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A bs tra c t 
One of the limitations of using iterative reconstruc- 
tion methods in tomography is the slow performance 
compared with the direct reconstruction methods, 
such as Filtered Backprojection. In this paper we 
demonstrate a very fast implementation of most 
types of iterative reconstruction methods. The key 
idea of our method is to generate the huge system 
matrix only once, and store it using sparse matrix 
techniques. From the sparse matrix we can perform 
the matrix vector products very fast, which implies a 
major acceleration of the reconstruction algorithms. 
In this paper we demonstrate that iterative recon- 
struction algorithms can be implemented and run al- 
most as fast as direct reconstruction algorithms. The 
method has been implemented in a software package 
that is available for free, providing reconstruction 
algorithms using ART, EM, and the Least Squares 
Conjugate Gradient Method. 

I. INTRODUCTION 

In the last 15 years the iterative reconstruction 
methods have gained much attention in the lit- 
erature [l, 21. Several methods have been very 
prominent, such as EM (Expectation Maximization) 
[3, 4, 5, 6, 71, ART (Algebraic Reconstruction Tech- 
nique) [8, 11, and LSCG (Least Squares Conjugate 
Gradient) [9, 101. 

These methods formulate the reconstruction prob- 
lem as a linear set of equations 

J-1 
b = Ax H bi = Cai,j~j, i = 1 , 2  , . . .  , I  (1) 

j=1 

where b is an I-dimensional vector containing the 
known sinogram values wrapped into a vector, and 
0-7803-3534-1/97 10.000 1997IEEE 

x is a J-dimensional vector containing the unknown 
image to be reconstructed. Here A is the system ma- 
trix, which contains the weight factors between each 
of the image pixels and each of the values in the sino- 
gram, corresponding to line orientations. Compared 
with Radon transform based direct reconstruction 
methods [ll], the use of linear algebra has several 
advantages, such as easier incorporation of irregular 
geometries. The system matrix can model several 
real-world properties, such as finite, i.e., non-zero 
detector size and varying detector sensitivity. Fur- 
thermore regularization can easily be incorporated 
[12, 91 in order to affect the often ill-conditioned re- 
construction problem. 

One problem is the huge size of the system matrix. 
A 2D sinogram from, e.g., a GE Advance PET scan- 
ner contains I = 281 * 336 values, and reconstructed 
into a J = 201 * 201 grid, i.e., the system matrix has 
approximately 3.8 billion elements, requiring over 15 
GBytes of memory, when using 4 bytes per matrix 
element. This is a large amount of memory, even 
looking some years into the future. Besides this as- 
pect, it would not be wise to store all that data, 
due to the fact that approximately 99% of the ma- 
trix entries will be zeros. This knowledge should be 
incorporated into the reconstruction schemes. 

Assuming that memory is not available for stor- 
ing the full system matrix, one possibility is to com- 
pute the individual matrix elements in each iteration 
when needed. This can be done by using the Radon 
transform, e.g., [13] or other modelling schemes for 
the scanner. This approach is rather easily imple- 
mented and is viable and storage requirements are 
reduced to a minimum, only requiring memory for 
the sinogram (b )  and the current solution (x), and 
perhaps some additional temporary variables of the 
same size or smaller, but no system matrix is stored 
in memory. It will be demonstrated that this imple- 
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mentation has a major drawback in speed, since the 
system matrix will be computed many times during 
an iterative reconstruction. Each time at the same 
high computational cost. 

11. ACCELERATED 2D ITERATIVE 
RECONSTRUCTION 

Here a hybrid solution is investigated [14, 131 for 
accelerating the iterative reconstruction algorithms, 
but requiring as much memory as modern worksta- 
tions are currently equipped with., or will be soon. 
The idea is to store the non-zero elements of the sys- 
tem matrix in the main memory using sparse ma- 
trix techniques. In this way the core of the recon- 
struction algorithms, highly based on matrix vector 
multiplications, can be accelerated significantly, and 
thereby solve one of the major dr,awbacks of the it- 
erative methods. 

It is proposed that the system matrix A is calcu- 
lated one time only using all the modifications found 
for the actual scanner setup. If no specific scanner 
model is provided then the system matrix can be 
modelled and generated using the Radon transform 
or other simpler schemes. From the system matrix 
the very small values in the matrix can truncated to 
zero, 

where the threshold y can be ch'osen to a certain 
fraction of the maximum matrix value, e.g., y = 

0.05maxi,j{ai,j}. If y is chosen sufficiently low, a 
good compromise between resolution and the sparse- 
ness of the matrix can be reached, and normally this 
does not alter the behaviour of the algorithms. Cur- 
rent work concerns the quantification of the trunca- 
tion error. 

The sparse structure of A can be exploited by only 
storing non-zero values in the fast memory. For a 
certain row, number i ,  all of the matrix elements 
are calculated, stored, and truncated using Eq. 2. 
Hereby the number of non-zero elements in the row, 
denoted by Zi, will be much smaller than the image 
size J = M2.  The values of 2; are stored in a sim- 
ple, one dimensional vector. Two vectors of length 
Zi, indexed by an integer x, can ithen be allocated 
and stored containing the non-zero matrix value a, 
and the corresponding column index j,. The proce- 
dure is repeated for all rows. 

Assuming a nearest neighbour approximation with 
one pixel for each point along the integration lines 
and using 4 bytes for storing each of the vector ele- 
ments, the total storage requirement is then reduced 
to approximately 8 E:==, zi FZ 8IM bytes. In the ex- 
ample shown in the introduction approximately 100 
MBytes memory is required. Assuming this amount 
of memory is present most iterative algorithms can 
be implemented from three basic operations: Matrix 
vector multiplication A%, scalar product between the 
i'th row of the system matrix and a vector UT%, and 
finally multiplication with the transpose of the ma- 
trix AT& 

In the following pseudo code (called Algorithms), 
the implementation of the matrix vector multiplica- 
tion and the multiplication with the transpose of the 
system matrix are shown. A C++ style is used for 
comments and note that all indices here start at zero. 
ALGORITHM 1 : Aa: 

For i = 0 t o  1-1 //For all rows 
sum = 0 //Initialize 
Se t  a and j to cor rec t  row //Use pointers 
For z=O t o  Z ( i ) - l  //For row i 

End 
b t  (i) =sum //Store value 

sum=sum+a(z)*x(j (2)) //Increment sum 

End 
END ALGORITHM 

ALGORITHM 2 : ATb 
For j=O t o  J-1 

End 
For i = O  to 1-1 //For all rows 

//For all columns 
xb (j ) =O //Initialize 

Set a and j to cor rec t  row 
For z=O t o  Z ( i ) - 1  

End 

//Usingpointers 
//Compute sum 

xb(j (z))=xb(j (z))+a(z)*b(i) //Update sum 

End 
END ALGORITHM 

111. IMPLEMENTED METHODS 

A software package has been written in C including 
the proper structures for manipulating sparse matri- 
ces and vectors, along with an optimized code for 
computing matrix vector products, well suited for 
iterative reconstruction algorithms. In the package 
ART, EM, and LSCG are implemented both in a fast 
version using sparse matrix storage of the system ma- 
trix and in a slow version where the system matrix is 
not stored and needed matrix entries are computed in 
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each step of the iterative algorithms. The software 
package is available for free, but protected by the 
GNU General Public License. The package is avail- 
able at http://eivind.imm.dtu.dk/staff/ptoft. 

and used. If not provided, all of the initial values of 
the vector are initialized to a properly chosen con- 
stant. 

A. Interpolation Methods 
ART: For a certain row i of the matrix (i de- 

pends on the iteration number k ) ,  the general itera- 
tion step incrementing the current solution z(') can, 
e.g., be found in [l] 

Several interpolation methods have been imple- 
mented for computing the system matrix. Further- 
more it is possible to use sub-sampling in the Radon 
domain and average over the sub-windows in order 

bi - aTz(k) 
aTai 

to incorporate a model of a non-zero detector size. 
ai (3) This will reduce aliasing problems. z ( k + l )  = + 

0 Nearest Neighbour interpolation based on the 
Radon transform. EM: The general iteration step of EM [5, 151 

requires a forward projection, a backprojection, and 
two fast updates in each iteration. 0 Linear interpolation based on the Radon trans- 

0 Analytical Radon transform of a square, i.e., the 
( 5 )  length through a quadratic pixel is used. 

zb = ATbr (6) 

xjk) = ' xi where s j  = E a i j  (7) 
si i=l 

0 The Radon transform of a sinc expansion in the 
( k - 1 )  b I image domain. X .  

IV. RESULTS 
LSCG: The Least Squares Conjugate Gradient 

The program has been used on two types of machines. 
A Linux machine with a 120 MHz Pentium processor 
and an Onyx from SGI equipped with four 200 MHz 
R4400 processors, where the program was running 
on one processor. 

A. 

method requires some initialization [lo] 

s ( o )  = b - 
T ( o )  = p(0) = ATs(O) 
~ ( 0 )  = Ap(O) 

Then for each iteration the LSCG algorithm on the Example 1 
normal equations becomes In the first example the (synthetic) sinogram has 

125 * 101 samples and the reconstructed image has 
101*101 samples. In Table 1 the reconstruction times 
on both machines are shown for the fast and the slow 
method as well as the ratio between the execution 
times (slow/fast). 

Times are measured for ART, EM, and the LSCG- 
method, when EM and LSCG were running (arbi- 
trarily) 20 iterations, and ART 20 full iterations, 
i.e., 20 times the number of rows (chosen randomly), 
which is 20*125*101 iterations in Eq. 3. Note that 
all times only correspond to the actual iterations. 
For the fast versions of the iterative reconstruction 
algorithms, the time to generate the system matrix 

For all three methods an initial value of the solu- 
tion, i.e., z ( O )  is needed. In the package an image 
found by, e.g., a fast direct method, can be supplied 

once should be added if changing the system matrix, 
e.g., when changing the sampling parameters of the 
reconstructed image. 
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For this example the system mat,rix was modelled 
using discrete Radon transformation with linear in- 
terpolation, where the threshold y was chosen to 
zero, hence the slow and the fast methods give ex- 
actly the same results. Note that the large difference 
in speedup between ART and EM/LSCG is due to 
the implementation of the forward projection is more 
efficient than the multiplication with the transpose of 
the system matrix. The slow methlods can be accel- 
erated some by implementing multiplication with the 
transpose of the system matrix (adjioint operator) as 
a backprojection integral, but note that this implies 
that the approximation of the system matrix will be 
different in the forward and the backprojection part. 
The sparse system matrix for this transformation ge- 
ometry required approximately 13 MBytes, and each 
iteration requires approximately one second. 

Machine Type ART 
Fast 26 sec 

Pentium Slow 2218 sec 
Ratio 85 

Fast 16 sec 
Onyx Slow 1306 sec 

Ratio 82 

EM 
17 sec 

57716 sec 
340 

116 sec 
2722 sec 

170 

LSCG 
17 sec 

5250 sec 
309 

16 sec 
2715 sec 

170 

Table 1 Time usage for 20 iterations of EM and LSCG. For 
ART the time is for 20 full iterations, i.e., 20*125*101 of the 
iterations used in Eq. 3. The time measurements are for a 
sinogram with 125 * 101 samples reconstructed into a 101 * 101 
samples image. 

B. Example 2 

A 2D sinogram corresponding to a human brain was 
obtained on a GE Advance PET scanner. The sino- 
gram with 281*336 samples is shown in Fig. 1, 

when modelling then system matrix using the Radon 
transform with linear interpolation and each element 
is averaged over a sub-sampled 3*3 window in order 
to avoid aliasing problems. On the Onyx it required 
22 minutes to generate the 189 MBytes sparse ma- 
trix, and each iteration of EM or LSCG required ap- 
proximately 9 seconds in the fast version. After 10 
iterations of EM the algorithm was stopped, and the 
reconstructed image is shown in Fig. 2. Using LSCG 
it appears that the best reconstructed result is ob- 
tained after 9 iterations which is shown in Fig. 3. 
For sake of comparison, a reconstructed image using 
Filtered Backprojection is shown in Fig. 4, and this 
reconstruction used in total 6 seconds on the Onyx. 
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Figure 2 The reconstructed image after 10 iterations of EM. 
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Figure 3 The reconstructed image after 9 iterations of LSCG. 

ODFFl V I  

Figure 1 A PET sinogram of a human brain. 

The sinogram is reconstructed into a image 
with 201*201 samples. The system matrix has 
94416*40401 elements of which 0.62% are non-zero 

-lW -50 0 50 

Figure 4 The reconstructed image using Filtered Backprojec- 
tion using a Hann window with cutoff at half of the sampling 
frequency. 
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V. CONCLUSION 

We have demonstrated a very fast implementation 
of iterative reconstruction comparable in speed with 
direct reconstruction methods. The implementation 
is based on storing of the system matrix in fast mem- 
ory using sparse techniques. The approach is mainly 
applicable to 2D reconstruction, due to the require- 
ments of a sufficient amount of memory, but in prin- 
ciple the method can also be applied to 3D recon- 
struction. 

The idea is implemented in a software package 
which is available for free. In the package several 
direct reconstruction methods are also available, as 
well as regularization tools and several constraining 
methods. 

The cost of the strategy is that a large amount of 
memory is required, but for ART we have demon- 
strated a speedup factor of approximately 80 and for 
EM and LSCG 170-340 depending on the machine, 
for a fixed transformation geometry and interpola- 
tion level. These factors could be somewhat moder- 
ated by a faster implementation of the multiplication 
with the inverse system matrix. 
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