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Abstract - In this paper we derive novel algorithms for estimation of reg- 
ularization parameters and for optimization of neural net architectures 
based on a validation set. Regularization parameters are estimated us- 
ing an iterative gradient descent scheme. Architecture optimization is 
performed by approximative combinatorial search among the relevant 
subsets of an initial neural network architecture by employing a valida- 
tion set based Optimal Brain Damage/Surgeon (OBD/OBS) or a mean 
field combinatorial optimization approach. Numerical results with lin- 
ear models and feed-forward neural networks demonstrate t he viability 
of the methods. 

INTRODUCTION 
Neural networks are flexible tools for function approximation and by expand- 
ing the network any relevant target function can be approximated [6]. The 
associated risk of overfitting on noisy data is of major concern in neural net- 
work design [a]. The objective of architecture optimization is to minimize the 
generalization error. The literature suggest a variety of algebraic generaliza- 
tion error estimators e.g., FPE  [l], FPER [9], GEN [7], GPE [13] and NIC 
1141. These estimates, however, depend on a number of statistical assump- 
tions which can be quite hard to justify. Hence, many neural net practitioners 
resort to empirical methods for design and validation, the simplest being to 
base the design on a single separate validation set. For further discussion 
on empirical generalization assessment see e.g., [lo]. In this contribution we 
derive schemes for proper selection of neural net architecture and for estima- 
tion of regularization parameters using a simple validation set approach. In 
fact, one may view estimation of the optimal regularization as an alternative 
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methodology for architecture selection. 

TRAINING AND VALIDATION 
In order to train and validate, the available dataset, D, of N examples is 
split into two disjoint sets: a validation set, V ,  with N ,  = ryN1 examples 
for architecture selection and estimation of regularization, and a training set, 
'T, with NE. = N - Nu examples for estimation of network parameters. y is 
referred to as the split-ratio. 

The neural network is described by the vector function f(x; w) where x is 
the input vector and w is the vector of network weights and thresholds with 
dimensionality m. The cost function for network training is supposed to be 
the sum of a loss function (or tra.ining error), S7(w),  and a regularization 
term R(w), i.e., 

(1) 
1 N t  

C(w) = S d W )  + R(w) j& Cl (y(k), G(k)1; w )  + R(w) 
k = l  

where Q(.) measures the distance between the output :y(k) and the network 
prediction G(k)  = f ( z ( k ) ;  w).  Often the mean square (error loss l = Iy - 
is chosen. Nt G 17-1 defines the number of training examples, i.e., input- 
output pairs of the training set: 'T = {(~(k),y(k))}~~.~. Training provides 
the estimated weight vector & = arg min, C(w). The validation set consist 
of another Nu s \VI examples and the validation error2 of the trained network 
reads: 

N 

where the sum runs over the N,, validation examples. Sv(&) is thus an 
estimate of the generalization error defined as the expected loss: G ( 6 )  = 
E,,,{f(y, y^; G)}, where E,,,{.} denotes the expectation w.r.t. to the joint 
input-output distribution. 

An minimal necessary requirement for a procedure which estimates the 
network parameters on t,he training set and optimizes the architecture on the 
validation set is that the generalization error of an non-optimized network ar- 
chitecture trained on the full data set 2) is higher. This is not always the case 
as discussed in [17, Chap. 61: perForming indirect regularization by stopping 
training when minimum Validation error is reached is equivalent to training an 
non-regularized network on the full data set. There is consequently a risk of 
overusing the validation set. In order to avoid this situation prior constraints 
should be imposed, as will be demonstrated in various examples below. 

There exist obviously an optimal choice of the split-:ratio, y, between train- 
ing and validation set sizes. This choice is an interesting open and difficult 

r.1 denotes rounding upwards to the nearest integer. 
2The loss function on the validation set,. 
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problem. The choice depends 1. on the objective, 2. which scheme one for 
applies for minimizing the validation error, and 3.  on the learning curve’ [5] 
for the problem under consideration. The case of an optimal generalization 
error estimate (in mean square sense) was discussed in [lo]. Without further 
ado, one would suggest to use the balanced split y = 0.5 

ESTIMATION OF REGULARIZATION PARAMETERS 

The standard approach for estimation of regularization parameters, such as 
e.g., weight decays, is by more and less systematic search and evaluation of 
the validation set error; however, as will be shown, it is possible to derive an 
optimization algorithm based on gradient descent. 

Consider a regularization term R(w,  K )  which depends on q regularization 
parameters contained in the vector K .  Since the estimated weights 6 = 
arg minw C(w) depend in a, definite way on the regularization term, we may in 
fact consider the validation error as an implicit  f unc t ion  of the regularization 
parameters, 

where G ( K )  is the K-dependent vector of weights estimated from the training 
set. The optimal regularization can be found by e.g., gradient descent4, 

K ( j  + 1) = & ( j )  - (4) 

where 7 > 0 is a gradient step-size and ~ ( j )  is the estimate of the regulariza- 
tion parameters in iteration j .  Using the chain rule the gradient vector can 
be rewritten as 

where i3wT/drc is the q x m derivative matrix of the estimated weights w.r.t. 
the regularization parameters. In order to find this derivative matrix we use 
the following fact: if & ( ~ ( j ) )  and G ( K ( ~  + 1)) are optimal weight vectors 
then 

(6) 
ac h 

- ( W ( K ( l ) ) )  = 0, 1 = { j , j  + 1). aW 
This implies: 

3The learning curve is a plot of the generalization error vs. t,he number of training 
examples. 

4Moreover, one might consider suggesting second order schemes. However, these schemes 
work best for problems where the solution is an interior point somewhat away from the 
boundary of the domain over which the minimum is searched for. We tried a second order 
scheme for optimizing multiple weight decay parameters in a linear model without obtaining 
a cmincing result. 
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This equation can used for determining dwT/dtc. To be specific, assume that 
the regularization term is linear in the regularization parameters5, i.e., 

4 

R(w,  K )  = K y W )  = c K,T,(w:l ( 8 )  
8= 1 

where K, are the regularization parameters and T ,  (w) associated regulariza- 
tion functions. Using Eq. (8) in (7) gives after some algebra6: 

where J =: d2C/dwdwT is the Hessian of the cost function which e.g., might 
be evaluated using the Gauss-Newton approximation [12]. Finally, substitut- 
ing Eq. (9) into (5) gives 

asv ,-. d r  8S.v 
--(w) = --(G). J P ( G ) .  --(&) 
dK dW' dU7 

aSvldw is found by ordinary back-propagation on the validation set while 
dr/dwT is calculated from the specific assumptions on the regularizer. If the 
regularizer is assumed to  be a weight decay regularizer with one regularization 
parameter per weight, i.e., R(w, 6) = ELl K ~ W ? ,  Eq. (10) reads: 

--(w) = -2 J - I ( ( a ) .  - 6) ) GJG ( d W  
asv h 

dK 

where 0 denotes the element-by-element vector product. In the case of one 
regularization parameter per weight there is an potential risk of overusing the 
validation set: it is frequently possible to  choose tc suchL that aSv/dwla = 0 '. 
This corresponds to training on the validation set without regularization, 
which mostly is worse than training a non-regularized network on all data. 
Consequently, there is a need for constraining the scbarch space. A natural 
choice is to  impose K ,  >_ 0. Thus the regularization may be interpreted as a 
pruning regularizer since the weight is pruned by K~ + cm and kept in the 
model by having K ,  = 0. In practical implementations, the restriction K ,  2 0 
is easily incorporated by enforcing K %  the update in Eq. (4) to be positive 
even though the gradient step suggest it to be negative8. 

In the case of a simple weight decay, R(w, K )  = K I W I ~ ,  Eq. (10) obeys: 

5Although this regularization term is very general is does not include e.g., weight- 

'For convenience, here 6% explicit &-dependence i8 omtitted. 
7This possibility is always present for a single output linear model, y = wTz, using the 

sAn alternative solution is to  reparameteriae; e.g., p; = I,K;~ which gives aSv/db;  = 

elimination by Weignnd et al. or Soft Weight Sharing by Nowlan et al. 

h 

mean square loss function. 

sign&). BSy /&;. 
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In this case there is no obvious risk of overusing the validation set. That is, 
it might be advantageous to have a negative weight decay even though the 
asymptotic (Nt -+ m) optimal weight decay is positive [9]. 

VALIDATION ERROR BASED OBD/OBS 
A natural extension of the Optimal Brain Damage (OBD) [Ill and Optimal 
Brain Surgeon (OBS) [4] pruning schemes is to base saliencies on general- 
ization error rather than training error, as suggested in [15]. This enables 
deleting weights according to their influence on generalization error. The 
validation set based saliencies are based on the second order Taylor series 
expansion: 

&(w) M Sv(G) + *(G). Aw + -AwT. 1 a2sv (6) .Aw (13) 
dWT 2 dWaWT 

where Aw = w - G. For the OBD approximation: delete one weight 
and keep the remaining unchangedg results in the weight change Aw = 
[O . . . O ,  -i&, 0 .  . . OIT. Hence, the OBD validation saliencies" are: 

The validation set based OBD procedure, vOBD, is as follows: 1. choose a 
sufficiently large network, 2. train the network on 7, 3. rank weights according 
to Eq. (14) and delete a small fraction of low saliency weights", 4. if Sv is 
minimal stop; otherwise go to step 2. 

Similarly, vOBS saliencies can be obtanied from Eq. (13) using the fact 
that the remaining weights are retrained within a second order approximation 
of the cost function, see e.g., [3], [8]. 

COMBINATORIAL OPTIMIZATION OF NETWORK ARCHI- 
TECTURE 

Architecture selection schemes are based on either network pruning or net- 
work growth. Preferably one wish for a hybrid method where deleted weights 
can reenter the model and vice versa .  Exhaustive search would require eval- 
uation of 2m - 1 subnetworks - m being the number of weights in the fully 
connected network. An alternative method is to use the computationally cost 
effective mean field annealing approach (see e.g., [5]) which have shown ef- 
ficient for hard combinatorial optimization problems [16]. This approach is 
invoked by using a state vector of binary variables s E (0, I}" indicating 
if the companion weights are pruned or not. That is, the network function 

gThis corresponds to assuming the Hessian, J ,  to  be diagonal. 
'OThe saliencies ei w Sv(6 + Aw) - Sv(6). 
"The saliencies will often be negative, indicating that the generalization actuaclly is 

improved by removing the particular weight. 
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becomes f (z ;  w o s) .  The weights are estimated on the training set and the 
state variables on the validation set by using a mean field approach. Inital 
experiments showed fair results; however, a crucial problem is that  retraining 
is not invoked in the pruning scheme. We are currently pursuing this topic 
further. 

EXPERIMENTS 
Linear Model 

Consider the following data generating linear system: y(k) = zT(k)w0 + ~ ( k ) .  
z ( k )  follows a m = 10 variate Gaussian distribution N(0,  H )  where H is the 
covariance matrix. z ( k )  is an i.i.d. sequence, i.e., a time-independent series. 
The noise ~ ( k )  N N(0, n,”) is i.i.d. and independent of z(k). n,” = NSR.V{y} 
where NSR = 0.2. The “true” weights are W O  = [OOOOOOO1l l ]T.  

In order to evaluate the typical algorithm performaince, generate, say Q, 
independent data sets of size N = 60 and train initially m = 10 dimensional 
linear models using the standard mean square error coist t o  obtain the esti- 
mates i21(~)~ i E [l ;Q].  The true generalization error of each model is then 
given by G(G(2)) = ~9 + (G(i)  - WO)~.H(G(~)  - WO). 

One Weight Decay. Dealing with the linear model and a single weight 
decay, i.e., R(w,K) = ~ l w 1 ~ ,  it is possible to  show that Eq. (12), for the 
optimal K ,  becomes a 3rd order equation in IC,. Howevler, the coefficients of 
the equation depends in a very complicated way on the actual training and 
validation data; hence, we resort to numerical optimization”. Define G(wa),  
the generalization error of the model trained on all data V without any ar- 
chitecture optimization. Further define G(G), the generalization error of the 
model using architecture optimization ~ in the presen.t case; weight decay 
optimization. We consider basically two measures of algorithm performance: 
First, the probability of improvement, defined as 

Q 

G(G(i)))  
i=l 

where p(z) = 1 for x > 0 and zero otherwise. Secondly, the relative improvent 
in generalization error, defined as 

RGI(i) = 100%. [G(w!$) - G(G(i))]  / G ( w ~ ) ) .  (16) 

The results are summarized in Table 1. 

Multiple Weight Decays and vOBD. In order to  evaluate the perfor- 
mance of the gradient descent method for optimizing regularization parame- 
ters, we choose the individual weight decay ret:ularizer B(w, K )  = K ~ W ? .  

”Here the MATLAB function fmin.m is used 
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I 1 P i m p  I awr(RG1) 1 Y 
I 0.4 I 0.846 f 0.007 1 9.49 1 

0.5 
0.6 
0.7 

0.892 5 0.006 9.61 
0.911 & 0.006 9.87 
0.939 ?C 0.005 9.88 

Table 1: Performance when optimizing a single weight decay on a linear model. y is 
the split-ratio, Pilllp the probability of improvement with associated 95% confidence 
error bars, and awr(RG1) is the average RGI over cases in which improvement was 
present. Experiment parameters: Q = 10000, H = AAT where A is a randomly 
chosen Vandermonde matrix (large eigenvalue spread). Note that the results do 
only have a week dependency on the split-ratio. 

The ~ i ' s  are forced to be positive in order to eliminate overuse of the vali- 
dation data. First the model is trained with inital values of I C ~ ,  then t ~ i  are 
updated by Eq. (11) and (4) using a gradient parameter 7, finally retrain the 
weights, and repeat the scheme until the relative change in Sv is less than 
a prescribed small number. Subsequently, the weights are retrained on all 
data using the optimized regularization. We tried many different parameter 
settings and found that the algorithm is sufficiently robust. Fig. 1 summaries 
a few results of running the algorithm. For comparison we ran a standard 

I Y I  Pimp  I avr(RG1) 1 
I 0.5 1 0.964 f 0.005 I 9.99 1 0 

E 
P O - 6  

1 o-8 

- io  
c lo  
I 5 10 15 20 25 

Iteration 

Figure 1: Performance when optimizing multiple weight decays on a linear model. 
y is the split-ratio, the probability of improvement with associated 95% confi- 
dence error bars, and avr(RG1) is the average RGI over cases in which improvement 
was present. Experiment parameters: Q = 5000, H = AAT where A is a ran- 
domly chosen Vandermonde matrix (different from that used in Table l), gradient 
parameter q = lop5 ,  inital value of IE; was lo-", algorithm stops when relative 
change in Sv is less than 2 low4.  With this stopping, the average number of it- 
erations was around 20. Note - as in Table 1 ~ a relatively week dependency on 
the split-ratio. The plot in the right panel shows a typical run of the algorithm. 
Note that non-monotonic weights which start out to be regularized later on become 
non-regularized. 

OBD13 and a validation set based vOBD deleting one weight per iteration 

13As in [18], the standard OBD is terminated when the FPE criterion [I] is minimal. 
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with the same covariance matrix N as used in Fig. 1. In Q = 10000 repe- 
titions the vOBD result is: Pimp = 0.863 f. 0.007 and avr(RG1) = 4.57 for 
y = 0.7. OBD delivers: Pimp = 0.835 f 0.007 and avr(RG1) = 3.65. Thus 
inidividual weight decay regularization is superior to vOBD, which again is 
slightly better than standard OBD. 

Feed-Forward Neural Network 
We tested the performance of the individual weight decay optimization using 
the gradient descent algorithm Eq. (4) on the Mackey-Glass chaotic time series 
prediction problem, see e.g., [8],  [18]. The goal is to predict the series 100 steps 
ahead based on previous observations. The feed-forward net configuration is 
an input lag-space 2 = [ z (k ) ,  z ( k  -- 6), z ( k  - 12), z ( k  - IS)] of 4 inputs, 15 
hidden hyperbolic tangent neurons, and a single linear output unit Q(k)  which 
predicts y (k )  = z (k  + 100). We used a data set, D, of N = 500 examples 
and an independent test set of 8500 exampels. The network was trained on 
7 using a Gauss-Newton off-line training scheme with initial ~i = 4 . lo-'. 
The gradient parameter 77 was initialized at lop3.  If the SV drops 77 t- 1.2.77; 
otherwise perform a successive bisection until a drop in SV is achieved14. 
Initial experiments showed that the algorithm is fairly insensitive to the split- 
ratio in a region around y = 0.5, thus y = 0.5 is used in the following 
experiments. We made an ensemble of 5 networks with different random 
initial weights and splits of training and validation data and ran the algorithm. 
Afterwards, we retrained on all data using the optimized weight decays found 
at minimum validation error. The performance is measnred by the test error 
normalized with the variance of z ( k ) .  For comparison we made 11 repetitions 
of the standard OBD approach as described in [MI. The network employed 
25 hidden neurons. Fig. 2 shows the algorithm performance. 

CONCLUSIONS 
In this paper it was suggested to optimize the network architecture by mini- 
mizing the error on a validation set. We derived a gradient descent scheme for 
optimizing regularization parameters, suggested to use validation set based 
saliency estimates for OBD/OBS, and finally discussed the possibility of ap- 
proximative combinatorial architecture search by using the mean field algo- 
rithm. Numerical examples with linear models and neural networks demon- 
strated the potential of the framework. 
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I4If  7) reaches the update of IC is done irrespective of a an increase in Sv. 
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Figure 2: (a) Evolution of training, validation and test errors. (b) Evolution of 
input-to-hidden weight decays ( c )  Evolution of hidden-to-output weight decays 
(d) Test error normalized with the variance of z (n)  for the algorithm compared to 
standard OBD. a w ,  mzn, maz are the average, minimum and maximum perfor- 
mance over different runs, respectively. The effective number of parameters [9] was 
on the average me@ M 58 for individual weight decay regularization and m,ff zz 83 
for OBD. The best normalized test error reported (see e.g., [8]) was around 2.5.10K3. 
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