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Abstract 

This paper gives an introduction to a general hybrid sys- 
tems model for definition of system requirements and a cor- 
responding software architecture together with an exam- 
ple of their specialization for use in implementing a mode- 
switching controller for a hydraulic cylindel: 

1. Introduction 

An important application area for real-time computing 
is embedded systems where the computing system provides 
intelligent control of a mechanical, chemical etc. plant or de- 
vice. The software requirements for such applications de- 
pend heavily on the properties of the plant. These properties 
are usually investigated by control engineers that base their 
work on the theory of dynamic systems [3, 91. The mathe- 
matical tool for this work is thus mathematical analysis, in 
particular the theory of differential equations. 

If the models are linear differential equations, there are 
standard techniques for implementing a corresponding dis- 
crete, sampled system in the form of a computer program, 
and the work for the software developer is reduced to ensur- 
ing proper timing of periodic processes in a selected archi- 
tecture using appropriate scheduling theory, see e.g. [2]. 

However, when the models include non-linear systems, 
there are only in special cases ready recipes for the synthe- 
sis of control algorithms. A promising approach is here to 
see the plant and the computer as a hybrid system where 
a piecewise continuous dynamic system interacts aperiodi- 
cally with a state machine or automaton implemented by the 
computer program. This approach is the focus of much re- 
search by control theorists and computer scientists in recent 
years [7, 121. 

*Research partially funded by the Danish Research Councils. 

Design and implementation of a hybrid controller means 
that control engineers and programmers need to cooperate. 
The control engineers must find an appropriate hybrid model 
for the system, see e.g. [4]. This includes an identification 
of the plant characteristics and selection of regulators. The 
programmers must implement the controller that switches 
between the regulators when the continuous component of 
the model satisfies certain conditions. In essence the pro- 
gram is a phase transition system with important events [ 101. 

In order to investigate the facets of such a cooperation 
we have engaged in a series of experiments with a concrete 
system that uses mode switched control to improve perfor- 
mance [8, 11. 

In this paper we report on our motivation for and imple- 
mentation of a generic software framework for distributed 
mode-switching control programs. The proper design and 
construction of such a framework is the contribution of the 
software engineer. The choice of generic parameters for the 
framework is a concrete manifestation of the interface be- 
tween software and control engineering. The contribution 
of the control engineer is to provide actual parameters for 
instantiation of the framework to form a desired hybrid con- 
troller of a given plant. 

The paper gives an introduction to a hybrid systems 
model in Section 2, a corresponding software architecture in 
Section 3, and discusses implementation issues in the con- 
cluding Section 4. 

2. Hybrid systems 

In this section we will describe a model for the hybrid 
systems supported by our software framework and subse- 
quently introduce and motivate the choice of parameters of 
the framework. 
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Figure 1. An autonomous switch of model 

2.1. Model 

When approaching a control problem the control engi- 
neer will usually start of by constructing a mathematical 
model of the system, the plant, to be controlled. Taking the 
state based view, this model will often take the form of a set 
of first order differential equations derived from the physics 
of the plant and governing the evolution of the state: 

where x ( t )  is the continuous component of the state with 
values in a subset of an Euclidean space. The controlled 
vector$eZd f generally depends on x ( t )  and the continuous 
component u(t) is the control input. 

A hybrid system, cf. Branicky, Borkar and Mitter [4], is 
modeled by an indexed, countable family of ordinary mod- 
els: 

where the index i determines a new model possibly even in 
a state space with changed dimensions. 

When a transition from one model to another occurs, the 
trajectory may either jump or stay continuous (switch, in the 
terminology of [4]). A transition may either be autonomous, 
caused by the trajectory hitting a subset A of the current 
space (see Figure l), or it may be controlled. We shall in 
this context consider autonomous and controlled switching 
as applied in the control of a hydraulic cylinder. 

2.2. Example: A hydraulic actuator 

Figure 2 illustrates a hydraulic actuator. The two main 
components are the piston and the servo valve regulating the 
flow of hydraulic oil. The position (z) of the piston is the 
subject of control while the control input ( U )  determines the 
valve position. 

Figure 2. A hydraulic actuator 

Mathematical models of such an actuator are complex 
and cannot be described accurately by a single linear rela- 
tionship. Therefore a set of linear submodels are developed, 
each describing the model of the hydraulic servo-actuator in 
a subset of the state space (see [ 11 for details). The submod- 
els are derived through linearization of a complex non-linear 
model around an operating point in each subset of the state 
space resulting in 6 submodels or modes: 

k ( t )  = AiZ(t) + B i U ( t )  (3) 

where we call the solution zi (t) .  For each mode, a control 
algorithm is developed: 

U % ( t )  = Kp; . (r(t> - z ( t ) )  + Kfd . +(t) (4) 

where r( t ) ,  +(t) and z ( t )  are the reference position, the ref- 
erence velocity and the measured position of the actuator, re- 
spectively. 

The general structure of the 6 control algorithms con- 
sists of a proportional feedback part, parametrized by Kpi 
(the proportional gain), and a reference velocity feedfor- 
ward part, parametrized by K f f z  (the feed-forward gain). 
(ITp;, K f f . )  are the applicable parameters for the control al- 
gorithm when the plant is in mode i .  

The modes are represented by overlapping subspaces of 
the plant state space. An autonomous switch of the vector 
field is detected by evaluating the model error ei over a pe- 
riod T :  

t+T 
ei = 1 (47) - zi(7-))2d7 (5 )  

where i ranges over the six modes and xi denotes the model 
state. The transition is done when the minimal ei changes. 
The autonomous switching set A is thus defined implicitly. 
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When an autonomous switch is detected (by evaluation 
of the ei’s) the parameters of the control algorithm should be 
changed to match the new plant mode. That is, in response to 
a detected autonomous switch a controlled switch of control 
algorithm is performed. 

2.3. Framework parameters 

A software framework for implementing hybrid con- 
trol systems needs to include facilities for detection of au- 
tonomous switching of the plant known as important events 
[lo]. The way important events are detected will depend 
on the application and we want in our framework to be as 
loose as possible about this to strengthen general applica- 
bility. For this reason the detection algorithm is a parame- 
ter of the framework. The input to the algorithm is however 
fixed by the framework to be the stream of sampled values 
observed from the plant. 

On the basis of detected important events the controller 
may choose to change the control algorithm. This is for ex- 
ample the intended response to an autonomous switch in the 
hydraulic actuator described above. The selection algorithm 
varies with the application and is thus provided to the frame- 
work as a parameter. A third parameter is of course the set of 
control algorithms among which this algorithm may choose. 

Change of control algorithm need not be caused by an im- 
portant event but may be planned in advance by the fourth 
parameter of the framework. Given a high level objective 
of the controller, say a reference curve to follow, it is the job 
of the planning algorithm to plan switches between control 
algorithms to exploit their individual characteristics (like 
speed, stability etc.) in obtaining the aim. 

3. Program design 

Feedback control of a dynamical plant using a computer 
is basically a loop ([3]): 

WHILE TRUE 

SEQ 
sensor ? m 
U : =  control.alg(m,r) 
actuator 1 U 

The sensor inputs an estimate m of the current state of the 
plant at sampling time. The estimate is made available to 
the computer by the use of AD-converters. A control algo- 
rithm calculates on basis of the current state of the plant and 
the reference r a new control input to the plant. The con- 
trol input is applied through an actuator by the use of DA- 
converters. 

Given the hybrid control phenomena discussed in sec- 
tion 2 two major considerations must be made in the elabo- 
ration of an architecture for a hybrid control program frame- 
work: 

How do we interleave the periodic execution of the 
feedback control loop with the aperiodic switching be- 
tween control algorithms, such that the sampling rate 
is maintained and each switch is performed “immedi- 
ately” after its conditions become satisfied? 

How do we facilitate a clear and easy-to-use interface 
to the control engineer such that the program frame- 
work is smoothly instantiated with suitable control al- 
gorithms, algorithms for detection of and reaction upon 
important events and so forth? 

Our approach is based on the architectural ideas of 
Nadjm-Tehrani ([ 111). She proposes a layered system archi- 
tecture which provides a clear separation between high level 
planning and switching mechanisms executing in an aperi- 
odic manner and low level control algorithm and plant inter- 
face components executing periodically. This hierarchical 
architecture allows the combination of two diverse intelli- 
gent control philosophies, namely the one in which actions 
are taken on the basis of brute-force calculations in a cen- 
tralized world model, and the one in which actions are deter- 
mined (in, quoting, “rapid and small doses of computation”) 
on the basis of here-and-now information about the system. 
The former could involve a pre-planning activity and the 
latter could involve the detection of and reaction upon im- 
portant events as introduced in section 2.3. Preliminary ex- 
periments with this architectural model are described in [8] 
and [l]. 

The layered architecture model consists of three layers: 
Analysis, Rule and Process layer. Each layer consists of one 
or more functional blocks. Nadjm-Tehrani gives a loose and 
informal description of the purpose of each block (see [ 1 l]), 
and this description has given us an intuition as to how we 
design a program architecture that satisfies the aforemen- 
tioned considerations. The actual development has been a 
formal one using Duration Calculus ( [5 ,  131) and the imple- 
mentation has been written in Occam as our experimental 
facility (a hydraulic robot) uses a network of transputers as 
hardware platform ( [6 ]  shows the formal development and 
illustrates how the program framework was implemented on 
that basis). In Figure 3 is shown the resulting architecture as 
a set of concurrent communicating processes and their chan- 
nel connections. Furthermore, the placement of the pro- 
cesses with respect to the layers and functional blocks of the 
architectural model is shown. We will in the following give 
a short informal description of the different processes. 

3.1. Process overview 

Starting at the bottom of the architecture in the Process 
layer, the interface to the plant is implemented by the pro- 
cesses Estimator and Adaptor. The Characterizer process 
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I User 

Figure 3. Program architecture 

detects important events. The Effector module has the Dis- 
patcher process that performs the switches between control 
algorithms and keeps track of which control algorithm is 
in control of the plant. Only the control algorithm actually 
controlling the plant is given measurements and reference- 
values at sampling time. Control algorithms controldgs are 
implemented as processes and reside in the Effector block as 
well. We thus find the feedback control loop implemented 
by Estimatoi; Dispatcher, a control algorithm and Adaptor. 

In the Rule layer, Halt.sensor monitors the conditions un- 
der which it is safe to control the plant according to a given 
reference. Such conditions could for instance depend on the 
(measured) behaviour of the plant and on a “run” signal from 
the user. In case the state of the conditions changes, Coor- 
dinator is notified. Scheduler determines when a switch of 
control algorithm is required. This is the case if a planned 
switch is timed out or as a reaction to an important event re- 
ceived from Characterizer. Performing a switch means that 
Scheduler selectsfgenerates a suitable set of parameters for 
the selected control algorithm and notifies Dispatcher of the 

switch. Dispatcher then sends the parameters on to the se- 
lected control algorithm (process) and regards the selected 
control algorithm as the one controlling the plant. This is in 
fact the core of the interleaving of the feedback control loop 
with the switching events. 

The analysis layer consists of one functional block only, 
the Reasoner module. In our implementation the Plan- 
ner and Coordinator processes constitute Reasoner. Plan- 
ner monitors changes of the reference and performs a pre- 
planning of switches. Coordinator is notified of the result of 
the planning activity and determines on basis of this and the 
input from Halt.sensor the required control job. A job con- 
sists of a list of pre-planned switches between control algo- 
rithms and a reference. The former is sent to Scheduler and 
the latter is sent to Dispatcher. 

This section has given an overview of the architecture of 
our hybrid control program framework. In the beginning of 
the section we stated the interleaving of aperiodic switch- 
ing of control algorithm in the otherwise periodic execution 
of the control loop and the wish for a clear interface to the 
control engineer as two major considerations that were made 
in the development of the described architecture and in this 
subsection we have explained how the first consideration 
has been taken care of. In the following section we shall go 
into details and show how the interface to the control engi- 
neer looks and is used. 

4. Interface 

In this section we shall be quite specific about the inter- 
face of the program framework to the control engineer. We 
illustrate the parameters of the interface as pieces of Occam 
code taken from the program framework. It should be noted 
that the type system of Occam is quite primitive. Apart from 
the primitive types (Booleans, integers and reals) only arrays 
are available. Composite data-types have to be encoded. 

Recall from section 2.3 the four major parameters of the 
interface: 

1. A planning algorithm for 6 priori planning of switches. 

2. An algorithm for the detection of important events. 

3. A selection algorithm to react upon important events. 

4. A set of control algorithms. 

Starting with the last parameter, a control algorithm is im- 
plemented as a separate process. This, again, gives the ad- 
vantage of a possible internal state which is often used in 
control algorithms, e.g. when numerical integration is used. 

PROC Control.alg 
(CHAN OF PARAMETERS parameters, 
CHAN OF CA.INPUT ca.input, 
CHAN OF CA.OUTPUT ca.output) 
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WHILE TRUE 
ALT 
parameters ? param.l::param -- start up 

ca.input ? r; m 
. . .  
ca.output ! f(r, m) 

The control algorithm processes are each identified as an 
index, and the specific algorithm is parametrized with a set 
of parameters. The selection of a control algorithm thus con- 
sists of choosing a process index and sending a suitable set 
of parameters on its param channel. Consequently, a switch 
of control algorithm does not necessarily entail a switch of 
control algorithm process. A control algorithm process re- 
ceives its parameters as it is selected and will from then on 
and until another is selected receive measurements and ref- 
erence values from Dispatcher on the channel ca. input and 
produce outputs on the channel ca. output. 

A switch of control algorithm is either pre-planned or 
provoked by an important event. The pre-planning activity 
resides in the Planner process, and the concrete interface is 
the subroutine, plan: 

PROC plan ([Max.band.sizelREAL32 xref, 
[21 [Max.no.switcheslINT sl, 
[Max.band.size]REAL32 B, 
[Infosize]INT info) 

Input is the reference (xref) and output is a list of pre- 
planned switches (si), a possibly modified reference (B) and 
some auxiliary information (info). Given the architecture 
of the program framework and the signature of the plan sub- 
routine, the pre-planning activity is based on static knowl- 
edge about the control algorithm characteristics. The pro- 
cess index and the set of parameters of a pre-planned switch 
are thus selected from a fixed range of possible values. This 
fixed range is organized in two tables and these tables are a 
part of the interface as well: 

VAL [ I [ I INT Index. no. param IS 
[[0,11, [1,21, [2,411 : 

VAL [I []REAL32 Params IS 
[[l00.0, Dummy, Dummy, Dummy], 

[ 50.0, 20.0, Dummy, Dummy], 
[ 45.0, 10.0, 5.0, 0.511 : 

An element in s i  now consists of the time for a planned 
switch and a key to the table, Index. no . param. An ele- 
ment of Index. no. param consists of an index of a control 
algorithm process and the number of applicable parameters. 
These parameters are fetched from Params using the same 
key. 

It is not entirely clear how algorithms for detection of 
important events generally work (is an internal state a ne- 
cessity, what does an important event “look like” etc.). We 

have therefore dedicated the Characterizer process of the 
framework to the instantiation of a detection algorithm. This 
makes it possible to maintain an internal state. The “skele- 
ton” looks as follows: 

PROC Characterizer(CHAN OF C c.input, 
CHAN OF 1.E important.event) 

WHILE TRUE 
c.input ? r; m 

. . .  
IF . . .  --  if event detected 
important.event ! ie.r; ie.i 

Characterizer must be ready to accept input in every 
sampling period in order not to block the control loop (cf. 
section 3). An important event is output on the channel, 
important. event, and consists in the framework of a vari- 
able length stream of floating point numbers and a ditto of 
integers. 

The last major parameter of the interface is the mecha- 
nism for reacting upon important events. The reaction is a 
selection of a (possibly) different control algorithm and the 
parameter subroutine, idsyn (short for identifr and synthe- 
size), is instantiated with the concrete selection algorithm: 

PROC idsyn (LIe.rIREAL32 ie.r, 
[Ie.i]INT ie.i, 
INT ca. i, 
[Max.no.param]REAL32 param) 

The input to idsyn is the information received from 
Characterizer in an important event (ie. r and ie . i). The 
output is an index ca. i of a control algorithm and a suitable 
set of parameters param for the algorithm. These parameters 
can either be selected from the tables, Index. no. param and 
Params, or as mentioned earlier be generated on basis of the 
information given in the important event. 

4.1. Timing aspects 

Given a concrete plant and a concrete hardware platform 
(assumed to be a network of transputers) the computer engi- 
neer is responsible for configuring the control program for 
the hardware. That is, the processes of the architecture (see 
Figure 3) must be placed on the available transputers. The 
control program - having real-time constraints stemming, 
for instance, from the sampling rate - should be configured 
in a way such that the highest possible percentage of a sam- 
pling period is left for calculations to be performed in the 
algorithms supplied by the control engineer. 

As an example, an estimate of the lower bound on the 
available computation time for a control algorithm, t ca l c  can 
be found as follows (we assume that only one transputer is 
available): 

#Processes on transputer 
#Processes in control loop t a l c  = C a m p  - . Tcyc le  
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where Tsamp is the sampling period and tcycle is the time 
spent in the processes of the control loop during one sam- 
pling period. tcalc is an important parameter of the interface 
constraining the possible choices of control algorithms. An 
analysis must be made to ensure that each of the control al- 
gorithms supplied has a calculation time below tcalc .  

A more detailed discussion on this subject falls outside 
the aim of this paper, but examples of the technique in use 
are given in [8] and [6]. 

4.2. Example: A hydraulic actuator 

The example given in Section 2.2 serves to illustrate 
the use of the interface. First of all, we see from (4) that 
only one control algorithm process is necessary, as it is 
parametrized with values Kp and Kp The applicable pa- 
rameter sets are determined B priori by the control engi- 
neer, and Index. no. param and Params will consequently 
each have 6 elements (one for each mode). 

Detection of the current mode is done using (5). That is, 
with a period of T a (possibly) new mode is detected and this 
(possibly) causes a reaction (a switch of control algorithm). 
We thus identify a detection of a switch of mode as an impor- 
tant event. Characterizer is thus instantiated with the dis- 
crete version of (5). Once every T time-units the newly de- 
tected mode is compared with the current one, and in case 
they differ an important event has been detected and the new 
mode number is given to Scheduler. 

In Scheduler idsyn is responsible for selecting a suit- 
able control algorithm corresponding to the detected mode. 
This is simply done by using the mode number received 
from Characterizer as key value for the Index. no. param 
and Params tables. Thus the controlled switch is accom- 
plished. 

We do not use the pre-planning facility in this example. 

5. Conclusion 

We have presented the concepts of hybrid systems: plant 
models, control algorithms, autonomous and controlled 
switching, cf. [4]. They are illustrated by the concrete exam- 
ple of a hydraulic cylinder. The concepts have been used to 
define a precise, yet general interface to a program architec- 
ture for complex control [ 113. The architecture has been im- 
plemented on a transputer network in the Occam language. 

The platform has been successfully tested in an ex- 
perimental robot setting, with decentralized hybrid (mode 
switched) control of two individual links. There is thus 
some evidence that the framework reported here may be suc- 
cessfully used to program complex control systems while 
maintaining a precise interface to hybrid control theory. 

A point where much further work is needed is adaptation 
of control synthesis techniques to the hybrid framework, 
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e.g. what happens to stablility under mode switching. 
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