. On the other hand the
circuit must be designed for the worst case in order to
cope with the fixed sampling rate.

A circuit of this nature is ideally suited for adaptive
scaling of the supply voltage [5] - a technique that
enables average “excess speed” to be converted into
a corresponding power saving. In addition to data

DCIDC

SYNCHRONOUS

Figure 3: Self-timed circuit in synchronous envi-
ronment using adaptive supply scaling.

dependent variations in latency, this technique also
exploits process variations and operating conditions.

The key idea is illustrated in figure 3 and briefly ex-
plained below. For more details the reader is referred
to [5].

The system consists of the data processing circuit
itself, two FIFO-buffers, a state detecting circuit, and
a DC-DC converter for scaling down the supply volt-
age. The converter can be anything from a resistive
device (a transistor on the chip) to a more sophisti-
cated lossless device. Alternatively, the circuit may
switch between different fixed supply voltages.

The state detecting circuit monitors the state of
one of the buffers, for example, the input buffer as
shown in Figure 3. If the buffer is running empty, the
circuit is operating too fast and the supply voltage
can be reduced. Similarly, if the buffer is running full,
the supply voltage must be increased. In this way the
supply voltage is adjusted to the lowest possible value
that satisfies performance requirements.

3 Data dependencies
The input data stream to the filter is character-

ized by a huge predominance of small signal values
as well as some correlation among the data samples.
This means that the individual bits in a data-word
have highly non-uniform switching probability. This
section reports on an analysis of typical real life in-
put data, and discusses the implications it has on the
choice of number representation and communication
protocol.

3.1 Characteristics of sampled input data
Figure 4 shows the signal transition probabilities in

a five seconds recording of several people speaking at
the same time, using a 17.5 KHz sampling rate, 16 bits
resolution, and 2’s complement representation. The
figure shows a clear pattern that is typical in signal

199

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

0.5 .
.- 2. - .-
n

0.4 .

g

$ 0.2

0.3 .
3
0
4- .-

0.6

0.5

.- 0 - .g 0.4

$

5 0.2

2 0.3
E

0

C

0

0.0
0 1 2 3 4 5 6 7 8 9 101112131415

Sign Bits LSB
Multiplier

-

_ _ - -
,-- .’ -

2‘s complement

-

- :,
,#‘Sign magnitude

-

Figure 4: Switching activity profile of 5 seconds of
sampled speech using 2’s complement represen-
tation.

processing applications. The most significant bits 0
through 3 are outside the dynamic range of the signal
and correspond to the sign and sign extension bits of
the signal. These bits change whenever the sign of the
data changes. Bits 8 to 15 are the least significant bits
and they all have a 50% switching probability, which
corresponds to uniform white noise. The rest of the
bits correspond to the transition region between the
least significant bits and the sign bits. The data here
show that bits 0 through 3 can be discarded during
processing, the information required is carried in bits 4
through 15. A switching profile like this is common to
many signal processing applications and has been used
by Landman and Rabaey to develop accurate high-
level power estimation CAD-tools [8].

The analysis of switching activity shown in figure 4
is based on several people speaking at the same time
for five seconds. However, for the application in ques-
tion this is not the typical case. Most of the time the
filter is idle, processing only background noise. De-
pending on the environment the background noise can
have a number of different activity profiles, but com-
mon to most environments is that the sound pressure
level is fairly low (otherwise we would not find them
pleasant to be in). A sound pressure level around 40
dB is quite common.

A further analysis of switching activity shows that
even during a normal conversation, the filter is idle,
processing background noise for 20-40 percent of the
time due to pauses in the conversation. In fact, the
battery lifetime is dominated by the power consumed
in the idle mode.

Memory port 0.6 -

-.--- 0.5 -

2.
E 0.4 -
n
2

c ;Sign magnitude

-
m

0.3 - I
C

.$ 0.2 - \
v)

Memory port

-.--- 0.5

;Sign magnitude

6Y 1 ;

0.1 1 .

Sign Bits LSB

Figure 5: Switching activity profiles at the mem-
ory and multiplier output interfaces.

3.2 Number representation

The transition overhead of the sign bits shown in
figure 4 is fairly small. The input.values are highly
correlated and the sign changes about each 10th time.
But, these statistics are only valid for the input data.
Inside the processing unit the activity profile is en-
tirely different. Figure 5 shows the circuit activity at
one of the memory output ports and at the multiplier
output (the 16 most significant bits) when the data set
displayed in figure 4 is applied. In both cases the pro-
files have been simulated using both a 2’s complement
representation and a sign magnitude representation.
The upper part of the graphs shows the 2’s comple-
ment and the lower part the sign magnitude.

From this figure it is obvious that the 2’s comple-
ment representation has a much higher switching ac-
tivity at module interfaces than the sign magnitude

200

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

representation. The overhead at the multiplier out-
put is more than loo%, and as the dynamic range of
the signal decreases the transition overhead can eas-
ily exceed 200%. In large circuits with heavily loaded
busses, this overhead can have a significant impact on
the power consumption of the circuit.

Choosing a sign magnitude representation instead
reduces the interconnect power consumption, but
power consumption inside the modules may increase.
This is because a sign magnitude addition is a more
complex operation to implement than a 2’s comple-
ment addition. Adding two sign magnitude numbers,
one positive and the other negative, may yield an in-
termediate negative result in 2’s complement represen-
tation (involving a full sign extension). This interme-
diate result is then converted into sign-magnitude rep-
resentation in a second addition (involving a full sign
extension). For small numbers the transition over-
head of the sign extension bits can be dominating.
The choice of number representation is therefore not
as obvious as figure 5 hints -both representations may
lead to unnecessary switching activity on the most sig-
nificant bits.

It was mentioned that most of the time the filter is
in the idle state, during which only a small part of the
bits actually carry important information. This sug-
gests splitting the data-path into two or more slices
and activating only the required parts of the data-
path. In this way the transition overhead caused by
sign bit extension can be minimized and at the same
time the speed of the system can be increased. This
can be implemented by augmenting the data words
with a tag that indicates whether the full word is valid
or only the bits corresponding to the least significant
slice. Adders and other arithmetic units can use the
tags associated with the operands to suppress switch-
ing activity (and carry propagation) in the most sig-
nificant slice. The logic that deals with the tags is
described in the next section.

The analysis of switching probabilities presented
above shows that at least two operating modes can
be identified: (1) processing of background noise, and
(2) processing of actual sound. Slicing of the data path
accordingly is one obvious solution. It might be worth
dividing the processing of the actual sound into more
than just one category, for instance, normal speech sel-
dom amounts to more than 60 to 65dB. This suggests
3 operating modes: signals in 0 to 40dB range (back-
ground noise), signals in 40 to 65dB range (speech),
and signals in 65dB to max range for all other types
of sound.

It turns out that the add-multiply-accumulate

Protocol
4-phase dual-rail
2-phase bundled data
4 ~ h a s e bundled data

data-path in the filter is dominated by additions. A
2’s complement representation in combination with a
sliced and tagged implementation is therefore chosen.

3.3 Handshake protocol and data encod-
ing

Asynchronous circuits normally use one of the fol-
lowing three combinations of handshake protocol and
data encoding: (1) 4-phase dual-rail (delay insensi-
tive), (2) two-phase bundled data (micropipelines),
and (3) Cphase bundled data. Table 1 shows the
number of wires and the number of signal transitions
(including the req and ack signal wires) when com-
municating an N-bit data word from one module to
another.

For the bundled data protocols the number of signal
transitions depends on the transition probability of
the individual bits. The worst-case value quoted in
table 1 is when all bits have an uncorrelated switching
probability P = 0.5.

For the 4-phase dual-rail protocol the number of sig-
nal transitions is independent of the switching proba-
bility of the data-bits. For every data-word transferred
over the interface, N of the 2N data-wires make an up-
going transition followed by a down-going transition.
This makes the switching activity 4 times larger than
the worst case switching activity in the bundled data
protocols.

Although the above simple arguments do not con-
sider the switching activity inside circuit modules, it
is fairly obvious that the 4-phase dual-rail protocol
suffers from a significant transition overhead - four
times larger than the worst case for the bundled data
protocols. Also, it is not able to take advantage of
the reduced switching activity found in many real life
data as illustrated above. (Due to the slicing of the
data-path this difference is less important in our de-
sign). The choice between the 4-phase and the 2-phase
bundled data protocol is also a simple one. In our
experience, register implementations for the 2-phase
bundled data protocol are significantly larger or sig-
nificantly slower than the ordinary latches that is used

wires # transitions
2 N + 1 2 N + 2
N + 2 < N/2 + 2
N + 2 < N / 2 + 4

Table 1 : Simple comparison of asynchronous pro-
tocols.

201

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

in 4-phase designs. The same is true for control cir-
cuitry used to implement conditional sequencing. The
reader may find more details and circuit level insight
on these matters in [7]. Further more, if the decision
is on precharge logic rather than static logic, then the
four phase protocol comes as a natural choice: one
handshake for the logic evaluation and one for the
precharge operation.

The above is admittedly a simplistic picture, and
because speed and power can be viewed as two sides
of the same question, several protocols are often used
in different places of a circuit. Our design is based
on the 4-phase bundled data protocol, however, inside
some modules the 4-phase dual-rail protocol is used
(refer to section 4). This decision conforms with what
seems to he a general trend when focus is on power aEd
area (and possibly also speed): Philips Research Lab-
oratories have re-targeted their Tangram Silicon Com-
piler from 4-phase dual-rail to 4-phase bundled data
circuitry [2, 91, and the Amulet Group at Manchester
University use 4-phase bundled data circuitry in the
second version of their asynchronous ARM micropro-
cessor (where the first version used 2-phase bundled
data circuitry).

Finally we mention, that when Pphase bundled
data circuitry is used, the difference between syn-
chronous and asynchronous data processing circuitry
has diminished - asynchronous circuits can be viewed
as synchronous circuits with a high degree of fine-
grain clock gating, derived from the local request-
acknowledge handshaking. There is one important dif-
ference however: asynchronous design techniques offer
a systematic approach to obtain this fine-grain clock
gating.

4 Implementation of the data-path

The previous section showed that sign extension
can be very costly power wise. In this section we de-
scribe in detail the implementation of an add-multiply-
accumulate data-path that takes advantage of the typ-
ical case dynamic range of the data. This includes slic-
ing the data-path and suppressing most of the unnec-
essary sign extension activity in the most significant
slice of the data-path. This scheme has the additional
benefit that the circuitry computes faster when data
with a small magnitude is input to the filter.

The term break-point is used to denote the border-
line between the most significant slice and the least
significant slice of the data-path, and terms like break-
point adder and break-point multiplier are used to de-
note components operating with tagged operands and
conditional activation of the most significant slice.

I Opl-tag Op2-tag I Res-tag

Table 2: Tag state table for an adder.

As this section shows, the data-path can be im-
plemented entirely using adders. Special attention is
therefore given to the efficient implementation of a
self-timed break-point adder.
4.1 Tagging the operands

When a new data sample is input to the filter the
value of its tag is computed and appended to the data
word. If the MS part of the operand carries redundant
sign extension information, the tag is set to 0, other-
wise it is set to 1. As data flows down the data-path
the magnitude of the operands may change, meaning
that tag bits can change value as well. A full exploita-
tion of the break-point concept therefore requires the
modules to compute both the result and the associated
tag. This represents a significant complication of the
circuitry and a significant increase in power consump-
tion.

Since all operands have zero tags in the typical case,
we use a simple scheme where a module sets the result
tag to 1 when one or more of its input operands have a
nonzero tag or whenever an overflow occurs. More so-
phisticated schemes are not worthwhile, because they
involve checking all bits above the break-point, and
their higher complexity increases power consumption.
With this simplification, the output tag state table
for an adder is shown in table 2, leaving only the case
where both input operands have zero tags unspecified.

For the case where both operands have zero tags
we may do one of two things:

1. For the adder (marked ADD) in figure 2, we take
advantage of the following observations: (a) an
addition can only extend the result with one bit,
(b) the adder is followed by a multiplier, and (c)
all multiplications involve a filter coefficient in
the range]0;0.5]. On the output of the adder
the break-point is therefore moved one position
towards the most significant bit. After the multi-
plier the break-point is safely set back to the orig-
inal position due to the third observation. The re-
sulting and very simple tagging control logic for
the add-multiply part of the data-path is shown

202

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

Opl op2

Coefficient

MSB LSB 0

V
Out

Figure 6: Tag control logic for ADD-MULT module.

in figure 6 . The figure shows that only one OR-
gate is required in the adder, and no circuitry is
required in the multiplier.

2. A more general scheme, that is proposed for the
accumulator, keeps the break-point in a fixed po-
sition. In the case where both input operands
have zero tags, the result tag is set whenever an
overflow occurs in the least significant slice.

4.2 A break-point adder.
The design of the break-point adder involves a tag-

ging scheme and a carry completion scheme. These
issues are addressed below.
4.2.1 The tagging scheme. The overall structure
of a break-point adder implementing the more gen-
eral tagging scheme is shown in figure 7. The adder
has one break-point, which effectively divides it into
two: AddMS and AddLS. Each of these adders have
regular binary inputs and outputs, but the carry is
represented using dual-rail encoding. Both adders
use precharge logic. AddLS is controlled directly by
ReqAB, the request signal associated with the A and B
operands. The request input to AddMS is generated
by the control circuit described below. To support
this, AddLS generates a dual-rail encoded overflow
signal, Ow.

The TagCtl-circuit located between Add-MS and
AddLS in figure 7 generates a dual-rail encoded con-

trol signal, Ctl. Inputs to TagCtl are the tags of
the operands (TagA and TagB), the overflow sig-
nal (0w.t and Ow.f), and the input request signal,
ReqAB. The true output, Ctl.t, is used directly as
the result tag, TagSum, and it also indicates when to
request/activate AddMS. At the ReqSum output, a
multiplexor determines which request to select based
on the dual-rail Ctl signal. When Ctl is valid the MUX
selects one of the inputs, otherwise the output is low.

The boolean equations implemented by the TagCtl
circuit are:

Ct1.t = (TagA + TagB) . ReqIn + 0w.t (1) --
Ctl. f = TagA e TagB e Ow. f

The MUX circuit implements the following
equation:

ReqSum = Ctl.t. Req-MS
+ Ct1.f . ReqLS

For completeness we also list the boolean equations
for the overflow signals. In two’s complement repre-
sentation overflow occurs when the carry out of the
most significant (sign) position is different from the
carry into that position. If the most significant adder
in AddLS is denoted “m” and the carry “cy” the
equations are:

0w.t = cy,.t * cy,-1.f + cy,.f. cy,-1.t (4)
0w.f = q m . t + qm-1.t + q m - f . qm-1.f (5)

In sign magnitude representation, overflow is simply
the carry into the most significant (sign) position.

One situation is not accounted for in the above
description of a two’s complement implementation.
When Add-MS is activated it is necessary to per-
form sign extension of operands with a 0 tag. For
this reason the A X S and BMS inputs of Add-MS
must be equipped with multiplexors that can select
between the direct {A,B}_MS inputs or the sign ex-
tension of {A,B}LS. The control signals, SelA and
SelB, for these multiplexors are:

SelA = TagA- (TagB + 0w.t) (6)
SelB = TagB . (TagA + 0w.t) (7)

The circuitry represented by equations (1) to (7)
constitutes the control overhead associated with the
tagging scheme - a few small complex gates only. Fur-
thermore, it should be noted that the sign extension
circuitry represented by equations (6) and (7) does not
consume power in the typical case, it is only activated

203

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

B-MS A-MS B-LS A-LS ReqAB -

Ct1.f

Ct1.t

-

ReqSum Sum-MS TagSum Sum-LS

Figure 7: A self-timed break-point adder.

when the circuit is dealing with full length operands.
With these observations we conclude that the power
consumption of the overhead circuitry associated with
the tagging scheme is negligible.

4.2.2 Completion detection. Because of the pre-
dominance of small data values and the serial imple-
mentation of the algorithm it is possible to exploit
data-dependencies in carry propagation. For this rea-
son a dual-rail carry signal is used. However, as the
adder is of significant size, the speed (and power)
penalty of a carry completion tree is likely to be sig-
nificant. To avoid this, we suggest a hybrid scheme
that avoids completion trees. A simple scheme is used
in which the completion of an addition is indicated at
the carry outputs of AddMS or AddLS depending on
the input operands.

Figure 8 shows an N-bit adder using this scheme. In
the design two full adder types are used, one that ex-
ploits the carry kill/generate states in the truth table,
marked KG, and one that always waits for all of its
operands, marked P (propagate). The adder works as
follows: If FA(N/2) can generate a carry output with-
out waiting for its incoming carry, this carry is gen-
erated, and ripples/propagates through all the more
significant adders and eventually CoUt becomes valid.
This signals the end of the computation. Assuming
equal delay in the two adder types, the delay through
adders FA(N/2) up to FA(N-1) matches or exceeds any
carry propagation delay in adders FA(0) to FA(N/2-
I), and the correct operation of the adder is therefore
ensured. In this way the carry propagation delay in
the entire adder ranges from N/2 (in 50 % of the cases)
up to N. Add-LS is implemented in this way.

The same principle is applied again to the entire
adder, consisting of AddNS and AddLS. Th’ is means
that Add-MS is similar to the upper half of the adder
in figure 8. Therefore, when the magnitude of the data
is above the break-point, the computation time ranges

from 50% to 100% of the worst computation time.
When data is below the break-point the computation
time ranges from 25% to 50%.

The break-point solution suggested here is a simple
but effective one when most data have a small magni-
tude, as in our case. Other more complex break-point
schemes can be used to gain a better speed (which can
be traded for power) but at the expense of more cir-
cuitry. The best trade off can only be determined after
extensive investigations, but in many cases it turns out
that the better solution is the simplest one.

4.3 A break-point multiplier
It was mentioned previously, that the filter coef-

ficients are approximated with values whose binary
representation contains at most three 1’s. This signif-
icantly simplifies the multipliers, resulting in smaller
area and higher speed. Figure 9 shows a possible im-
plementation which is both small, fast, and has a data
dependent computation time. The coefficients have
been replaced by the control signals Cl-C3 that con-
trol the input shifters and Se1 which controls the out-
put multiplexer.

The adders framed by the dotted line are connected
in such a way that the second adder starts computa-
tion immediately after the first bit has been computed
in the first adder. This gives a computation time close
to one addition, however, a full length carry propa-
gation is required in the AddLS part of the second
adder. The multiplier has been further optimized for
coefficients containing only one 1 (which frequently
occurs in the present application) by adding a multi-
plexer at the multiplier output. In this case the addi-
tions can be skipped entirely, thus saving transitions
and speeding up the computation.
4.4 A break-point accumulator

The accumulator is simply a break-point adder with
a feed back loop. The main concern with the accumu-

204

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

Input
E

Figure 8: Carry propagation scheme (used in Add-LS)

c1 c2 c3 Se1

Figure 9: Self-timed break-point multiplier

lator is: will the magnitude of the accumulated value
be larger than the break-point value. However, look-
ing at the frequent sign change of the operands at the
multiplier output (refer to figure 5), it is highly likely
that the magnitude of the accumulated value does not
change that much.

Further simulations confirm this theory - simulat-
ing the switching probability in the accumulator gives
a probability profile almost identical to that of the
memory output port shown in figure 5.

5 Performance evaluation
To demonstrate the performance of the architec-

ture presented, a 16 bit filter design is evaluated. The
design is assumed to have four extra bits in the accu-
mulator, and 30% of the coefficients are simple shift
operations (the numbers have close resemblance to the
application considered). Each pass through the data-
path requires a computation time equal to the sum
of each of the three modules in the data-path. If no
pipelining is applied, the total computation time per
data sample is determined by the number of iterations
required, n:

n

tsample = tadd -k tmultiply -k taccumulate (8)
i=l

In the following analysis we assume that n is high.
In that case the total computation time tsample ap-
proaches the sum of the average computation time of
each of the modules. With these assumptions a statis-
tical analysis of the filter gives the results in table 3.
The analysis does not include the overhead of the
handshake control circuitry, neither does it include the
delay in the multiplier shifters and multiplexer. The
adder worst case computation time of the 16 bit input
adder is thus 16A, where A is the delay of one adder.
In the fastest case data only propagates 4 places, and
in the average case carry propagates 4.8 places (the
average case corresponds to processing of background
noise). Due to the switching probability profile of the
input data, the average performance is very close to
the best performance. Summing up the statics of each
of the modules shows that the average performance of
the data-path is 56/18.6 = 3.0 times faster than the
worst computation time of this architecture. It might
be worth considering a pipelined solution to increase
the speed of the system and lower the supply volt-
age even further. However, the speedup will not be
proportional to the degree of pipelining - one of the
stages is likely to constitute a bottleneck. Which stage
may vary due to data dependent variations in the la-
tency of the stages. This argument suggests that the
total computation time per data sample, assuming a 3
stage pipeline, can be approximated by the following

Worst case I Best case I AV. case Module
Adder
Multiplier
Accumulator 6A
Filter 5 6 4 18.6A

Table 3: Estimated computation time of the filter

205

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

equation:

This shows that the gain in speed will be moderate. A
factor of 1.5 rather than the expected factor of 3 is a
good estimate. Also, both the handshaking overhead
and the number of signal transitions in the design in-
creases due to the latches introduced. It therefore re-
quires a careful analysis to determine whether or not
the extra speed can be traded for power by further
scaling of the supply voltage.

The power savings that can be obtained, depends
on the supply voltage of the system, VDD. For large
values of VDD, the circuit speed scales linearly with
V’D, but as VDD approaches two times the transistor
threshold voltage I,&, the circuit speed slows down
dramatically [5]. In a standard 1 micron CMOS pro-
cess with vDD=5v, a factor of three typically makes it
possible to halve (or more) the supply voltage, which
in the best case reduces the dynamic power consump-
tion by a factor of four (not considering short circuit
currents and velocity saturation which makes it even
more attractive [5]) .

The power consumption also depends on the switch-
ing activity in the data-path. Assuming a two’s com-
plement representation the switching activity inside
the data-path is close to 50% (c.f. figure 5) and there-
fore the power reduction is almost proportional to
the slicing of the data-path. Splitting the data-path
into two slices with identical width as in the example,
nearly halves the power consumption in the data-path.

The combined effect of reduced switching activity
and scaling of the supply voltage, as discussed above,
reduces power consumption by a factor of 8. Even
though no absolute estimates of the power consump-
tion are available at this early stage, this significant
factor is more than enough to justify the design.

6 Discussion
Comparing the architecture presented in this pa-

per with a synchronous architecture, the handshaking
overhead and the extra logic needed for slicing of the
data-path has to be considered.

If the asynchronous data-path is implemented with-
out pipelining (as we propose), the overhead of the
handshaking is minimal. With the bundled data pro-
tocol it is only one C-element per stage (adder, mul-
tiplier or accumulator) in the data-path. To gain a
speed-up in a synchronous implementation, similar to
that of the non-pipelined asynchronous solution, it is

necessary to use pipelining or carry look ahead arith-
metic, and both techniques represents a significant
overhead in terms of area and power.

If pipelining was to be used in the asynchronous
data-path, the speed penalty of the handshaking is
likely to increase. Without pipelining only one of the
modules is active at a time, and the inactive modules
have plenty of time to return to the initial state be-
fore the next computation. With pipelining, the reset
phase of the handshake is likely to enter the critical
path, and limit the performance gain. Considering the
area and power overhead, it is therefore unlikely that
pipelining of the asynchronous data-path will pay of.

The proposed slicing of the data-path could also be
used in a synchronous design, but only as a means to
reduce the switching activity. The associated speed
advantage can not easily be exploited. The syn-
chronous equivalent to what we are doing would be
to vary the period of the clock signal, which is much
less feasible than clock gating.

The control circuitry needed to slice the data-path
(described in section 4) does affect the latency of the
data-path. However, in view of the significant gain in
average case performance, this is not an issue. Also, it
should be noted that almost the same circuitry would
be needed in a synchronous implementation, and in
that sense it does not constitute an overhead.

In summary the non-pipelined asynchronous imple-
mentation has a number of unique advantages, and its
circuit overhead is negligible.

7 Conclusion
This paper has described a number of issues relat-

ing to the design of a low-power asynchronous FIR
filter block. Like many other signal processing appli-
cations, this algorithm does not exhibit data depen-
dencies at the RTL level - the number of steps is fixed.
Instead the key to a low-power implementation lies in
a highly non-uniform switching profile of the data that
is processed - something that is also common in signal
processing applications.

The paper has showed by example, how this can be
exploited to obtain an implementation in which the
switching activity is minimized and the speed is maxi-
mized by taking advantage of data dependent compu-
tation times in the functional units. In our case the
typical speed is 3 times better than the worst case,
and using adaptive scaling of the supply voltage, this
excess speed can be turned into a corresponding (ad-
ditional) power saving.

Another important point to make is that a syn-
chronous implementation cannot exploit these data

206

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

dependencies using clock gating. The equivalent to
what we are doing would be to vary the period of the
clock signal, which is much less feasible than clock
gating.

Circuit design is ongoing and the ultimate goal is a
speed and power comparison with an industrial syn-
chronous design (fabricated on the same wafer). The
design has two challenging areas, besides the data-
path reported in this paper: Design of a low-power
memory/register file, and design of the addressing and
control unit. Work on these issues is ongoing.

References
[l] e. H. van Berkel, Ronan Burgess, Joep Kessels,

Ad Peeters, Marly Roncken, and Frits Schalij. Asyn-
chronous Circuits for Low Power: a DCC Error Cor-
rector. IEEE Design d Test, 11(2):22-32, 1994.

[2] IKees van Berkel, Ronan Burgess, Joep Kessels,
Ad Peeters, Marly Roncken, Frits Schalij, and Rik
van de Viel. A single-rail re-implementation of a dcc
error detector using a generic standard-cell library. In
2nd Working Conference on AsynAsynchronous De-
sign Methodologies, London, May 30-31, 1995, pages
72-79, 1995.

[3] S. El. Furber, P. Day, J. D. Garside, N. C. Paver,
S. Temple, and J. V. Woods. The design and eval-
uation of an asynchronous microprocessor. In Proc.
Ynt’l. Conf. Computer Design, October 1994.

[4] S. Furber. Computing without clocks: Micropipelining
the ARM processor. In G. Birtwistle and A. Davis, edi-
tors, Proceedings Banff VIII Workshop: Asynchronous
Digital Circuit Design, Workshops in Computing Sci-
ence, pages 21 1-262. Springer-Verlag, 1995.

[5] L. S. Nielsen, C. Niessen, J. Spars@, and C. H. van
Berkel. Low-power operation using self-timed circuits
and adaptive scaling of the supply voltage. IEEE
nansactaons on VLSI Systems, 2(4):391-397, 1994.

[SI T. Lunner and J. Hellgren. A digital filterbank hear-
ing aid - design, implementation and evaluation. In
Proceedings of ICASSP’91, Toronto, Canada, 1991.

[7] Jens Spars@, Christian D. Nielsen, Lars S. Nielsen, and
Jprrgen Staunstrup. Design of self-timed multipliers:
A comparison. In S. Furber and M. Edwards, edi-
tors, Proc. of IFIP TClO/WGd0.5 Working Confer-
ence on Asynchronous Design Methodologies, Manch-
ester, England, 31 March - 2 April 1993, pages 165-
180. Elsevier Science Publishers B. V. (IFIP Transac-
tions, vol. A-28), July 1993.

[8] P. Landman and J. Rabaey. Architectural power anal-
ysis: The dual bit type method. IEEE Thnsactions
on VLSI Systems, 3(2):173-187, 1995.

[9] Ad Peeters and Kees van Berkel. Single-rail hand-
shake circuits. In 2nd Working Conference on Asyn-
chronous Design Methodologies, London, May 30-31,
1995, pages 53-62, 1995.

207

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.

