

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A codesign case study: implementing arithmetic functions in FPGAs

Klotchkov, I. V.; Pedersen, Steen

Published in:
Proceedings of the IEEE Symposium and Workshop on Engineering of Computer-Based Systems

Link to article, DOI:
10.1109/ECBS.1996.494565

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Klotchkov, I. V., & Pedersen, S. (1996). A codesign case study: implementing arithmetic functions in FPGAs. In
Proceedings of the IEEE Symposium and Workshop on Engineering of Computer-Based Systems (pp. 389-394).
IEEE. DOI: 10.1109/ECBS.1996.494565

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ECBS.1996.494565
http://orbit.dtu.dk/en/publications/a-codesign-case-study-implementing-arithmetic-functions-in-fpgas(6e724aa9-7849-4156-b980-81d712aabddc).html

A Codesign Case Study:
Implementing Arithmetic Functions in FPGA’s

I.V. K:lotchkov and S. Pedersen*
Department of Information Technology+

Technical University of Denmark
DK-2800 Lyngby, Denmark

Abstract
Different way of implementing and designing arith-

metic functions fo r 16/32 bit integers in F P G A tech-
nology are studied. This also includes a comparison of
f our different design methods.

The results are used to increase the overall system
performance in a dedicated 3 0 image analysis proto-
type system by moving a vector length calculation f rom
software t o hardware.

The conclusion is that by adding one relatively sim-
ple board containing two FPGA’s in the prototype
setup, the total computing t ime is reduced by 30 %.
The total amount of image data, in this case 300
Mbyte which has to be transmitted via network, is re-
duced by a factor of two, and the required network
bandwidth is reduced similarly.

1 Introduction
This paper describes and analyses different ways of

designing and implementing the arithmetic €unctions
X2 + Y2 and e, where X and Y are 16 bit integers
and 2 is a 32 bit integer, in FPGA’ technology.

In a prototype setup, there is 2.5 ps available
for calculating the length of one vector (X,Y) i.e.
d m , and a number of implementation alterna-
tives, which can meet this timing constraint, are stud-
ied. This also includes a novel implementation that
is highly optimised for a speed efficient realization in
the chosen FPGA technology. Some of the innplemen-
tations are demonstrated using an experimental setup
with one Altera epf81188 chip, and speed measure-
ments are compared to simulated values.

It turns out, that the traditional trade-offs in ASIC
circuit design regarding optimisation for area or speed
may also be applied in utilising the resources of the

*E-mail: ik(Dit.dtu.dk and spait .dtu.dk
tThe name was previously: Department of Computer Science
‘In this context the term FPGA, Field Programmable Gate

- Array, primarily refers to the FLEX8000 series of devices from
Altera [3].

FGPA. The primary difference is the hard limit, i.e.
the Altera epf81188 chip has 1008 basic logic building
blocks, LE’s, and a fixed amount of routing capabili-
ties.

For example, the specially developed fast imple-
mentation of a 16 bit squaring unit, which utilises the
considered FPGA technology optimally, requires 30 %
of the available LE’s in one epf81188 chip. But, at
the same time it occupies all the routing resources of
this chip, and hereby leaving more than two third of
the logic cells unused. On the other hand, the use of
a high level input description, (in fact an arithmetic
equation in VHDL), and a commercial logic synthesis
tool will lead to an implementation with much bet-
ter fitting ability. Three copies of this considerable
less efficient synthesised implementation of the 16 bit
squaring unit will fit in one chip, and hereby provide
more total computational power by using 99 % of the
LE’s.

The work presented here is a part of a larger
codesign case study2, which is performed at the De-
partment of Information Technology in collabora-
tion with the Department of Mathematical Modelling,
both at the Technical University of Denmark. This
case study deals with implementing a combined hard-
ware/software prototype system for an advanced im-
age analysis method in Optical Flow analysis called I n
Betweening, [l, 91. In this paper the codesign aspects
are discussed further in section 4.

The vector length calculation, which is the topic
of this paper, is initially situated right on the
hardware/software boundary, as the first calcula-
tion in software. The aim is to investigate the
price/performance relation for the overall hard-
ware/software system by implementing this vector
length calculation in hardware. Besides the detailed
hardware implementation considerations, this also in-
cludes hardwarejsoftware communication aspects.

2WWW: http://umi. it .dtu.dk/‘case3d

0-8186-7355-9/96 $05.00 0 1996 IEEE
389

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:42:37 UTC from IEEE Xplore. Restrictions apply.

http://umi

a) Array squaring unit

Y3

0

a7 a6 a5 a4 a3 a2 a1 a0

b) Square root extractor

CAS Cell
a7 a6

1

Y3

S u m i f f

Figure 1: Array block diagrams. a) Squaring unit. b) Square root extractor.

2 The Arithmetic Functions
Different ways of implementing a squaring function

for 16 bit integers and a square root function for a 32
bit integer are presented in this section, and a number
of designs are compared in the following section.

2.1 The Array Squaring Unit
A matrix based squaring unit, which is described

in [6] , is chosen first. This array, Figure la , requires
N = n2 + n cells, where n is the number of bits in
the input. It accepts Q = qn-l..qlqo as input and
calculates A = Q2 = az,-l..alao. This structure is
very similar to an array multiplier [lo], where the two
inputs are connected together.

The basic building block in the squaring unit,
(CAF), which is a combination of a full adder and

a multiplexer, is also shown in Figure la. In this
structure each bit of the input operand is broadcast
in parallel to all cells in a row. The carry propagation
starts at the imaginary upper right corner and pro-
ceeds towards the lower left corner, and a7 is the last
computed output bit.
2.2 The Sliced Squaring Unit

The array squaring unit does however not lead to
an efficient FPGA-based solution, as it will be seen
in section 3. Therefore, we consider an alternative
based on the following equations for an 8-bit integer
A = a7..ao:

A’ = (A1 + 16A2)’ = A: + 32(AiA2) + 2564; (1)
where A1 = a3..ao and A2 = a7..a4 are high and low
nibbles of the original 8-bit integer A. To implement

390

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:42:37 UTC from IEEE Xplore. Restrictions apply.

a) 8 bit squaring unit

: a23

”:
vi 0..4

4 bit squaring unit

a[O..l] Oulput[O..7]

+

0.S

b[0..4] 2..7
0

2x2 muItiplieJ
’? ax 7 a .3

Figure 2: a) An 8-bit sliced squaring unit. b) 4x4 bit sliced multiplier.

0..1

(1), we need 4bi t squaring, 4x4-bit multiplication and
addition. Due to the FPGA architecture, 4-hit squar-
ing is realized in one level of logic as well as 2x2-bit
multiplication. A 4x4-bit multiplication could then be
split according to the following equation:

A1A2 = (Xi + 4X2)(Yi + 4y2) (2)
= xiyi + 4(xiYz 4- x2y1) 4- l6X2Y2

where we assume AI = XI + 4x2, A2 = Y1+ 4Y2, and
XI, X2, YI , and Y2 are 2-bit integers.

Figure 2 shows a block diagram of the sliced squar-
ing unit with 8-bit input.
2.3 The Square Root Extractor

A non-restoring square root extractor array, see [6],
is shown in Figure lb. It accepts A = a,-l..alao as
input and calculates Q = a = qnp)-1..q1qo. This
block diagram is corrected compared with the original
figure in [6], by adding the triangle with six cells situ-
ated in the lower left corner of the matrix. The main
building block is a “Controlled Adder-Subtracter” cell,
(CAS), as shown in the figure, and N = (n/2I2+(n/2)
cells are required.

The data flow in this calculation is seauential. The

procedure is repeated until the last output bit, QO, is
calculated.

3 FPGA Implementation Results
The two arithmetic functions described above are

implemented in FPGA technology using four different
hardware design strategies, which is described briefly
here and in more detail together with the obtained
results in the following section.

Synthesised The high-level VHDL descrip-
tion is synthesised using Synop-
sys [7] and transfered to the Al-
tera software [4], which does the
placement and routing for the
FPGA.

Altera-optimised The squaring array is compiled
and optimised by the Altera soft-
ware [2].
The squaring array is compiled
without optimisation.
Manually sliced design according
to Figure 2.

Altera-direct

Sliced design

3.1 Results from the Squaring Unit
input bits are applied simultaneously, one bit to each
column, and the computation starts from the right-
most cell in the upper row. When the first: output
bit, q 3 , is produced, this value is also broadcast to all
the cells in the next row, and the computation pro-
ceeds from the rightmost cell towards the left. This

The squaring unit is implemented using all of the
above mentioned methods, and a comparison is shown
in Table 1.

The Synthesised implementation of the squaring
unit without splitting was carried out from a VHDL
expressions X := Y * Y , where X and Y are vari-

391

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:42:37 UTC from IEEE Xplore. Restrictions apply.

Input
width

4

8

16

ables of type natural, constrained to the desired data
range. The splitting operation, mentioned in Table 1,
means splitting of the input port, so that the equa-
tion will look like (1) when splitting in two is desired.
Splitting in four is then assuming the input value to
be X = (XI + 16x2 + 256x3 + 4096x4) with 16-bit
input width.

In the Altera-optimised approach each CAF block
is represented as a set of equations only. This defini-
tion lets the Altera compiler eliminate the array struc-
ture and consider the squaring unit as a set of boolean
equations without predefined structure. This means,
that the compiler is allowed to insert logic elements.

In the Altera-direct implementation the design spec-
ification is followed more directly. The resulting struc-
ture is very close to the source definition.

It is clear from Table 1, that the Sliced design, which
is optimised to utilise the LE structure of the FLEX
device, is the most efficient implementation.

It is also obvious that the Altera-direct definition
produces a less efficient design, than the pure logical
equations used in the Altera-optimised design. This
means, that the original block diagram is not well
suited for the FLEX architecture. This is because
the requirements of the CAF-block realization do not
match the basic LE. The CAF block is too large for
one LE, but too small for two LE’S, so some resources
in each LE are still unused.

The Synthesised solutions have two nice features:
The highest level of input description, (in fact, the
arithmetic equation), and a good fitting ability. For
instance, though the Sliced design is less area expen-
sive, due to the use of carry chains, it occupies the
entire epf81188 chip while using only 30 % of the avail-
able LE’s. On the other hand, three copies of the con-
siderable less efficient Synthesised (split in four design)

Design methodology
Synthesised Altera- Altera- Sliced

Unit no splitting split in two split in four optimised direct design
Area 7 (1.0) - 7 (1.0) 28 (4.0) 7 (1.0)
Delay 21 (1.0) - - 21 (1.0) 68 (3.2) 21 (1.0)
Area 111 (2.1) 64 (1.2) 75 (1.4) 79 (1.5) 120 (2.3) 52 (1.0)
Delay 105 (1.8) 101 (1.8) 150 (2.6) 91 (1.6) 137 (2.4) 57 (1.0)
Area - - 422 (1.5) 333 (1.22) 422 (1.5) 496 (1.8) 274 (1.0)
Delay - - 211 (2.1) 217 (2.2) 252 (2.5) 338 (3.5) 101 (1.0)

Input
width

8
16
32

could fit in one chip and provide more total computa-
tional power by using 99 % of the LE’s.

3.2 Results from the Square Root Unit
We were not able to produce a working solution

to the square root function from a high level VHDL
specification using the Synthesised method. This is
due to the more complicated algorithm of the square
root extraction. The synthesis tool does not have any
directives for implementing this function in an effi-
cient way. Also, the Sliced design method, which was
developed especially for the squaring function, is not
considered here.

Table 2 presents six implementations of the square
root function. It is seen from the table, that there is
some correlation between input width and design area.
The Altera-optimised implementation is still more area
efficient due to the redundancy of the Altera-direct im-
plementation. On the other hand, the opposite rela-
tionship is found for the delay, as the Altera-direct de-
sign gives a better speed performance for large square
root extractors.

Altera-optimised Altera-d i rect
Area Delay Area Delay

19 (1.0) 79 (1.0) 37 (1.9) 106 (1.3)
93 (1.0) 368 (1.0) 141 (1.5) 275 (0.7)

409 (1.0) 1200 (1.0) 541 (1.3) 734 (0.6)

392

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:42:37 UTC from IEEE Xplore. Restrictions apply.

Device type

16-bit squaring unit
32-bit square root unit

3.3 Measurements
A 16-bit Sliced design squaring unit and a 32-

bit Altera-optimised square root unit are chosen for
hardware implementation in a prototype system with
a PCB board containing one FPGA chip (Altera
epf81188) and an interface for down loading configura-
tion data to the FPGA chip. Due to fitting problems,
some additional buffers are added to the squaring unit
design, which increases the expected delay by 26 %.
At the same time, some timing logic is implemented
as shown in the Figure 3. It contains two framing
registers and a programmable delay generator, which
provides a controlled delay of the clock signal for the
output register relatively to the input register clock.
With an oscilloscope this setup allows time interval
measurements with an accuracy better than :k3 ns.

Delay (ns)
Simulated Measured

135 100
1200 1000

Input 2

Register -

Figure 3: Additional circuit for actual speed measure-
ment.

Device 2 Output - Register under test

The prototype board is installed in a VME bus
based computer system as a slave device and the
FPGA implementations are tested at different speed
rates. Two patterns of random data are applied to
the input of the device, and by comparing the output
with software generated values, the maximal opera-
tional speed of the implementation is obtained. Ta-
ble 3 shows the experimental result from using a ran-
dom pattern of length lo7 numbers.

4 Codesign Aspects
The computations in the In Betweening case

study, [l, 91, which was briefly mentioned in the in-
troduction, falls in three separate parts.

A

Programmable

First is the most computational intensive part by
far, the 3D convolution, which is currently being im-
plemented in a dedicated hardware prototype using
ASIC’s, (the 3D convolution engine), [8]. Second is
an eigenvector analysis to determine a local flow vec-
tor for each pixel, [SI. This task is performed using
a programmed solution on a traditional high perfor-
mance workstation. Finally, the resulting local flow
vectors are optimised globally by solving a large array
of linear equations, also on the workstation. All in
all, the combined hardware/software prototype setup
gives a speed up from around seven days of CPU time
in a pure software solution to around 20 minutes in
the combined system.

This part of the work now considers the increase in
system performance by moving the hardware/software
border line one step into the eigenvector analysis
by implementing the calculation of vector lengths in
FPGA technology.

With the current speed requirements, (2.5 ps per
vector), and 16-bit input and output data, the imple-
mentation of the vector length calculation requires two
epf81188 chips. The first contains two 16-bit Synthe-
sised squaring units, (with splitting in four), and one
32-bit ripple carry adder. Here the propagation delay
will be 217 ns + 54 ns = 271 ns. The second chip
contains an Altera-direct implementation of the square
root extractor. The total propagation delay in the two
chips will then be 271 ns + 734 ns N 1 ps per vector.
These simulated numbers are typical, but the actual
physical implementations have shown, that the FPGA
chip is about 20 % faster than these simulated values.

To compare this FPGA solution to a pure software
solution, a C program is written and run on differ-
ent computers. It includes two 16-bit squaring opera-
tions, addition, 32-bit square root extracting and one
disk access for each vector length calculation. The
fastest execution was found to require 2.6 ps per vec-
tor, on a 150 MHz DEC Alpha workstation. However,
a detailed comparison also has to take communication
aspects into account.

There are two scenarios: A) The workstation re-
ceives data directly from the 3D convolution engine,
150 Mwords (16-bit) in three minutes, or B) The work-
station receives 75 Mwords (16-bit) in three minutes
from the FPGA module.

In scenario A), the workstation is fully occupied
during the three minutes by receiving and storing the
data, and no other processing can be performed simul-
taneously. When the calculation of the vector length
has to be performed, it will require reading of the
data form the disc and the calculation itself, which

393

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:42:37 UTC from IEEE Xplore. Restrictions apply.

in this case will take 150 Mwords * 2.6 ps 21 6 min-
utes. Hereafter, the next steps in the image analy-
sis, the eigenvector analysis and the global optimisa-
tion, [9], will take about 12 minutes in both situations.
In scenario A) the total computation time will then be
3 + 6 + 12 = 21 minutes.

In scenario B) it is possible to store the vector
length data directly in the memory of the worksta-
tion due to the reduction by a factor of two of the
total image data size. Therefore, the 6 minutes used
in A) for disc operation and calculations are not re-
quired here, so the total computation time is reduced
to 15 minutes.

5 Conclusions
Two main conclusions are drawn from this work.

The first is about the utilisation of FPGA's in arith-
metic calculations, and the second deals with codesign
aspects in moving a specific computation from soft-
ware to hardware.

5.1 Arithmetic Functions
This design and implementation study has shown,

that for limited word size, 16/32-bit, functions of the
type, X 2 + Y 2 and @, can be implemented in the Al-
tera FLEX FPGA in a variety of ways, leaving room
for speed/area optimisation. However, if the fastest
and often also smallest solution is chosen, this may
lead to a low overall utilisation of the hardware re-
sources in the FPGA, due to the high internal com-
munication requirements. Less than 30 % utilisation
is observed. If more modest speed requirements are
present, a considerable larger part of the resources can
be utilised. This means that the design process should
include a step where the degree of parallelisation is in-
vestigated.

The considered vector length calculation with 16-
bit input and output data, can be implemented in two
epf81188 chips. The total simulated propagation delay
is close to 1 ps, and the measured values are around
20 % faster. This result has a good margin to the
available 2.5 ps in the current setup.

The consequence is, that one storage cycle o€ the com-
plete data set is omitted. The input data rate to the
workstation is hereby reduced, and the workstation is
capable of doing other processing while receiving the
data. All in all this will reduce the total processing
time from 21 to 15 minutes.

Of course, the memory size in the workstation could
be increased by around 200 Mbyte, so that the full
set of image data could be stored directly in memory.
However, this investment is about 20 times the price
of the FPGA solution.

Finally, the investigated calculations could be made
considerably faster using the same FPGA technology.
A solution for real time image data, which leaves only
25 ns for the computation of one vector length, is
within reach by introducing a high degree of pipelin-
ing in the considered array structures. The pipelining
registers are present, one in each LE, but the overall
timing and the required number of units in parallel
has not been fully investigated presently.

Acknowledgements
The work presented here is partly financed by the

Codesign research framework project, which is funded
by the Danish Technical Research Council and lead by
Prof. Jmgen Staunstrup. The visit by I. Klotchkov
was also supported by the Jorck Foundation.
References
[l] Jens P. Brage and Steen Pedersen. A case study in

architectural and technological trade-offs. NORCHIP-
94, pages 78-85, November 1994.

[2] Altera Corp. Max+Plus 11, VHDL Version 5.0. Altera
Corp., 1994.

[3] Altera Corp. Altera Data Book. Altera Corp., 1995.
[4] Altera Corp. MaxfPlus 11, Design Software Version

5.3. Altera Corp., 1995.
[5] Anders Rosholm Henriksen. Analysis and realisation

of in betweening algorithm. Master's thesis, Depart-
ment of Computer Science, Technical University of
Denmark, July 1995. In Danish.

[6] Kai Hwang. Computer Arithmic: principles, architec-
tures and design. Wiley, 1979.

[7] Synopsys Inc. Synopsys 3.la User Guide. Synopsys
Inc., 1994.

5.2 Codesign Aspects [8] Dan C. Raun Jensen. 3D convolution VLSI ASIC.
Master's thesis, Department of Computer Science,

System aspects are also considered in introducing Technical University of Denmark, August 1994. In
the FPGA solution in the actual image analysis sys- English.
tem; the 3D convolution engine and a high Perfor- [9] Rasmus Larsen. Estimation of Visual Motion in Im-
mance workstation both connected to a high speed age Sequences. PhD thesis, Institute for Mathematical

Modelling, Technical University of Denmark, 1994. network.
The FPGA solution is found to have Some major [lo] Neil H.E. Weste and Kamran Eshraghian. Princzples

of CMOS VLSI Design. Addison-Wesley, 1993. advantages. The total amount of image data is re-
duced by a factor of two, to 75 Mwords,-(l50 Mbyte),
which can be stored in the memory of the workstation.

394

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:42:37 UTC from IEEE Xplore. Restrictions apply.

