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ABSTRACT 

This contribution concerns a generalization of the Boltz- 
mann Machine that allows us to use the learning rule 
for a much wider class of maximum likelihood and max- 
imum a posteriori problems, including both supervised 
and unsupervised learning. Furthermore, the approach 
allows us to discuss regularization and generalization 
in the context of Boltzmann Machines. We provide an 
illustrative example concerning parameter estimation 
in an inhomogeneous Markov Field. 

1. INTRODUCTION 

Boltzmann Learning is conventionally formulated in 
terms of Gibbs distributions for spin models, for a re- 
view see, e.g., [l]. The learning rule is formulated for 
a general stochastic signal 2. Let the “true” distribu- 
tion of z be denoted P(z ) ,  and let us assume that we 
have at our disposal a family H of model distributions 
parametrized by parameters w: P(zlw, H ) .  The objec- 
tive of the conventional Boltzmann Machine learning 
rule is to choose tu so as to minimize the Kullback infor- 
mation distance between the “true” distribution P ( x ) ,  
(of which the training set: D = { z k l k  = 1, . . . , p }  is a 
finite sample), and the model distribution P ( z J w ,  H ) .  
In this work we replace the true distribution by the 
empirical distribution 

Pe(z) = l / p c d ( z  -55). (1) 
k 

The cost function for selection of w is then given by 

The derivation of the Boltzmann learning rule assumes 
that the model distribution can be written in the Gibbs 
form: 

~ ( z l w )  = 2-l exp ( - -E(Z~W))  , (3) 

with E(Z~W) being a smooth function of w. 2 is a (finite) 
normalization constant. The learning algorithm (esti- 
mation of w) can then be derived by gradient descent 
minimization of ( 2 ) .  The resulting recursive learning 
algorithm, with n being the iteration index, reads 

(.)clamp indicates that the average is performed with 
respect to the empirical distribution. Similarly (.)free 

is the average computed with the model distribution 
based on the current set of parameters w(~). In brief 
we can characterize the learning process as follows: The 
parameters w are adjusted to minimize the difference 
between the conjugate operator averages in situations 
with and without grounding by observed data. 

We further make the observation that the cost func- 
tion A[Pe(z), P(xlw)], apart from a additive constant, 
is identical to the negative log likelihood of model dis- 
tribution parameters: 

Using Bayes formula we find the posterior distribution 
of the parameters (see e.g. [4] for a discussion in con- 
texts of neural nets), 

- logP(w1D) = AIPe(z),P(zlw)] - logP(2u) + const. 
(6) 

Where P ( w )  is a prior. Minimization of the log poste- 
rior by gradient descent leads to the generalized Boltz- 
mann Machine learning rule: 

0-7803-3 192-3/96 $5.0001996 IEEE 3394 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:27:28 UTC from IEEE Xplore.  Restrictions apply. 



2. MARKOV FIELD BASED IMAGE 
SEGMENTATION 

The Markov Field approach has found ample use in sig- 
nal processing [2]. While most previous work has been 
based on homogeneous models, many image process- 
ing applications, in fact, involve inhomogeneous visual 
fields. In particular, sonar or radar imagery where the 
two image-directions implement deflection and range 
respectively. In this note we formulate a simple in- 
homogeneous Markov model involving a space-variant 
parametrization of the noise process. Our model is a 
simplified version of the model considered by Genian 
and Geman [2]. While the Markov Field model of [2] 
was based on Metropolis sampling from the Gibbs dis- 
tribution of the Markov model, we compute averages 
using the Mean Field approximation [l]. Our Mean 
Field averaging is in turn implemented in the form of 
a cellular neural net, see [3] for more details. 

Segmentation is important to most computer vision 
systems, however, even in its simplest form: Binariza- 
tion of a grey-scale image there exist no established 
standard practice. We use the Markov Field approach 
to solve the segmentation problem. The target signal 
is a smooth binarization of a grey-scale image di l ,  in 
terms of two-valued pixels Sij E {-l,+l}. A Gibbs 
distribution is designed for which the appropriate av- 
erages are useful binarizations, 

P(SIw,a,d) = 
1 - N  N 

Mij;ijt defines the connectivity of the Markov Field. 
In the demonstration we use nearest neighbor coupling 
with unit strength. The derivation of the distribution 
(8) is further motivated in [3]. The distribution can 
be shown to follow if the signal degradation consists in 
addition of Gaussian white noise with spatially varying 
variance. We want to  approach real data for which 
the noise statistics, here represented by the spatially 
varying noise variance ajl is unknown, hence, ha!$ to 
estimated as part of the learning process. 

‘For Gaussian noise we have  CY^ = l/crj. We assunie that. the 
noise varies in strength in the “range” (horizontal) direction in 
the image. 

3. EXPERIMENTAL EVALUATION AND 
CONCLUDING REMARKS 

We illustrate the performance of the procedure on the 
artificially generated multi-object scene shown in the 
upper panel of figure 1. To simulate radar or sonar 
imagery, Gaussian white noise, with an increasing noise 
variance along the horizontal range direction, was add- 
ed to produce the degraded image in the lower panel of 
figure 1. 

To produce the outputs of a training set for super- 
vised learning a “teacher network” with spatially vary- 
ing noise parameter, aj ,  where j index the horizontal 
range direction, was applied to  the noisy scene. The in- 
homogeneous teacher network produced the lower im- 
age in figure 2. First, a “student network” was trained 
in supervised mode with output as produced by the 
teacher. The student network was initialized with uni- 
form noise parameters, olj = 0.5. The resulting range 
dependence of the student network’s variance parame- 
ter, after 100 iterations of the Boltzmann learning rule, 
is shown in figure 3, upper panel. Secondly, we in- 
cluded an additional “hyperparameter” prior enforcing 
smoothness of the spatially varying noise parameter, 

where p controls the smoothness. 100 iterations of the 
regularized training procedure leads to  smooth adap- 
tation of the inhomogeneous network as shown in the 
right panel of figure 3. The regularized adaptation 
produces a parameter set that  closely resembles the 
teacher parameters, hence, will produce segmentations 
that closely reproduce those of the inhomogeneous 
teacher network. In a practical application of this learn- 
ing procedure, the training set could, e.g., be produced 
by an expert. By inspection of a noisy scene repre- 
senting a known environment, the expert could indi- 
cate a valid segmentation for the student network to 
learn. The procedure is evidently not confined to seg- 
mentation but has a wide range of applications in im- 
age processing, such as texture identification. Texture 
statistics are often inhomogeneous because of perspec- 
tive distortions. 

4. CONCLUSION 

In conclusion we have presented a generalization of 
the Boltzmann Machine that allows us to discuss the 
learning rule for a wide class of models involving maxi- 
mum likelihood and penalized maximum likelihood es- 
timation (a posteriori estimation). We have shown 
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HOMOGENEOUS TEACHER 

Figure 1: Upper: Multiple object scenery. Lower: 
Scene degraded by additive white noise of spatially 
varying variance (the noise variance increases in the 
horizontal “range” direction). 
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Figure 2: Upper: Multiple object scene reconstructed 
by a “teacher net” with noise variance parameter a that 
is constant in the range directlion. Since the teacher 
does not match the statistics of the white noise process 
the reconstruction is increasingly poor in the right part 
of the scene. Lower: Reconstructed scene by a teacher 
net with spatially variant noise parameter (decreasing 
linearly in the range direction). Hence, the noise vari- 
ance used by this teacher network matches the process 
generating the white noise in the input image, and as a 
result we see that the reconstruction is clearly improved 
in the noisy; right, part of the scene. 
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Figure 3: Upper panel: Result of Boltzmann Machine 
learning for a “student” network based on a train- 
ing set of examples produced by the teacher network 
with spatially variant noise parameter. The linearly 
decreasing teacher network noise variance parameter, 
aj, is marked with the dotted line. In this experiment 
the student adapted its weights without regularization, 
hence the relatively noisy identification of parameters. 
Lower panel: Result of Boltzmann Machine learning 
for a student network but here with a regularization 
term enforcing a smoothly varying noise parameter. 
As above we indicate the teacher networks noise vari- 
ance parameter aj by a dotted line). The regularized 
estimate is much less noisy and the student network 
we produce segmentations very similar to those of the 
“teacher” network. 

the viability of the approach for a particular exam- 
ple namely parameter estimation in an inhomogeneous 
Markov Field model. 

With an inhomogeneous parametrization it is not 
possible to hand-tune the parameters as is custom in 
most applications of Markov Field models. However, 
we demonstrated that the Boltzmann Machine learning 
rule can be used to adapt the inhomogeneous network 
and, furthermore, may be generalized to incorporate 
prior information on the parameters of the associated 
Gibbs distribution. 
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