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ABSTRACT - This paper presents a VESI 
implementation of a resource allocation scheme, based on 
the concept of weighted fair queueing. The design can be 
used in Asynchronous Transfer Mode (ATM) networks to 
ensure fairness and robustness. Weighted fair queueing is a 
scheduling and buffer management scheme that can provide 
a resource allocation policy and enforcement of this policy. 
It can be used in networks in order to provide defined 
allocation policies (fiairness) and improve network 
robustness. The presented design illustrates how the 
theoretical weighted fair queueing model can be 
approximated with a model feasible for practical 
implementation. This approxiniated model has been 
implemented as a VLSI component. 

1. INTRODUCTION 

One of the major advantages of the B-ISDNATM is the 
integration of dBerent services. Multiple traffic management 
policies can be integrated and high network utilization can be 
achieved. The network can use sophisticated cell scheduling and 
queue management methods in order to support complex trtaffk 
management policies. 

The ITU-T [ I ]  and The ATM Forum [ 2 ]  are currently worlking 
on a new service class. The standardization term is Available 
Bit Rate (ABR). The ABR service class is intended for 
applications with elastic bandwidth ]requirements. Resources are 
allocated according to defined fairness policies. In order to 
support the ABR service class, the network can implement 
sophisticated cell scheduling and buffer management methods 
in the network switch elements. 

1 - r - L r - 1  
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Fig. 1. Switch element with queueing units 

A network switch element can employ cell queueing in order 
to prevent cell loss when congestion occurs in the switch 
element. Congestion takes place, when the traffic load on an 
output port exceeds the output port’s link rate. Fig. 1 illustrates 

a switch element with queueing units. The queueing units can 
be located at the input, the output or internal to the switch unit 
ports. 

The service classes that can be supported in a network will 
depend on the architecture of the queueing units in the switch 
elements. The architecture of the queueing units can be divided 
into three categories, which are illustrated in. 

A:Single queue B:Priority queues C’.-Per-cotinection  queue.^ 

Fig. 2. Three different queueing unit architectures. 

The cell scheduling and queue managlement methods most 
often found in ATM networks of today, is first-in first-out 
(FIFO) scheduling with a single queue shaired by all connections 
(see Fig. 2a). In order to support integration of traffk with 
different service requirements, the shared queue can be 
segmented into multiple shared queues that are scheduled 
according to defined priorities (see Fig. 2b). A cell scheduling 
and buffer management method that offeirs several advantages 
compared to shared queue methods, is weighted fair queueing 
[5][6][7] (see Fig. 2c). The queueing is per-connection wlth 
FIFO queues, and scheduling is performed according to a 
weighted allocation policy. The weighted Fair queueing method 
can provide: 

Weighted bandwidth allocation policies with enforcement of 
that policy. Bandwidth is allocated on a per-connection basis 
according to relative weights (fairness). 
Isolation of users. Well-behaving users can be protected 
from misbelhaving users exceeding their allowed 
transmission rates, thereby improving network robustness. 
Queue length can be allocated along a network connection 
path on a per-connection basis. 
Scalability. Queue capacity can be scaled to match a 
connections distance, speed, and number of traversed nodes. 
Smooth flow of cells. 

From the atiove listed features, it can be understood that 
weighted fair queueing has strong theoretical support. Fairness 
and robustness are some of the major advantages that weighted 
fair queueing can provide. These advantages are important 
criteria for networks supporting the ABR service class. 
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This paper will illustrate that weighted fair queueing not only 
has strong theoretical support, but is also well suited for 
practical realization at relatively low implementation cost. The 
theoretical model has been approximated in order to make 
practical realization feasible. This approximated weighted fair 
queueing model has been implemented as a VLST design. 

11. WEIGHTED FAIR QUELJEING 

A .  Theory 

Fair queueing originated as a congestion control device 
preventing misbehaving users from affecting the service offered 
to others p]. The idea was later substantialiy revised and 
applied eo fixed size packets with weighted bandwidth 
allocation 141. Since then, several authors have independently 
rediscovered the same approach to weighted fair queuing 
applied to fixed size packets [5][6][7]. 

Weighted fair queueing can be viewed as a realization of the 
round robin service discipline where cells from per-connection 
queues are served in cyclic order. The service to different 
connections can be modulated by applying weights determining 
at which rate connections are served within a cyc%e. The 
weighted fair queueing algorithm is illustrated below: 
e When a cell from connection i reaches the front o f  its per- 

connection queue: 
- Stamp the cell with the value of Last-Timestamp 1- Uw, 
where wi is a relative weight defined per connection. 

e When a cell slot is available on the outgoing link: 
- Transmit the cell with the lowest timestamp value. 
- Set Lasf-Timestamp equal to the timestamp of the 
transmitted cell. 

The algorithm can be explained in few words: When cells 
arrive at the switch element they are queued in per-connection 
FIFO queues. A cell will reach the front of its queue when the 
preceding cell in the queue is transmitted, or at the instant of 
arrival if the queue is empty. When a cell reaches the front of 
it's queue, the cell receives a timestamp. The timestamp is the 
timestamp of the last transmitted cell plus a per connection 
spacing constant. All cells that have received a timestamp are 
sorted in increasing timestamp order. Asynchronously with the 
queueing of cells, the cells are transmitted in increasing 
timestamp order. 

Apply timestamp ,'Girt fime.sfanips Tx cells in increasing 
4 1 timestamp order 

0 
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w = 0.75 n - - L i i L  q n  ;.;*, :, ,*,., , !, ,.,A, ,I,, p F X H X i o a i - -  

W =  1.00 m - - , l i T u - - ,  Virtual time 

Fig. 3. Weighted Fair Queueing 

The algorithm is illustrated in Fig. 3. Three connections share 
the bandwidth on a link. The cells from a connection are spaced 
according to the connections relative weights. A connection i 
receives a bandwidth share SW,  of the available bandwidth 
BW,,,, on the outgoing link given by, 

dIJ E A  

where A is the set of connections with non-empty queues. Note 
that the timestamp domain i s  not real time, but only a relative 
time domain, which we define as the virtual time domain" The 
virtual time spacing interval is proportional to the inverse of the 
connection's relative weight. 

H. Realization 

The weighted fair queueing algorithm transmits cells in 
increasing timestamp order, and the timestamps must therefore 
be sorted in increasing order. A very important implementation 
issue is realization of the sorting mechanism. The sorting 
mechanism must be capable of sorting N timestamps per cell 
slot period, where N i s  the maximum number of connections 
sharing the outgoing link. The implementation cost can be high 
if the sorting function is to be capable of sorting the timestamps 
correctly (see e.g. IS]). The sorting function can be 
approximated with a relatively simple bucket  sort^ The concept 
of the bucket sort mechanism i s  illustrated in Fig. 4. 

Active huck>t Search$or next Logical linked list b?f 

non-einp@ bucket connection identifiers, 

The virtual time scale is divided into intervals. Each intervals 
is represented by a 'bucket'. Timestamps are inserted in the 
bucket which represents the virtual time interval in which the 
timestamp is included. Together with the timestamp a 
connection identifier is inserted in the bucket. When a cell slot 
is available for transmission, a timestamp and connection 
identifier is removed from the current bucket or the first 
succeeding non-empty bucket if the current bucket is empty. 
The first cell from the identified connections queue is then 
transmitted. A variable active-bucket maintains the current 
bucket number. Since timestamp and connection identifier pairs 
are inserted and removed in the same order, cells with 
timestamps included in the same virtual time bucket interval are 
not guaranteed to be transmitted in increasing timestamp order. 
If the bucket time interval is equal to the resolution of the 
timescale, the bucket sort will sort correctly. If the bucket time 
interval is greater than the resolution of the time scale, the 
bucket sort will approximate a correct sorting function. 

The infinite virtual time scale can be implemented with a 
virtual timewindow of finite length, that is cyclic traversed. The 
length of the timewindow defines the number and range of per- 
connection weights that can be supported. A spacing constant 
rwI is defined for every per-connection weight w,. 
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B rwt = k - -- 
where k is an implementation dependent constant. The length of 
the timewindow Twlndows must be large enough to suppoxr the 
largest spacing constant, which is defined for the lowest per- 
connection weight w,,,. 

?V 1 

10 
100 
1000 

TABLE a 
SIMULATION RESULTS I 

4 5 5 6 6 6 
9 1 1  1 1  13 13 14 
16 20 20 23 23 25 - 

where B is the number of bucket,s, and rWma is the spacing 
constant defined for the largest relative weight w,,, To sinriplffy 
the calculation of the appropriate bucket for a given timestamp 
the length of the timewindow and the number of buckets should 
follow the criteria below, so that divisions can be performed 
with shift right bit operations. 

Twmdow = 2" OB ,B = 2" n = 1 2 , " .  

The spacing constants and we:ights are implemente'd as 
integers, which limits the number of weights that can be 
defined. E the lowest relative weight Bevel is 1, and the highest 
relative weight is wmmr spacing constant can only be defined for 
the relative weights w given by 

1 
., y1 = B,2, - - n . -  wmax 

W r w  m a  
I 

If an error margin is allowed for the definition of the relative 
weights, the number of weights that can be defined in the range 
of 1 to w,, can be increased. Table I illustrates the number of 
weights that can be defined for a given relative error margin fox 
different weight level ranges and awlma values. 

10 
100 
I000 

4 5 5 6 9 10 
9 1 1  23 36 87 100 
16 62 193 319 858 1000 - 

Weight2 1 1 10 50 100 I Total 
connections i 10 10 10 :: 1 50, 

~ ~ 

Unat 
outputproc'sss mean 1860 186 37- cell "' 

max 

max 
Output process variance or bucker sort with 2!5 buckets: 
mean 
max 10.9 12.9 15.4 10.9 cell . 

mean 
max 

' cell p T- cell period. ' w,, = 100, Twlndow = 81912 
' Sim. length = 100 x max(output process (mean)) = 186000 cell p. 

5.0 6.0 9.4 

An outgoing ]link is shared by N con.nections with sources 
transmitting ,at maximum %ink rate, and non-empty per- 
connection quleues. The variance sf the output process depends 
on the accuracy of the sorting mechanism, Minimum variance is 
achieved with a correct sorting mechanism. 

The first simulation was made with a rehtively low number of 
connections. A total ~f 50 connections (are sharing the same 
link, and their relative weights are defined in the range of 11 to 
100. The simulation results are presented in Table IT. From the 
results it i s  seen that a bucket sort implemented with 128 or 
more buckets can provide a relatively smooth cell flow. With 
5 112 buckets, the performance is nearly optiimal. 

The second simulation was made for a relatively large number 
of connection:;. A total of 1500 connections are sharing the 
same link, andl their relative weights are defined in the range of 
1. to 100. The simulation results are presenited in Table 111. 

TABLE III 
SIMULATION RESULTS 2 

Worvh? I 1  10 50 80 I Total 
Connections ~ ~~ 1 300 300 300 1 15; 

Unit 
output process mean 55800 5580 1 1  I 6  cell . '  
mean 
max 

mix 

mean 
max 

mean 
max 

' cell p. = cell period. w,, = 100, Twmdow = 8192 
Sim. = 100 x max(output process (mean)) = 266000 cell p. 

It can be seen that a smooth cell flow can be provided for a 
large number of connections. One of the major advantages of 
this bucket sort mechanism, is that the number of supported 
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connections has minimum impact on the implementation 
complexity The mechanism is capable of supp~rting a Barge 
number of simultaneously transmitting sources. Furthermore, a 
large range of relative weights can be supported. 

111. HARDWARE MODLJEE ARCHITECTURE 

The proposed approximation to weighted fair queueing has 
been implemented in a queueing unit. Fig. S .  illustrates the 
architecture of the queueing unit, and how the queueing unit 
can be used together with a switch unit. 

Dynanzic maximum rule 
frufic risapingper povr 

~wghterd  fair queuemg 1 Round Robin 
\ 

# xi -- 155  

3 15s 
M b l S  

L 

Queueing 1Jnit.q in smtch ekiiient 

Fig 5 Architecture of swtch element implementing the presented 
weighted fair queueing approximation 

The connections can be mapped to one of 16 weighted fair 
queueing modules that are implemented per input queueing 
unit. A module consists of a weighted fair queueing 
approximation, and a traffic shaping mechanism for dynamic 
control of the maximum output rate from the module. 
Backpressure from the switch unit to the input queueing units 
adjusts the transmission rate from the weighted fair queueing 
modules to the total load per switch unit output port. 

Fig. 6. VLSI architecture of the weighted fair queueing unit 

155 
-b Mh/s 

The queueing units is based on a VLS% design with a block of 
external S W  memory. The architecture 0% the K S I  design i s  
illustrated in Fig. 6. 

The design implements the following: Input//Outpu% Line i/f9 
DatdAddress ctrl for external S W  i/f3 CPU i/f ~ modules for 
bucket sorting, cell queueing, port scheduling and a global 
control unit. 

A. Bucker sort 

The bucket sort controller inserts and removes timestamp and 
connection identifier pairs from buckets. The buckets are 
searches for non-empty buckets, and spacing time is updated. 

B. Cell queueing 

The queue controller maintains per-connections cell queues. 
Cells are discarded when the queues are full. The allocation of 
b d e r  length is controlled via external CPU interface. Queue 
length is allocated from a pool of cell buffers, shared by all 
connections. 

C. Port scheduler 

The output from the weighted fair queueing modules are 
scheduled with a round robin discipline. If a module has any 
non-empty per-connection cell queues, the weighted fair 
queueing approximation will decide from which queue the next 
cell is transmitted. Incoming cell that are not mapped to any of 
the modules, are passed directly from input to output of the 
queueing unit. 

D. GIobal ctd 

A central contxoll unit (not shown in) implements a stare 
machine, that controls the other modules. 

E. Line i / f  

The incoming line interface implements an 8 bit parallel 
synchronous interface. Synchronization to the incoming cell 
flow is performed and mis-matched cells are discarded. The cell 
labels are decoded. The outgoing line interface implements a 8 
bit parallel synchronous interface with control signals for an 
external FIFO module. 

F. External memory i / f  

The external SRAM interface consists of an address bus 
controller, and a data bus controller. Data for write operations 
are multiplexed and memory addresses are calculated. The 
databus is 48 bit wide, and the address bus 21 bits wide. The 
data bus controller implements a hamming parity 
codingldecoding, capable of detecting and correcting single bit 
errors. 

G. CP I/ if 

The VLSI design implements app. 50 registers that can be 
accessed by an external processor unit in the MC68000 series. 
Readwrite accesses are with SI4 CPU cycles. A single bit 
interrupt is included. The interface implements registers for 
CPU access to the external SRAM. 
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IY IMPLEMENTATION DETAILS 

The management of the bucket sort mechanism is ilhstrated 
in Fig. 7. A bucket consists of head and tail pointers to ip. linked 
list of bucket entries. The bucket is empty if both these pointers 
are nil. A bucket entry consists: of a connection identifier, a 
timestamp offset and a pointer to another bucket entry 

the 

where b is the bucket number. It is therefore sufficient to store a 
timestamp offset in the bucket entry. If N connectioins are 
supported, there must be a total of N bucket entries. A bucker 
entry is idle for every connection queue that i s  empty. Two 
global head and tail pointers, IdleEntryHead and ldleEm@Tail 
maintain a linked list of idle bucket entries. 

The bottleneck in the bucket soirt mechanism's scalability for 
speed, is the search for the next nlon-empty bucket, which must 
be performed per cell slot period. In the worst case, all buckets 
must be scanned, which will require a relatively large bucket 
memory access bandwidth. In order to reduce the memory 
bandwidth demands, a single bit status flag indicating w:hether 
a bucket i s  empty or non-empty is maintained. When searching 
for a non-empty bucket, the single bit status flags are scanned. 

The organization of the per-connection queues is illustrated in 
Fig. S. Every connection maintains a queue length counter and 
a maximum queue length value. Incoming cells are discarded 
when queue length is equal to maximum queue length. The cell 
queues are maintained as linked lists. Every connections 
maintains head and tail pointers to a linked list of cells buffers. 
Two global pointers, IdleCellHead and IdleCellTail, maintain a 
linked list of idle cell buffers. 

Fig. 8. The 
... 

Fig. 7. The memory organization of'thle bucket sorting mechanism. 

Every bucket defines a timestamp base ab , ,  from which 
timestamp can be calculated as follows: 

cell 

memory organization of 'the per-cmnection cell queues 

The total imemory requirement is a function of the maximum 
number of c:onnections N. the number of buckets B, length of 
the timewidow Tw,,,dow and the maximum per-connection cell 
queue length. Table IV illustrates memory size and bandwidth 
access for the different memory blocks used to implement 
weighted fair queueing. The memory size is for a single port 

TABLE IV 
MEMORY REQUIREMENTS 

P N=2048, B=128, TwIndow=8192, Qmax=32768 
2 external memory interface can support max 200k cell buffers 

The bucket empty status flags and bucket memory require a 
relatively small amount of memory, and consumes a relatively 
large part of the total memory access bandwidth. This memory 
is therefore well suited to be realized as on-chip memory in a 
VLSI design. The memory for the bucket entries, queue ctrli and 
cell buffers is well suited for realization as stand alone memory 
external to the %SI design, because of the relatively large 
memory size. 

The problem of implementing linked lists, is that the entire 
list must be re-initialized when bit errors; occurs. If extra parity 
bit for error detection and correction is added to the memory 
interface, e.g. a hamming parity coding, the stability of the 
design can be increased significantly. 

V. VLSI IMPLEMENTATION 

The VLSI design was implemented in <a lpm CMOS process, 
using a standard cell layout approach. The design process was 
fully automated, with gate level synthesis from a VHDL 
description. The VLSI characteristics are presented in Table V. 
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TABLE V 
VLSI DESIGN S m r  

Technology 
Die size 83x8,s  m2 
Transistor count 130k 
Power supply 5.0V 

Pin counVpackage type 174lPGA 179 
Operating clock frequency 23MHz 
Module Gate count estimate’ 
Cell queue management 1900 
Bucket sort mechanism 3100 
Port scheduling 2500 
Line i/f 2100 
External SRAM access ctrl 2500 

1 . 0 ~  CMOS standard cell layout 

Power consumption PSW 

DFF Register is equivalent to 3.5 NAND gates 

It should be noted that the gate count cost for the per- 
connection queue management controller and bucket son 
mechanism which implements the weighted fair queueing 
approximation is relatively %ow (app. 5000 gates). The design 
implements a large degree of pipeline structures. If sub-micron 
technology is available, major parts of the pipelining can be 
removed, and the total gate count can be reduced with app. 
25%. 

VI” CQNCLLJSION 

This paper evaluates a sophisticated cell scheduling and queue 
management method known as Weighted Fair Queueing. 
Weighted fair queueing has swong tbeoretkal supportt, and can 
provide several advantages that are interesting with the 
evohtion of new complex A’FM service classes. A special focus 
was made on the practical realization of weighted fair queueing. 
It has been illustrated how the theoretical model can be 
approximated. A complete queueing unit implementing 
weighted fair queueing and realized as a MLSI compont~~t has 
been presented. The presented design has shown that it i s  
possible to approximate weighted fair queueing with a model 
that can be realized at relatively IOW implementation cost and 
complexity. 
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