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jDj=2 = n2k�1. Similarly, we get jD2j = n2k�1. The claim (**) is
proved.

By the assumption of induction D1 contains an element �u0 from
(Z�

2
)n=2. This means that there exists �u00 from Z

n=2

2
such that

(�u0; �u00) 2 D. Since wt�(2k�1(�u0; �u00)) 2 fn2k�2; n2k�1g and
2k�1�u0 = (2k�1; . . . ; 2k�1), we have wt�(2k�1�u00) = 0 or
wt�(2k�1�u00) = n2k�2. So

2k�1�u00 = (0; . . . ; 0) (1)

or

2k�1�u00 = (2k�1; . . . ; 2k�1): (2)

Similarly, considering the code D2, we can find a codeword (�v0; �v00) 2
D such that 2k�1�v00 = (2k�1; . . . ; 2k�1) and v0 satisfies

2k�1�v0 = (0; . . . ; 0) (3)

or

2k�1�v0 = (2k�1; . . . ; 2k�1): (4)

If (2) is true, then (u0; u00) 2 (Z�
2
)n\D. If (4) is true, then (v0; v00) 2

(Z�
2
)n \ D. If (1) is true and (4) is true, then (u0; u00) + (v0; v00) 2

(Z�
2
)n \ D. Lemma 6-4 is proved.

Proof of Theorem 6-3: By Lemma 6-4 the code D contains
an element �c = (c1; . . . ; cn) from (Z�

2
)n. Then the code

D0 4

= (c�1

1
; . . . ; c�1

n ) � D is equivalent to D and contains
�1 = (1; . . . ; 1). Let f�1; q1; . . . ; qsg be a basis of D0 and ij be the
number of elements of order 2j ; j = 1; � � � ; k. Assume �1; q1; . . . ; qs
are the rows of the matrix Q of size (1 + i1 + � � � + ik) � n, a
generator matrix of the code D0. Then the columns of Q are ele-
ments of f1g � (2k�1Z

2
)i � (2k�2Z

2
)i � . . . � (20Z

2
)i .

Since by Lemma 5-1 the code d�-distance of D0? is more than 2,
all the columns are pairwise different. Therefore Q coincides with
BI ; I = (i1; . . . ; ik), up to permutation of columns.

So, we conclude, provided the mappings ' and � are fixed, all up
to equivalence co-Z

2
-linear extended 1-perfect codes and Z

2
-linear

Hadamard codes are described in Sections IV and V.
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Entropy of Bit-Stuffing-Induced Measures for
Two-Dimensional Checkerboard Constraints

Søren Forchhammer, Member, IEEE, and Torben V. Laursen

Abstract—A modified bit-stuffing scheme for two-dimensional (2-D)
checkerboard constraints is introduced. The entropy of the scheme is
determined based on a probability measure defined by the modified
bit-stuffing. Entropy results of the scheme are given for 2-D constraints
on a binary alphabet. The constraints considered are 2-D RLL (d;1)
for d = 2; 3 and 4 as well as for the constraint with a minimum 1-norm
distance of 3 between 1s. For these results the entropy is within 1–2% of
an upper bound on the capacity for the constraint. As a variation of the
scheme, periodic merging arrays are also considered.

Index Terms—Bit-stuffing encoding, cascading two-dimensional (2-D)
arrays, run-length-limited (RLL) constraints, 2-D constraints.

I. INTRODUCTION

Constrained coding has found widespread use in optical and mag-
netic data storage devices. Writing data along tracks, constrained codes
[1] have been applied to increase the density for a given physical media
and facilitate synchronization. Codes have been designed, e.g., for run-
length-limited RLL(d; k) constraints, where the number of 0s between
successive 1s has to be at least d and at most k.

New developments in storage medias such as holographic storage
and advances in nano storage such as the millipede project [2], [3] are
possible application areas for two-dimensional (2-D) constrained codes
and fields. An advantage of 2-D constrained coding could be to increase
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Fig. 1. The 0-neighborhood,N for the constraints �(3) and 2-D RLL(2;1).

the density. For example 2-D RLL constrained coding has been con-
sidered [4].

The constrained 2-D fields to be considered are specified by shift in-
variant constraints of finite extent (N;M). A constraint is defined by
a list, F , of forbidden blocks of maximum size N �M made of sym-
bols from a finite alphabet A. A configuration on an n by m rectangle
having no forbidden blocks within the rectangle is called an admissible
configuration. This corresponds to a Z2 shift of finite type [5], [6].

Let E(n;m) be the set of admissible configurations on an n by m
rectangle for a given field F . The capacity or combinatorial entropy of
F is defined as

H
(2)(F ) = lim

n;m!1

log2 jE(n;m)j

nm
: (1)

The limit is indeed well defined [5], [7].
This correspondence shall focus on the 2-D RLL(d;1) constraint,

which is an example of a checkerboard constraint [8]. Bit-stuffing may
be applied to checkerboard constraints. Bit-stuffing for 2-D constraints
as in [4], [11] is modified in a way which enables analysis based on a
probability measure induced by the scheme. The entropy of the mea-
sures may be calculated, which besides the capacities of specific bit-
stuffing schemes provides a lower bound on the capacity of the con-
straints considered. In [4], a detailed study of the relation of actual
bit-stuffing coding schemes and the measure induced was presented.
Here we restrict the analysis to determining the entropy of the scheme
based on a measure.

Section II presents checkerboard constraints and bit-stuffing. The
modified bit-stuffing scheme and the related probability measure are
presented in Section III. Based on the measure, the entropy of the
scheme is given. Section IV introduces periodic merging arrays, which
may be seen as a special case of the measures used for bit-stuffing. Nu-
merical results for the entropies are given in Section V.

II. BIT-STUFFING FOR CHECKERBOARD CONSTRAINTS

A. Checkerboard Constraints

Consider binary constraints where each 1 has to be surrounded by
an arbitrary, but specific neighborhood of 0s, referred to as a 0-neigh-
borhood,N . These checkerboard constraints were defined and treated
in [8] and further investigated in [9]. In the latter article the neighbor-
hood could be any measurable, bounded subset of the plane, but we
will restrict ourselves to neighborhoods defined on the integer lattice
Z2. The RLL(d;1) constraint is an example of this. Another example
is the diamond constraint or minimum distance M between ones with
regards to the 1-norm [10]. We will refer to this constraint as �(M) (in
[8] this constraint is referred to as the Diamond M � 1 constraint).

The extent of the �(M) constraint is M �M . However, unlike the
2-D RLL(d; k) constraint, the forbidden words do not split along rows
and columns. The 0-neighborhood,N , required around a 1 for each of
the two constraints �(3) and 2-D RLL(2;1) is depicted in Fig. 1.

Given a 0-neighborhood, N , specifying a checkerboard constraint,
the extent (N � M) of the checkerboard constraint is given by the
smallest values of N and M , for which the (2N � 1) by (2M � 1)
rectangle centered at the 1 ontains the 0-neighborhood.

B. Bit-Stuffing

Bit-stuffing is a simple, yet efficient way to code for 1-D RLL con-
straints. The method has been extended to 2-D constrained arrays, [4],
[11], [12]. It is applicable if it is always possible to write say a 0 at
any position. The elements of the 2-D array is traversed in a prede-
fined order, e.g., row by row or along diagonals. The data stream may
be written as is, except that each time a 1 is encountered, the neces-
sary number of zeros are stuffed immediately after. Constraints of this
type include 2-D RLL(d;1) and other checkerboard constraints [8].
An analysis of 2-D bit-stuffing has been presented [4], showing that it
is very efficient for the 2-D RLL(1;1) constraint. In [11], bit-stuffing
was used and analyzed for the 2-D RLL(d;1) constraint. Analysis
of the hard-triangle has also been carried out [12]. In [4], [11] the
bit-stuffing is performed along diagonals, writing bits from a sequence
whenever possible and writing the 0’s the constraint prescribes. The iid
unbiased data sequences to be coded may be transformed into iid bi-
ased sequences in a precoding step in order to increase the entropy. One
can extend this by having more than one biased sequence and choose
between these depending on past data besides what is prescribed by the
constraint [4].

For the hard-square [4] and hard-triangle [12], the entropy of the
bit-stuffing scheme has been determined and optimized. For the higher
order constraints 2-D RLL(d;1); d > 1, lower bounds on the entropy
of the bit-stuffing scheme are presented in [11]. We shall modify the
traversal of the elements of the 2-D code. This enables the derivation
of an expression of the entropy, which in turn provides an improvement
of the bounds for d = 2; 3; and 4, i.e., for the higher order constraints
(see Section V).

C. Finite State Sources

The analysis of the new bit-stuffing scheme is based on results for
1-D sequences. In one dimension, sequences satisfying a constraint on
N consecutive symbols such as run-length-limited sequences may be
described by finite state sources, where a state is characterized by N �
1 symbols. The 1-D entropy is then defined as in (1) but with m =
M = 1 and n ! 1. The transfer (or adjacency) matrix T of the
source indicates the possible transitions between two states. The largest
eigenvalue � of the transfer matrixT determines the growth rate of the
number of configurations. Taking the logarithm gives the maximum
entropy [13]

H
(1) = log2(�): (2)

The one-dimensional approach is readily generalized to 2-D arrays
of finite (horizontal) width m and arbitrary (vertical) height n. The
admissible configurations of an array of width m may for all n be de-
scribed by a finite state source. For a constraint of extent (N;M), the
states of the source are given by the symbols on the (N � 1) � m

segment which appear as the first or last N � 1 rows of an admissible
configuration on a N �m rectangle, i.e., a configuration of E(N;m).
A transition from state i to state j is admissible if there is a configura-
tion in E(N;m), for which state i is identical to the top N � 1 rows
and state j to the bottom N � 1 rows. State i and j have an overlap
of N � 2 rows. The last row of j is generated by the transition from i

to j and appended to the previous rows of the output. Any admissible
configuration of E(n;m) with fixed m and n(> N � 1) rows may
be generated as an output by starting the source in the state specified
by the first N � 1 rows and making n�N + 1 transitions appending
one row to the output in each transition. The transfer matrix Tm indi-
cates transitions which satisfy the constraint by defining the elements
tij = 1 if the transition from state i to j is admissible and tij = 0
if it is not admissible. (In the next section, a probability pij shall be
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assigned to the transition from i to j.) The per symbol entropy of the
source on an array of width m(n ! 1) is given by

H(m)

m
=

log2(�m)

m
(3)

where �m is the largest (positive) eigenvalue ofTm. Equation (3) pro-
vides an upper bound on the entropy H(2) defined by (1) [10].

For constraints where any two configurations, x and y, on arrays of
width m may admissibly be concatenated (or cascaded) by in between
padding a merging array, v, having c columns to form the admissible
configuration xvy, a lower bound on the capacity based on (3) is given
by

H(2) �
H(m)

m+ c
: (4)

III. MEASURES ON CONFIGURATIONS

Let W denote an n � m array over some alphabet A. Let �W be
a probability measure defined on W , that is 0 � �W (x) � 1 for
x 2 An�m. In the general case, the variables x can take on any of the
jAjn�m possible values. However, we will restrict ourselves to mea-
sures agreeing with a constraint defined on A. That is, forbidden con-
figurations are assigned probability zero.

The entropy of �W is defined as follows:

H(�W ) = �
1

nm
x2A

�W (x) log2 �W (x):

Let b �M � 1. Given an n�m rectangle W , let X and Z denote
the first and last b columns, respectively, i.e., they are defined on n� b
arrays. Let Y denote the middle m � 2b columns. Let XY Z (= W )
denote the concatenation.

Given a probability measure, �W onW , consider the restriction that
the (marginal) measures on the borders X and Z are identical, i.e.,

�X � �Z : (5)

Introduce the rectangles Xi; Yi; Zi and Wi = XiYiZi, for which all
Xi and Zi have the same size as X and all Wi have the size of W . As-
sume �W = �W , i.e., the measures are identical, and further assume
they satisfy (5). Starting with X0Y0Z0, arrays YiZi may repeatedly be
concatenated to form the extended array

WK
0 = X0fYjZjg

K
j=0 = X0Y0Z0Y1Z1 � � �YKZK (6)

such that all�W onWi = Zi�1YiZi have the same measure,�W . The
notion to be explored is that the conditional entropy of the configura-
tions on Yi; Zi conditioned on the configuration on Zi�1 determines
the entropy of the extended array.

Defining probability measures for constrained coding in general is
a challenge. One challenge, in the construction outlined above, is to
ensure that the probability measures on the borders X and Z are iden-
tical, i.e., �X = �Z , satisfying (5).

Let X and Z denote stochastic variables on X and Z , respectively.
A simplification is obtained by having independent borders, i.e., for all
configurations x; z 2 An�b

P (X = x;Z = z) = �X(x)�Z(z): (7)

Based on a finite state source with states of height N � 1 and width
m;W shall be described by a finite state Markov process by assigning
a probability, pij , to each transition (from state i to state j) and a prob-
ability to the initial state. Let Pm = (pij) be the transition probabil-
ities for the finite state Markov process and let T = (tij) denote the

corresponding transfer matrix. Throughout the paper, we require that
pij > 0 if and only if tij > 0.

In case a stationary distribution � exists, �Pm = �, the entropy per
row of the Markov process W is defined as

HW =
i j

�ipij log2(1=pij); (8)

where �i is the stationary probability of state i given by �.

Lemma 3.1: For a Markov processW defined over a checkerboard
constraint, the entropy, HW given by (8) is well defined.

Proof: If a stochastic matrix is irreducible, then the stationary dis-
tribution exists and is unique. Since the stochastic matrix, Pm for W
is defined such that pij > 0 if tij > 0, it is sufficient to show that the
transfer matrix for the finite state description ofW is irreducible. Let s
and t be two states corresponding to any two valid configurations. For
a checkerboard constraint the all zero state 0 is always valid. Consider
the configuration obtained by stacking s;0; and t on top of each other.
Since this is a valid configuration, it is possible to go from state s to
state t in 2N � 2 transitions. Hence the transfer matrix is irreducible.

Actually, for k = 2N � 2, the matrix Tkm is strictly positive, i.e.,
the transfer matrix is primitive.

Note that the combinatorial entropy on W for n ! 1 is given by
the max-entropic solution to (8) based on the transfer matrix,Tm [13].

In the following, bit-stuffing schemes are used to determine the prob-
ability measure. However, the conventional bit-stuffing scheme is mod-
ified slightly in order to satisfy the requirement of independence of the
borders (7).

A. Bit-Stuffing for 2-D RLL(d;1) Constraints

This subsection introduces the new modified bit-stuffing scheme in
a basic version applicable to the 2-D RLL(d;1) constraint (and other
checkerboard constraints where the 0-neighborhood is confined to the
same row and column as the 1 symbol). First the case is considered
where one or more biased sequences are used, possibly one for each
column in X and Y . The main modification compared with previous
bit-stuffing schemes is that the order in which the elements are ad-
dressed is not entirely contiguous within a row. Using biased sequences
in bit-stuffing may be represented by conditional probabilities. In Sec-
tion III-B, the scheme is presented in a more general form applicable
to all checkerboard constraints.

The analysis of the modified bit-stuffing scheme is based on a
description of the array as being generated by a finite-state Markov
process, W. For RLL(d;1) the states are (N � 1) � m symbols
where m � 3d. A new element is generated in each of the m columns.
Let r denote the m elements generated by a transition. The process
W has the marginal processes at the borders, X and Z, having a
width b � M � 1. For RLL(d;1) set b = d = M � 1. The m new
elements generated by the transition from one state, i, to the next state,
j, is given by

r = (r0r1 . . . rm�1)

= (x0; . . . ; xd�1; y0; . . . ; ym�2d�1; z0; . . . ; zd�1):

For 2-D RLL(d;1); r is the new row on W . To satisfy the indepen-
dence of the borders (7), the ordering of the bit-stuffing is altered
slightly as

~r = (x0; . . . ; xd�1; z0; . . . ; zd�1; y0; . . . ; ym�2d�1): (9)

Let Rl denote a binary stochastic variable defined on the element in
column l of the new row, r. A context variable, C(l), in column l is
assigned a value, c(l) defined by a mapping of elements of the previous
state i and elements of the new state j causal by the ordering given by ~r,
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i.e., preceding the current element in (9). The transition probability, pij
of Pm, is determined by the product of the conditional probabilities,
p(Rl = rljC(l) = c(l));

pij =

m�1

l=0

p(Rl = rljC(l) = c(l)) (10)

where the same context mapping and conditional probabilities for xk
ofX and zk of Z are used, ensuring that (5) is satisfied. LetPd denote
the transition probability matrix ofX obtained by only considering the
bit-stuffing within X , for RLL(d;1).

The modified bit-stuffing scheme on the array W of width m is de-
fined by addressing the elements in a predefined order. For the 2-D
RLL(d;1) constraint we choose the elements row by row in the order
given by ~r (9). The conditional probabilities are given by (11) (shown
at the bottom of the page), for 0 � l < m � d. For m�d� l < m;

p1(l) = p1(l�m+ d). p(Rl = 0jc(l)) = 1� p(Rl = 1jc(l)).

Example 3.2: For the 2-D RLL(2;1) constraint and a given width
m � 6, set the width of X and Z to b = d = 2. The first two rows of
a rectangle, W , is initialized by some admissible configuration, there-
after the elements are addressed row by row. Within each row ofW the
order (~r) is x0; x1; z0; z1; y0; . . . ; ym�5, i.e., the elements ofZ are ad-
dressed prior to the elements of Y within the row. With this reordering
the causal elements of the 0-neighborhood of x0 and x1 (z0 and z1) are
all in X(Z), namely the two elements above in the same column and
for x1(z1) also the element to its right. Thus the bit-stuffing of X and
Z is identical. This bit-stuffing of W may be extended by for each row
repeating the reordering given by z0; z1; y0; . . . ; ym�5. Each new Zi
may be seen as Xi+1 in relation to Yi+1. The bit-stuffing of all Zi are
independent of all Yi at the time the elements are assigned a value.

As in the example above, the bit-stuffing defined onW is extended to
a larger rectangle. Now let the height of the rectangle ben+N�1, such
that n refers to the number of transitions. For a given d andm, letBn;K

denote the extension of W to the array WK�1
0 (6), i.e., (n + N � 1)

rows by (K(m� d) + d) columns, 0 � l < K(m� d) + d.

Definition 3.3: Given m; p1(l);0 � l < m� d and the first d rows
of the rectangle Bn;K , the elements of Bn;K are addressed row by
row. The modified bit-stuffing scheme onBn;K for the 2-D RLL(d;1)
constraint is defined by for each row addressing the elements of Wi in
order of increasing i and within each Wi in the order given by ~r (9).
The same conditional probabilities (12) are applied for the elements
within each Wi, i.e.,

p1(l) = p1(lmodulo (m� d)); 0 � l < K(m� d) + d: (12)

When restricting the constraints to be 2-D RLL(d;1), the contexts,
C(l), are simple. Each state s consists of d rows s1; . . . ; sd. Whether
it is possible to write a 1 in a given position at the time of writing is
only dependent on the d previous elements in the same column and the
previous elements of the current row after reordering.

The context of rl is depicted in Fig. 2(a) for rl in the left part of
Y (meaning more than d elements away from the right border). In the
right part of Y (meaning not more than d elements away from the right
border) the context of rl includes elements in both Y and Z (Fig. 2(b))
due to the reordering.

Fig. 2. Examples of contexts for 2-D RLL(d;1). (a) shows the context in the
left part of Y . (b) shows the context at position l = m�d�1 (the last position
in Y ).

With this set of contexts, the transition probabilities, pij , (10) ofW
for the modified bit-stuffing for the 2-D RLL(d;1) constraint can be
written as

d�1

l=0

p(xljc(l))

d�1

k=0

p(zkjc(m�d+ k))

m�2d�1

k=0

p(ykjc(d+k)) (13)

where the conditional probabilities are given by (12) and p1(l);0 �
l < m � d.

Lemma 3.4: If the bit-stuffing probabilities p1(l) satisfy
0 < p1(l) < 1 for all l = 0; . . .m � 1, then the probabilities
defined by (10)–(12) constitute a stochastic matrix, Pm, with pij > 0
if and only if tij > 0.

Proof: The first step is to show that pij = 0, tij = 0. Assume
pij = 0 for some transition with tij > 0. p(Rl = 0jC(l) = c(l)) > 0
for all l. Therefore, p(Rl = 1jC(l0) = c(l0)) = 0 for some specific
l0. Hence, a 1 in position l0 is not admissible given the context c(l0).
Thus the configuration, corresponding to the transition from state i to j,
is not admissible. Hence tij = 0. Conversely if tij = 0 there is some
position l0 where a 1 is not admissible but actually occur and hence
pij = 0.

The second step is to show that (10)–(12) forms a stochastic ma-
trix, i.e.,

j
pij = 1 for all i. Consider any given i. The new ele-

ments generated by the transition to j are considered one element at
a time. All admissible configurations may be represented by a com-
plete binary tree as follows. Each time a decision may be made, i.e.,
p(Rl = 1jC(l) = c(l)) > 0, two branches with two new nodes are
created and for each new node the bit-stuffing scheme is continued.
Each node may be assigned a probability namely the probability given
by the product of probabilities in the path of the node. As the sum of
the branching probabilities always sums to one, so will the sum over
the leaves of the tree given the sum over all admissible configurations
as determined by the bit-stuffing scheme.

Combining Lemmas 3.1 and 3.4 shows that the modified bit-stuffing
scheme (11), (12) for the RLL(d;1) constraint leads to a Markov
process W having a well-defined entropy given by (8). The lemmas
also apply to conventional bit-stuffing without reordering, e.g., for
X and Y. Based on W, a measure on the rectangle Bn;K shall be
introduced.

Initializing the Markov process W, which is based on bit-stuffing,
specifies a probability measure �W on W . Based on this measure,
a measure on the extension WK�1

0 (6), i.e., Bn;K is specified. This
measure is described in detail below leading to a family of measures,

p(Rl = 1jC(l) = c(l)) =
p1(l); 0 < p1(l) < 1; if a 1 is admissible in position l
0; if a 1 is not admissible in position l

(11)
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Fig. 3. The rectangle B on which the measure � is defined.

�B , for positive values of n and K . The ordering given by ~r (9)
assures that X and Z may be described independently (7).

Letwn;K�1
0 denote a configuration on Bn;K , composed as follows.

First consider the border process X of W. The transition matrix for
X has a stationary distribution �X by Lemmas 3.1 and 3.4. Draw the
initial (N�1)�d element state x0 from �X and generate n rows using
X. This is the (n + N � 1) � d left hand vertical boundary B(v)

n of
Bn;K . Let �v(x1; . . .xnjx0) denote the conditional measure on B(v)

n

conditioned on the initial state x0.
Given the stationary distribution, �W , of the process W, con-

sider a configuration w = x; y; z and let �y;zjx be the conditional
distribution �y;zjx = � (x;y;z)

� (x)
. Draw (y0; z0) using this mea-

sure conditioned on the initial state x0 and continue to draw
(yi; zi) conditioned on zi�1; i = 1; . . .K � 1. This constitutes the
(N � 1) � K(m � d) + d upper horizontal boundary, B(h)

K , of
Bn;K . Let �h(y0; z0; . . . ;yK�1; zK�1jx0) denote the conditional
measure on B(h)

K conditioned on the initial state x0. The interior set
of elements, Bn;Kn(B

(v)
n [ B

(h)
K ), is denoted B�

n;K .
Considering the set of elements (y; z), i.e., the elements of a state

on Y and Z , as a single symbol of an extended alphabet, the inte-
rior B�

n;K may be viewed as an n � K rectangle over this alphabet
(Fig. 3). For a given transition from state i to j with the combined
configuration sd+11 , wi = sd1 is denoted the predecessor state of the
state wj = sd+12 . (Out of the elements (y; z) of wj the transition
outputs the elements (y0; . . . ; ym�2d�1; z0; . . . ; zd�1) and the other
elements of (y; z) overlap with the elements of the predecessor state.)
Let t; 1 � t � nK , denote the index of (y; z)t. Let (�; z)t denote the
z part of the symbol (y; z)t with the following exceptions: We define
(�; z)iK = xi+1 for i = 0; . . . ; n�1 corresponding to the first column
which is the left border of the interior. Further we note that wt�K is
the predecessor state of wt.

Let P ((y; z)tj(�; z)t�1;wt�K) denote the probability of (y; z)t
conditioned on the causal part of the transition of the processWi it is
part of. This may be seen as conditioning the new elements of (y; z)t
on the causal elements of the bit-stuffing. By drawing the symbol
(y; z)t+1 conditioned on ((�; z)t;wt+1�K) using the conditional
probability P ((y; z)tj(�; z)t�1;wt�K) one can then fill out the
interior B�

n;K) one row at a time given the boundaries B(v)
n and B(h)

K .
Hence a measure �B on Bn;K is defined by

�B (wn;K�1
0 ) = �X(x0)

� �v(x1; . . .xnjx0)

� �h(y0; z0; . . .yK�1; zK�1jx0)

�

nK

t=1

P ((y; z)tj(�; z)t�1;wt�K) (14)

where t is the index traversing the interior, row by row.
The entropy of the modified bit-stuffing scheme for the 2-D

RLL(d;1) constraint may be expressed as follows.

Theorem 3.5: The modified bit-stuffing scheme (11), (12) of a given
2-D RLL(d;1) constraint is parameterized by the width, m � 3d, of
W and the conditional probabilities, p1(l); 0 � l < m� d. The tran-
sition probability matrices (10), Pm and Pd, of the processes W and
X are determined by bit-stuffing (12) a row of W and X , respectively.
The states ofW andX are d�m and d�d elements, respectively. Con-
sider the measure �B (14), on the rectangle Bn;K , induced by the
modified bit-stuffing scheme based on Pm and Pd and the stationary
distributions, �W and �X . Based on �B , the per symbol entropy of
the interior B�

n;K of Bn;K , given the boundary, B(v)
n [ B

(h)
K is given

by

Cmb(d;1) =
HW (m)�HX(d)

m� d
;m � 3d; (15)

where HW (m) and HX(d) are the entropies per row (8) determined
by Pm and Pd, respectively, defined by the bit-stuffing.

Proof: Consider the Markov processW defined by the modified
bit-stuffing of W . By Lemmas 3.1 and 3.4, W is well defined and
the stationary solution �W exists. Due to the reordering and setting
m � 3d, the border processesX and Z of the modified bit-stuffing are
independent. By Lemmas 3.1 and 3.4, the processesX and Z are also
well defined and the stationary solutions �X and �Z exist. Using the
same order (left-to-right) and the same conditional probabilities forX
and Z when defining pij (13) ensures that the stationary probabilities
are the same, i.e., �X = �Z . Initializing the boundary according to
these identical stationary distributions, ensures �X = �Z (5).

Given W, the measure �B is defined on WK�1
0 , where the

border Zi�1 serves as the border Xi of Wi. Given a configuration on
the border Xi, the bit-stuffing on Yi�1 and Yi is independent as the
width of Xi is d = M � 1, and the bit-stuffing of elements of Xi in
a given row is performed prior to bit-stuffing of elements of Yi�1 and
Yi of that row.

Each element of Xi and Zi is written prior to any element in Yi
which coincides with the 0-neighborhood of the elements of Xi and
Zi. Therefore any given Wi is independent of all Xj ; j =2 fi; i + 1g
and the bit-stuffing scheme defines a finite-state Markov description of
Wi.

The same conditional probabilities given by, p1(l) =
p1(lmodulo(m� d)) are applied for allWi. Thus the transfer matrix
Pm is identical for all Wi. The measure �B (14) is based on
W, including the initialization by the stationary solution, thus all Xi

have identical measures, �X = �X ; 0 � i � K � 1. Initializing
the boundary based on the stationary solution �W for all Wi, gives
�W = �W ; 0 � i � K � 1.

Consider the elements (y; z)t, on Yi as one symbol as in (14). Be-
cause of the independence of theXis the conditional probability of an
element (y; z)t is given by the process Wi it belongs to. The condi-
tional probability is given by one transition of Wi where all prior el-
ements coinciding with a 0-neighbor element of an element in (y; z)t
are part of the predecessor state or one of the new elements in Xi or
Zi of the transition.
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Fig. 4. The modified bit-stuffing scheme for the �(3) constraint. The state w
consists of the three blocks x ;y and z , each having a height of two rows. On
the transition to state w the new elements x ; x ; z ; z ; y ; . . . ; y are
output.

For notational consistency, wt is written as (�; z)t�1; (y; z)t when
representing it in a decomposed form. The conditional probability de-
rived from one transition within some Wi is

P (wtjwt�K) = P ((�; z)t�1jwt�K) � P ((y; z)tj((�; z)t�1;wt�K)

=P ((�; z)t�1j(�; z)t�1�K)�P ((y; z)tj(�; z)t�1;wt�K)

(16)

as (�; z)t�1 only depends on (�; z)t�1�K ofwt�K . The terms are given
by a stationary solution, �W = �W , (onWi) independent of the value
of the index t within the interior.

Therefore solving for the last term of (16) and calculating the con-
ditional entropy of the new elements, (y; z)t, of one transition gives

HW (m)�HX(d): (17)

Dividing by the number of elements, (m�d), of (y; z)t, gives (15).
Considering the combined symbols (y; z) the measure (14) on the

interior provides a stationary description. Viewing the individual ele-
ments in (y; zt) the measure may be seen as quasi-stationary.

B. Bit-Stuffing for Checkerboard Constraints

In the previous subsection, bit-stuffing was modified and analyzed
for 2-D RLL(d;1) constraints. Since bit-stuffing including the modi-
fied bit-stuffing scheme is applicable for all checkerboard constraints,
a more general presentation of the modified bit-stuffing is given, taking
the point of departure in the diamond constraint �(M). The main dif-
ference is that for a transition, the elements of Yi may be offset a few
rows back compared to the elements of Xi and Zi.

Example 3.6: Consider modifying bit-stuffing for the �(M) con-
straint. The width of the borders is chosen as b =M � 1. To maintain
independence of the borders of the process W, the elements of a new
row of X and Z must be written prior to a new row of Y which is at
least M � 1 rows back (Fig. 4). This is obtained by writing the new
elements of X and Z before the new elements of Y in one transition
and letting these new elements of Y be M � 2 rows after the row with
new elements of X and Z . This is to ensure that the 1-norm distance
between the last element, xb�1, of the new row of X and the first ele-
ment of the old row of Y isM such that no element of Y in the old row
will influence the new elements in X (Fig. 4). Besides this modifica-
tion, the bit-stuffing scheme and the calculation ofPm may proceed as
for the 2-D RLL(d;1) constraint. The transition probabilities, (pij),
are defined by a product of conditional probabilities (10) derived from
the bit-stuffing probabilities, p1(l), using (12).

In the general case let the extent of the checkerboard constraint be
N � M . We shall introduce the modified bit-stuffing and the corre-

sponding Markov process jointly. Let b be the width of X and Z . Let
x0; . . . ; xb�1; z0; . . . ; zb�1; y0; . . . ; ym�2b�1 be the order of the new
elements of state wj in the transition from the predecessor state wi.
The new elements ofX andZ belong to the same row, whereas the new
elements of Y may be positioned a few rows behind. Let Sb specify the
number of rows the new elements of Y are behind. Let St denote the
number of rows the elements of a state ofW are defined on. Three con-
ditions on the set of elements defining the states of the Markov process
W are given:

C.1. m � 2b+M � 1 ^ b � M � 1.
C.2. Positioning the 1 of the 0-neighborhood N at each position
of (x0; . . . ; xb�1) and (z0; . . . ; zb�1), no 0 of N may coincide
with a causal element of Y , but all causal elements of X and Z ,
respectively, are part of the state.
C.3. Positioning the 1 of the 0-neighborhood N at each position
of (y0; . . . ; ym�2b�1), the state transition includes all elements
coinciding with a 0 of N , which are either an element of X or Z
or a causal element of Y .
C.4. Consider one transition, in each column the new element and
the elements of the old state of the column must form a contiguous
set.

Thus the conditions above specify a minimum set of elements, which
must be included in the state ofW for a given checkerboard constraint
and requirements for the elements of one transition. Theorem 3.5 is
formulated for the minimum set of elements for 2-D RLL(d;1).

For any checkerboard constraint of extent (N;M), the state specified
below will satisfy the conditions. Let the width of the bordersX and Z
be b =M � 1 and the width, m, of W be a value which satisfies C.1.
In order to avoid any influence of elements of Y (C.2) on the writing of
elements on X (and Z), (x0; . . . ; xb�1) of X (and (z0; . . . ; zb�1) of
Z) are written N � 1 rows ahead of writing (y0; . . . ; ym�2b�1) on Y .
The state ofW is given by the union of the following elements: 1) The
N � 1 elements above each of the elements (y0; . . . ; ym�2b�1) due to
the last part of C.3. 2) The 2N�1 elements above each of the elements
(x0; . . . ; xb�1) and (z0; . . . ; zb�1). These are included to ensure C.2
and the first part of C.3.

Based on W satisfying C.1-4, the bit-stuffing is extended to the set
of elements, Dn;K defined by the extension from W to WK�1

0
(6).

Assume the initial state of eachWi is given. The configuration on the
segmentDn;K is determined by the set of initial states andn transitions
of eachWi on WK�1

0
. The segment Dn;K has width K(m� b) + b.

The difference compared to the array Bn;K is that the height may vary
according to whether the column belongs to Xi or Yi. (Columns of Zi
have the same height as columns ofXi.) The height in column l is given
by n plus the height of the state in column l. Given the initial states the
bit-stuffing scheme addresses the elements of Dn;K in the order given
by one transition of eachWi in order of increasing i before proceeding
to the next sequence of transitions. Within each transition the elements
of Zi is addressed prior to the elements of Yi.

This modified bit-stuffing scheme defines the transition probabili-
ties pij (10) based on the conditional probabilities, p(Rl = rljC(l) =
c(l)). When a 1 is admissible given context c(l) the conditional prob-
abilities must satisfy 0 < p(Rl = rljC(l) = c(l)) < 1.

The four conditions, C.1-4, above define restrictions on the states of
W. These are supplemented by two conditions on the contexts of the
conditional probabilities.

C.5. The contexts c(l) must include the causal 0-neighborhood ele-
ments of the given Wi at position l.

When the context elements of c(l) are exactly given by the causal
0-neighborhood elements and the conditional probabilities by p1(l)
(12), the bit-stuffing is called a a modified bit-stuffing scheme for a
checkerboard constraint. The modified bit-stuffing for 2-D RLL(d;1)
is an example of this.
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The contexts may also be extended and include more elements than
just those defining whether rl = 1 is admissible. In this case, we call
it a context-based bit-stuffing scheme.

C.6. For X (and Z) the contexts are mappings of causal elements
ofX (and Z) within the states of the corresponding transition. For the
elements of Y the contexts are mappings of the causal elements of the
transition, i.e., elements of the old state and the new elements ofX and
Z and prior new elements of Y . The context mappings for column l
in X and column m � b + l in Z; 0 � l < b are identical and the
same set of conditional probabilities are applied. (This is to ensure the
independence (5)).

Definition 3.7: For a given checkerboard constraint, consider a
Markov process W, of width m, having states satisfying C.1-4 and
transition probabilities derived from a set of conditional probabilities
satisfying C.5-6. Assume the values of the elements of the initial states
of all Wi on WK�1

0
are given. The context based bit-stuffing scheme

on Dn;K based on W is defined by a set of conditional probabilities
p(Rl = 1jC(l0) = c(l)); l0 = lmodulo(m � b) satisfying C.5-6.
The order in which the elements of Dn;K are addressed is given by a
transition of each Wi in order of increasing i. Within each transition
the order is given by the reordering (9).

The independence of the borders (7) is ensured by the offset of the
new row of Y and m � 2b +M � 1. The conditions C.1-2 ensures
thatYi�1 andYi are independent given the output ofXi.

The conditional probabilities of the context-based bit-stuffing
scheme for checkerboard constraints defines the probability matrix
Pm ofW. The stationary distribution is given by �WPm = �W . The
construction of �B (14) for the 2-D RLL(d;1) constraint is gen-
eralized to a measure �D on Dn;K , which in the same manner is
based onW and the transition matrix Pm. The stationary distribution
�W is used to initialize the initial states of allWi on WK�1

0
defining

a measure on the upper horizontal boundary. The measure on the left
vertical boundary is defined byX0 and the stationary distribution �X .
The probabilities on the interior, D�n;K , is given by the conditional
probabilities of (y; zt) as for Bn;K .

The context based bit-stuffing thus defines a sequence of (2-D) prob-
ability measures �D indexed by n and K . By construction, the
measure �D is obtained as the marginal measure on Dn;K of any
�D , where n � n00 and K � K 00. Thus the measure is nested.
Let H(�D ) denote the entropy of the measure �D . The nesting
property allows us to take the limit [4].

Let n0 andm0 denote the size of the sides of the bounding box of the
elements of Dn;K . (The elements of the bounding box, which are not
in Dn;K are set to 0.)

Definition 3.8: The capacity, CC(m; b) of the context based bit-
stuffing for a checkerboard constraint is defined as

CC(m; b) = lim
n;K!1

H(�D )

n0m0
(18)

where the sides of the bounding box n0; m0 !1 as n;K !1.

Theorem 3.9: Consider a given checkerboard constraint of extent
(N;M). Assume that the finite state Markov process W has states
and conditional probabilities satisfying the conditions, C.1-6 with b �
M � 1 and m � 2b+M � 1. A context based bit-stuffing scheme for
the checkerboard constraint based onW has the capacity

CC(m; b) =
HW (m)�HX(b)

m� b
; (19)

where HW (m) and HX(b) are the entropies per row (8) of the pro-
cesses W and X.

Proof: The first step of the proof follows the proof of Theorem
3.5 for a given n andK .W;X andZ are finite state Markov processes.

Again by Lemmas 3.1 and 3.4,W and the bordersX andZ are all well
defined and have stationary solutions. The conditions C.1-3 maintain
the independence of border processes, X and Z. Using the same con-
text mappings and conditional probabilities in the bit-stuffing scheme
for all Wi gives �W = �W .

Consider the output of transition j of each processWi; 0 � i < K ,
which overlap such that the configuration on Xi is given by the output
of Zi�1. The elements output by this set of transitions, correspond to
one row of elements on Bn;K in Theorem 3.5, but now possibly with
the new elements of Xi and Zi in one row and the the new elements of
Yi in another row. The interior D�n;K of Dn;K is given by the output
of these transitions for 1 � j � n, where the elements of the first
b columns, i.e., the left vertical boundary, are given by X0. The dis-
tribution on the boundary, i.e., the initial states of Wi; 0 � i < K
and the b first columns, is initialized based on the stationary distribu-
tion, �W . Thus the boundary is intialized based on the stationary dis-
tributions in the same manner as for �B . As in Theorem 3.5, the
stochastic variablesYi�1 andYi are independent given the output of
Xi, as b �M � 1 and the contexts ofXi do not have any elements of
Yi�1 and Yi. LikewiseWi is independent of allXj ; j =2 fi; i+1g. By
definition of the bit-stuffing scheme, Pm is identical for allWi. This
leads to identical stationary distributions on the initial states, which in
turn gives �W = �W ; 0 � i < K .

The arguments of Theorem 3.5 still hold under these generaliza-
tions for each transition of pij . The probability of the elements (y; z)t
conditioned on the causal elements is given by the identical and sta-
tionary processes Wi. Therefore the contribution to the entropy for
each (y; z)t conditioned on the causal elements is as in (16) given by

HW (m)�HX(b); m � 2b+M � 1: (20)

The second step of the proof shall show that asymptotically, the ex-
pression (20) determines the capacity. Let n� and m� = K(m � b)
denote the sides of the largest rectangle defined on the interior, D�n;K .
The entropy H(�D ) relative to the size of the bounding box with
sides n0 and m0 is bounded by

HW (m)�HX(b)

m� b

n�m�

n0m0
�
H(�D )

m� b

n�m�

n0m0
�

HW (m)�HX(b)

m� b

n�m�

n0m0
+
n0b+m0(St + Sb)

n0m0
jAj (21)

where St is the height of the states, Sb is the number of rows which X
extends below Y , and jAj is the size of the alphabet.

As m� = m0 � b and n� = n0 � St � Sb and since m; b; St; Sb
and jAj are all fixed values, asymptotically both the lower and upper
bound in (21) converge to

HW (m)�HX(b)

m� b
; as n;K !1:

Theorem 3.9 also applies to the modified bit-stuffing scheme as this
is a special case of the context based bit-stuffing for checkerboards
constraints. Actually the assumption of initialization based on the sta-
tionary distribution, �W is not necessary as eachWi will converge to
the stationary solution for n ! 1.

C. Optimizing the Entropy

The modified bit-stuffing scheme introduced is completely prede-
fined in the sense that the use of biased sequences is decided a priori
based on the column number and given by p1(l). For context based
bit-stuffing, an increased number of biased sequences may be used. The
decision of which biased sequence and thereby the conditional proba-
bility to be used may depend on a larger context.
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Example 3.10: For the �(3) constraint, we applied context based
bit-stuffing choosing the bit-stuffing probabilities p1 conditioned on
the values of the elements in the previous state. The states of W
were defined as depicted on Fig. 4. The next row of the processes
X (and Z) was specified according to probabilities conditioned on
the two previous rows. These processes were chosen such that they
were symmetric in the two columns. The elements of the new row
of Y was then specified according to probabilities conditioned on
all three rows of the transition of X and Z combined with the two
rows of the predecessor state on Y . These conditional probabilities
for the new elements (y0; . . . ; ym�2b�1) on Y were obtained from
the transition probabilities of the maxentropic solution [10] for W
derived from the transfer matrix,Tm. Thus, pij was specified directly
based on a product of the conditional probabilities of the three sets
(x0; . . . ; xb�1); (z0; . . . ; zb�1); and (y0; . . . ; ym�2b�1) generated in
one transition.

D. Some Practical Remarks

A drawback of bit-stuffing is the fact that it is a variable length code
and it has error propagation. The use of independent borders, in modi-
fied bit-stuffing, introduces a block structure in the horizontal direction
which may be useful in handling error propagation.

Writing data of the modified bit-stuffing scheme row by row intro-
duces a latency of m� d� 1 elements if z0; . . . zd�1 is written before
yi. This latency may be reduced to d if the writing of zl and yl elements
are interleaved.

For 2-D RLL(d;1), the plane may be written column by column
instead of row by row, using the biased sequence designated to the
column. Thus the choice of biased sequence is only changed once
for each new column. The column with zi must be written before the
column with ym�3d+i in this case.

IV. DETERMINISTIC BORDERS

As a special case consider fixed configurations on the borders, i.e.,
X and Z are deterministic. This could be motivated by a desire of
having a synchronization component or by classes of constraints for
which bit-stuffing is not readily applicable. An example of the latter
is the symmetrical RLL, 2-D SRLL(d; k), constraint [14], where the
run-lengths limits apply to all symbols in the alphabet. For this con-
straint, methods for constructing configurations on a merging array, Y ,
given any two admissible configurations, on the arrays X and Z , is
given in [14]. The (minimum) width of the merging array, Y , is given
as a function of the d parameter.

The existence of a solution in between two given configurations on
the arrays is a necessary but not sufficient prerequisite for applying a
modified bit-stuffing scheme. It is not clear to what extent modified
bit-stuffing is applicable to a SRLL(d; k) constraint.

However, using a deterministic and periodic configuration, b, to de-
fine the borders, X = b and Z = b, one can consider bYb a sto-
chastic variable and determine the max-entropic solution for Y con-
ditioned on X = b;Z = b and in this way obtain a lower bound on
the entropy of the constraint using (4). In order to facilitate the use of
a finite state source description periodic deterministic borders shall be
used.

A. Periodic Borders

Looking beyond checkerboard constraints, consider an arbitrary con-
straint of extent N �M . Consider a 2-D configuration b on an array
of width w and any fixed height. This array is repeated at intervals of
m+w columns horizontally. This leaves arrays of width m undefined
in between the repetition of two borders.

Definition 4.1: Let the configuration b of width w be periodic ver-
tically with the period p. The periodic array b is a periodic merging
array if for any arrays X = x and Y = y for which bxb and byb
are admissible configurations according to the constraint, the cascaded
array bxbyb is also admissible.

Given a periodic merging array, b, the array bYb is called a
b-boundary constrained array.

For a given b with w � M � 1, any pair of admissible configura-
tions, bxb and byb, may be cascaded to form bxbyb. Thus these ar-
rays are b-boundary constrained arrays. The reason is that the merging
array separates the arrays X and Y in the sense that no N �M rec-
tangle contains symbols from bothX and Y . Further they are bounded
by identical merging arrays. For some constraints, a periodic merging
array, b, of width w < M � 1 may be specified such that the property
of the b-boundary constrained array still holds.

The admissible configurations of bYb may be described by a finite
state source with states of height n � N � 1 and width m + 2w.
(Viewing the states on a cylinder, the width may be reduced tom+w).
For a merging array period p � n + 1, the phase of the period is con-
tained in one transition in the elements of the states given by symbols of
b. For p � n+1 the phase information could still be uniquely defined
by the states. If this is not the case the (missing) information about the
phase has to be added to the states.

The boundary b is periodic and hence deterministic, yielding an en-
tropy which is zero. Therefore, using (4) to calculate the entropy gives
the following lower bound on the entropy of the constraint:

H
(2) �

HbY b(m)

m+ w
(22)

where HbY b is the per row combinatorial entropy (3) of bYb.
This approach was explored in [15] where entropy results for the

SRLL(2,3) constraint were presented. These results were comparable
to what may be achieved based on Etzion’s merging technique [14]
combined with (4). Below the technique of periodic borders shall be
applied to another constraint.

B. Density Constraints

Another class of constraints is given by imposing constraints on the
local average value or density of given values of the alphabet. This con-
straint has some resemblance to halftoning, i.e., rendering gray scale
images by binary images. Let xij be the symbols within any N �M

rectangle.

Definition 4.2: Given N and M , the binary density constraint with
parameters dmin and dmax is defined by

dmin �

N

i=1

M

j=1

xij � dmax (23)

where 0 � dmin � dmax � NM and xij 2 f0; 1g.

Let rx denote an N �M configuration given by row r followed by
x having N � 1 rows. Likewise let xr denote x followed by r. For the
density constraint, given any admissible configuration rx, the configu-
ration xr is also admissible, as the sums are identical. By repeating the
argument in both directions it is clear that any admissible configuration
on an n = N bym =M rectangle defines the period of a doubly peri-
odic admissible configuration. Therefore any admissible configuration
defined on an N � (M � 1) rectangle may be used as the period of a
merging array.
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Given configurations on the arrays X and Z it is not clear what
the width of a merging array between these should be for the density
constraint.

Example 4.3: For the (dmin; dmax) = (4; 5) and N = M = 3
density constraint, it may be shown that there are no solutions for w �
7. Consider the configuration

X Y Z

0 0 y11 y12 . . . y17 1 1

0 0 y21 y22 . . . y27 1 1

1 0 y31 y32 . . . y37 1 0

Due to the constraint and the configuration x, the first column,
(y11; y21; y31), of Y must be all 1. Hence y12; y22; y32; y13; y23; y33
will contain at least four 0s and at most two 1s. Thus the fourth
column has to contain at least two 1 elements, (yi4). On the other
hand, the seventh column of Y must be all 0. Hence columns five
and six, (y15; y25; y35) and (y16; y26; y36), will contain at least four
1s and at most two 0s. Thus the fourth column has to contain at least
two 0 elements, leading to a contradiction. This example gives an
instance for which no merging array of width seven exists. This and
other similar examples show that no merging array of width seven or
less exists for this constraint.

C. Cyclic Matrices

As mentioned the use of periodic merging arrays introduces a pe-
riod p and phases in the finite state source. The states may be grouped
in classes according to their phase. With a proper ordering this means
that each transition is from a state in class i to one in class i + 1
modulo p. With a proper ordering of indices the transfer matrix Tm

is block cyclic. Let �m = j�mj, where �m is an eigenvalue of Tm

with maximum magnitude. The matrix after p transitions, Tp
m, has a

block diagonal form with p blocks namely a block for each phase. By
Perron–Frobenius [16], �pm is p-tuple eigenvalue for Tp

m and Tm has
p simple eigenvalues �meik2�=p; k = 0; . . . ; p � 1. (In special cases
the multiplicity is a multiple of p.) This structure may be taken into
consideration in the calculation of �m determining the capacity.

Finally it may be remarked that there are constraints for which it
is clear that one cannot find a finite merging array for any two valid
arrays. The standard example is domino tiling, where the whole plane
is tiled by one by two vertical and horizontal domino pieces. Consider
the case where a configuration x has a vertical zig-zag boundary of
all horizontal pieces where the piece in every other row is displaced
one position relative to its two neighbors. In this case there is only
one solution extending off the boundary of x, namely that which locks
up with the boundary, except for the first and last piece of the zig-
zag. (By induction it is seen that for any finite width merging array, a
long enough zig-zag boundary can lead to a conflict with the opposing
boundary.)

V. NUMERICAL RESULTS

Results are presented for the modified bit-stuffing scheme. The
following examples are considered: Three instances of the 2-D
RLL(d;1) constraint, d = 2; 3, and 4, as well as the �(3) constraint.
Thereafter the lower bound on the entropy of the density constraint
for (dmin; dmax) = (4; 5) and N = M = 3 obtained using periodic
merging arrays is presented.

A. Modified Bit-Stuffing Scheme

Table I presents entropy results (15) for applying the modified bit-
stuffing scheme (11), (12) to the checkerboard constraints in consider-

TABLE I
ENTROPY OF THE BIT-STUFFING INDUCED MEASURES USING DIFFERENT

BIASED SEQUENCES. THE FINAL COLUMN H PROVIDES AN UPPER BOUND

ON THE ENTROPY OF THE CONSTRAINTS

TABLE II
LOWER BOUNDS ON CAPACITY FOR THE DENSITY(4,5) CONSTRAINT

ation. The width of the band used is also given. For a given width m,
the modified bit-stuffing scheme is specified by the parameters, p1(l).
The values of the parameters, p1(l), used to obtain the results in Table I
are listed in the Appendix. Starting with one unbiased sequence and in-
creasing the number of parameters used, the following entropies (and
thereby lower bounds) were calculated.Hp=1=2 gives the entropy using
an unbiased bit-stuffer.Hp is the optimized entropy over a single biased
sequence, whereasHp ;p is optimized choosing two different biased
sequences: One for the borders, X and Z , and one for the interior, Y .
A slight improvement of the lower bound Hpopt was found by using
a different biased sequence for each column l; 0 � l < m � d, opti-
mizing the entropy. The optimization was performed using a steepest
descent approach, viewing the entropy as a function of the conditional
probabilities (12) indexed by the column, (p1(0); . . . ; p1(m�d�1)),
and searching in the direction of the gradient.

Finally HU gives an upper bound on the entropy using the methods
of [17]. These offer an improvement over the simple upper bound given
by (3).

It should be noted that the upper and lower bounds are quite close to
each other, that is their relative difference is in the range of 1–2%.

For comparison the lower bounds on the entropy of conventional
bit-stuffing for 2-D RLL(d;1) presented by Halevy et al. [11] are
0:4267; 0:3402; and 0:2858 for d = 2; 3; and 4, respectively. Sim-
ulation results [18], based on performing bit-stuffing, supports a con-
jecture that the entropy of conventional bit-stuffing is slightly greater
than that of the modified bit-stuffing. If this is the case, the Hpopt pro-
vides a new lower bound on the entropy of conventional bit-stuffing.

Following the description in Section III-C, Example 3.10, the con-
text based bit-stuffing method was used to improve the lower bound to
0.3497 for the �(3) constraint.

B. Density Constraint (4; 5)

Table II gives the capacity using a specific periodic merging array
for the density constraint for (dmin; dmax) = (4; 5) and N = M = 3
for some values of the width of Y;m. The chosen merging array has
period p = 2; and the period is given by 10 and 01 in every other row.
The results provide a lower bound on the capacity of the constraint. An
upper bound (3) on the capacity of 0:554 is obtained using an array of
width m = 11.

The minimum width for which some merging array exists for any
arbitrary pair of configurations on the arrays X and Y is not known
to us. Example 4.3 showed that it is at least 8. The results inserting
this value for c in the lower bound (4) on the entropy is also given
in Table II for comparison. It is seen that the periodic merging array
approach provides significantly higher entropy than what can be hoped
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TABLE III
THE BIT-STUFFING PROBABILITIES USED IN TABLE I TO OBTAIN H AND

H , RESPECTIVELY. THE WIDTH m IS ALSO GIVEN FOR EACH OF THE

CONSTRAINTS RLL(2;1);RLL(3;1);RLL(4;1) AND �(3)

TABLE IV
THE BIT-STUFFING PROBABILITIES p (l) USED FOR COLUMN l TO ACHIEVE

H FOR THE CONSTRAINTS RLL(2;1);RLL(3;1); RLL(4;1) AND

�(3) WITH WIDTHS OF m = 19; 16; 15 AND 14, RESPECTIVELY

for using a merging array as expressed by inserting c = 8 in the lower
bound (4).

VI. CONCLUSION

A modified bit-stuffing scheme applicable to 2-D checkerboard con-
straints was presented. The scheme presented is easy to analyze based
on well-known 1-D techniques. A probability measure is derived from
the modified bit-stuffing and the entropy of the scheme may be cal-
culated. Numerical entropy results are given for examples of checker-
board constraints, namely 2-D RLL(d;1)d = 2; 3; 4 and the con-
straints given by a min 1-norm distance of 3 between 1s on a binary
alphabet. These entropies provide lower bounds on the capacity of the
constraints. The entropies obtained are within 1–2% of upper bounds
on the capacity. The same construction used for analyzing the modified
bit-stuffing was also used for analyzing periodic merging arrays which
was applied to a density constraint.

APPENDIX

This Appendix lists the parameters used to obtain the entropy re-
sults for the modified bit-stuffing scheme presented in Table I, i.e.,
for the RLL(2;1);RLL(3;1);RLL(4;1) and �(3) constraints. The
parameters determine the bit-stuffing probabilities, p1(l), applied in
column l. Table III lists the single biased bit-stuffing probability, p,
leading to the entropy Hp and the two bit-stuffing probabilities, pX
and pY , leading to Hp ;p .

Table IV lists the bit-stuff probabilities, p1(l), applied in column l

to obtain Hpopt. These values of p1(l) were determined by a steepest
descent search.
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