

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

VLSI implementation of a fairness ATM buffer system

Nielsen, J.V.; Dittmann, Lars; Madsen, Jens Kargaard; Lassen, Peter Stuhr

Published in:
Conference Record of IEEE International Conference on Communications

Link to article, DOI:
10.1109/ICC.1996.541268

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, J. V., Dittmann, L., Madsen, J. K., & Lassen, P. S. (1996). VLSI implementation of a fairness ATM
buffer system. In Conference Record of IEEE International Conference on Communications: Converging
Technologies for Tomorrow's Applications (Vol. Volume 2, pp. 681-686). IEEE. DOI: 10.1109/ICC.1996.541268

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICC.1996.541268
http://orbit.dtu.dk/en/publications/vlsi-implementation-of-a-fairness-atm-buffer-system(963c9ffb-4b3a-48ad-9daf-4ea8d72a496b).html

VLSI Iimplementation ~ l f a Fairness ATIW Buffer System

S.V.Wielsen, L.Dittnnan, J.K.Ma$sen and la.S.Lassen
Center for Broadband Telecommunications

EPectromagnetics Institute
Technical University of Denmark

Building 348, DK-2800 Lyngby, Denmark
e-mad: Bd@,emi.dh.&

ABSTRACT - This paper presents a VESI
implementation of a resource allocation scheme, based on
the concept of weighted fair queueing. The design can be
used in Asynchronous Transfer Mode (ATM) networks to
ensure fairness and robustness. Weighted fair queueing is a
scheduling and buffer management scheme that can provide
a resource allocation policy and enforcement of this policy.
It can be used in networks in order to provide defined
allocation policies (fiairness) and improve network
robustness. The presented design illustrates how the
theoretical weighted fair queueing model can be
approximated with a model feasible for practical
implementation. This approxiniated model has been
implemented as a VLSI component.

1. INTRODUCTION

One of the major advantages of the B-ISDNATM is the
integration of dBerent services. Multiple traffic management
policies can be integrated and high network utilization can be
achieved. The network can use sophisticated cell scheduling and
queue management methods in order to support complex trtaffk
management policies.

The ITU-T [I] and The ATM Forum [2] are currently worlking
on a new service class. The standardization term is Available
Bit Rate (ABR). The ABR service class is intended for
applications with elastic bandwidth]requirements. Resources are
allocated according to defined fairness policies. In order to
support the ABR service class, the network can implement
sophisticated cell scheduling and buffer management methods
in the network switch elements.

1 - r - L r - 1

1 2 N
Fig. 1. Switch element with queueing units

A network switch element can employ cell queueing in order
to prevent cell loss when congestion occurs in the switch
element. Congestion takes place, when the traffic load on an
output port exceeds the output port’s link rate. Fig. 1 illustrates

a switch element with queueing units. The queueing units can
be located at the input, the output or internal to the switch unit
ports.

The service classes that can be supported in a network will
depend on the architecture of the queueing units in the switch
elements. The architecture of the queueing units can be divided
into three categories, which are illustrated in.

A:Single queue B:Priority queues C’.-Per-cotinection queue.^

Fig. 2. Three different queueing unit architectures.

The cell scheduling and queue managlement methods most
often found in ATM networks of today, is first-in first-out
(FIFO) scheduling with a single queue shaired by all connections
(see Fig. 2a). In order to support integration of traffk with
different service requirements, the shared queue can be
segmented into multiple shared queues that are scheduled
according to defined priorities (see Fig. 2b). A cell scheduling
and buffer management method that offeirs several advantages
compared to shared queue methods, is weighted fair queueing
[5][6][7] (see Fig. 2c). The queueing is per-connection wlth
FIFO queues, and scheduling is performed according to a
weighted allocation policy. The weighted Fair queueing method
can provide:

Weighted bandwidth allocation policies with enforcement of
that policy. Bandwidth is allocated on a per-connection basis
according to relative weights (fairness).
Isolation of users. Well-behaving users can be protected
from misbelhaving users exceeding their allowed
transmission rates, thereby improving network robustness.
Queue length can be allocated along a network connection
path on a per-connection basis.
Scalability. Queue capacity can be scaled to match a
connections distance, speed, and number of traversed nodes.
Smooth flow of cells.

From the atiove listed features, it can be understood that
weighted fair queueing has strong theoretical support. Fairness
and robustness are some of the major advantages that weighted
fair queueing can provide. These advantages are important
criteria for networks supporting the ABR service class.

0-7803-3250-4/96$5.0001996 IEEE
68 1

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:35:01 UTC from IEEE Xplore. Restrictions apply.

This paper will illustrate that weighted fair queueing not only
has strong theoretical support, but is also well suited for
practical realization at relatively low implementation cost. The
theoretical model has been approximated in order to make
practical realization feasible. This approximated weighted fair
queueing model has been implemented as a VLST design.

11. WEIGHTED FAIR QUELJEING

A . Theory

Fair queueing originated as a congestion control device
preventing misbehaving users from affecting the service offered
to others p]. The idea was later substantialiy revised and
applied eo fixed size packets with weighted bandwidth
allocation 141. Since then, several authors have independently
rediscovered the same approach to weighted fair queuing
applied to fixed size packets [5][6][7].

Weighted fair queueing can be viewed as a realization of the
round robin service discipline where cells from per-connection
queues are served in cyclic order. The service to different
connections can be modulated by applying weights determining
at which rate connections are served within a cyc%e. The
weighted fair queueing algorithm is illustrated below:
e When a cell from connection i reaches the front o f its per-

connection queue:
- Stamp the cell with the value of Last-Timestamp 1- Uw,
where wi is a relative weight defined per connection.

e When a cell slot is available on the outgoing link:
- Transmit the cell with the lowest timestamp value.
- Set Lasf-Timestamp equal to the timestamp of the
transmitted cell.

The algorithm can be explained in few words: When cells
arrive at the switch element they are queued in per-connection
FIFO queues. A cell will reach the front of its queue when the
preceding cell in the queue is transmitted, or at the instant of
arrival if the queue is empty. When a cell reaches the front of
it's queue, the cell receives a timestamp. The timestamp is the
timestamp of the last transmitted cell plus a per connection
spacing constant. All cells that have received a timestamp are
sorted in increasing timestamp order. Asynchronously with the
queueing of cells, the cells are transmitted in increasing
timestamp order.

Apply timestamp ,'Girt fime.sfanips Tx cells in increasing
4 1 timestamp order

0
w = 0.50 0 4 / I
w = 0.75 n - - L i i L q n ;.;*, :, ,*,., , !, ,.,A, ,I,, p F X H X i o a i - -

W = 1.00 m - - , l i T u - - , Virtual time

Fig. 3. Weighted Fair Queueing

The algorithm is illustrated in Fig. 3. Three connections share
the bandwidth on a link. The cells from a connection are spaced
according to the connections relative weights. A connection i
receives a bandwidth share SW, of the available bandwidth
BW,,,, on the outgoing link given by,

dIJ E A

where A is the set of connections with non-empty queues. Note
that the timestamp domain i s not real time, but only a relative
time domain, which we define as the virtual time domain" The
virtual time spacing interval is proportional to the inverse of the
connection's relative weight.

H. Realization

The weighted fair queueing algorithm transmits cells in
increasing timestamp order, and the timestamps must therefore
be sorted in increasing order. A very important implementation
issue is realization of the sorting mechanism. The sorting
mechanism must be capable of sorting N timestamps per cell
slot period, where N i s the maximum number of connections
sharing the outgoing link. The implementation cost can be high
if the sorting function is to be capable of sorting the timestamps
correctly (see e.g. IS]). The sorting function can be
approximated with a relatively simple bucket sort^ The concept
of the bucket sort mechanism i s illustrated in Fig. 4.

Active huck>t Search$or next Logical linked list b?f

non-einp@ bucket connection identifiers,

The virtual time scale is divided into intervals. Each intervals
is represented by a 'bucket'. Timestamps are inserted in the
bucket which represents the virtual time interval in which the
timestamp is included. Together with the timestamp a
connection identifier is inserted in the bucket. When a cell slot
is available for transmission, a timestamp and connection
identifier is removed from the current bucket or the first
succeeding non-empty bucket if the current bucket is empty.
The first cell from the identified connections queue is then
transmitted. A variable active-bucket maintains the current
bucket number. Since timestamp and connection identifier pairs
are inserted and removed in the same order, cells with
timestamps included in the same virtual time bucket interval are
not guaranteed to be transmitted in increasing timestamp order.
If the bucket time interval is equal to the resolution of the
timescale, the bucket sort will sort correctly. If the bucket time
interval is greater than the resolution of the time scale, the
bucket sort will approximate a correct sorting function.

The infinite virtual time scale can be implemented with a
virtual timewindow of finite length, that is cyclic traversed. The
length of the timewindow defines the number and range of per-
connection weights that can be supported. A spacing constant
rwI is defined for every per-connection weight w,.

682

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:35:01 UTC from IEEE Xplore. Restrictions apply.

B rwt = k - --
where k is an implementation dependent constant. The length of
the timewindow Twlndows must be large enough to suppoxr the
largest spacing constant, which is defined for the lowest per-
connection weight w,,,.

?V 1

10
100
1000

TABLE a
SIMULATION RESULTS I

4 5 5 6 6 6
9 1 1 1 1 13 13 14
16 20 20 23 23 25 -

where B is the number of bucket,s, and rWma is the spacing
constant defined for the largest relative weight w,,, To sinriplffy
the calculation of the appropriate bucket for a given timestamp
the length of the timewindow and the number of buckets should
follow the criteria below, so that divisions can be performed
with shift right bit operations.

Twmdow = 2" OB ,B = 2" n = 1 2 , " .

The spacing constants and we:ights are implemente'd as
integers, which limits the number of weights that can be
defined. E the lowest relative weight Bevel is 1, and the highest
relative weight is wmmr spacing constant can only be defined for
the relative weights w given by

1
., y1 = B,2, - - n . - wmax

W r w m a
I

If an error margin is allowed for the definition of the relative
weights, the number of weights that can be defined in the range
of 1 to w,, can be increased. Table I illustrates the number of
weights that can be defined for a given relative error margin fox
different weight level ranges and awlma values.

10
100
I000

4 5 5 6 9 10
9 1 1 23 36 87 100
16 62 193 319 858 1000 -

Weight2 1 1 10 50 100 I Total
connections i 10 10 10 :: 1 50,

~ ~

Unat
outputproc'sss mean 1860 186 37- cell "'

max

max
Output process variance or bucker sort with 2!5 buckets:
mean
max 10.9 12.9 15.4 10.9 cell .

mean
max

' cell p T- cell period. ' w,, = 100, Twlndow = 81912
' Sim. length = 100 x max(output process (mean)) = 186000 cell p.

5.0 6.0 9.4

An outgoing]link is shared by N con.nections with sources
transmitting ,at maximum %ink rate, and non-empty per-
connection quleues. The variance sf the output process depends
on the accuracy of the sorting mechanism, Minimum variance is
achieved with a correct sorting mechanism.

The first simulation was made with a rehtively low number of
connections. A total ~f 50 connections (are sharing the same
link, and their relative weights are defined in the range of 11 to
100. The simulation results are presented in Table IT. From the
results it i s seen that a bucket sort implemented with 128 or
more buckets can provide a relatively smooth cell flow. With
5 112 buckets, the performance is nearly optiimal.

The second simulation was made for a relatively large number
of connection:;. A total of 1500 connections are sharing the
same link, andl their relative weights are defined in the range of
1. to 100. The simulation results are presenited in Table 111.

TABLE III
SIMULATION RESULTS 2

Worvh? I 1 10 50 80 I Total
Connections ~ ~~ 1 300 300 300 1 15;

Unit
output process mean 55800 5580 1 1 I 6 cell . '
mean
max

mix

mean
max

mean
max

' cell p. = cell period. w,, = 100, Twmdow = 8192
Sim. = 100 x max(output process (mean)) = 266000 cell p.

It can be seen that a smooth cell flow can be provided for a
large number of connections. One of the major advantages of
this bucket sort mechanism, is that the number of supported

683

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:35:01 UTC from IEEE Xplore. Restrictions apply.

connections has minimum impact on the implementation
complexity The mechanism is capable of supp~rting a Barge
number of simultaneously transmitting sources. Furthermore, a
large range of relative weights can be supported.

111. HARDWARE MODLJEE ARCHITECTURE

The proposed approximation to weighted fair queueing has
been implemented in a queueing unit. Fig. S . illustrates the
architecture of the queueing unit, and how the queueing unit
can be used together with a switch unit.

Dynanzic maximum rule
frufic risapingper povr

~wghterd fair queuemg 1 Round Robin
\

xi -- 155

3 15s
M b l S

L

Queueing 1Jnit.q in smtch ekiiient

Fig 5 Architecture of swtch element implementing the presented
weighted fair queueing approximation

The connections can be mapped to one of 16 weighted fair
queueing modules that are implemented per input queueing
unit. A module consists of a weighted fair queueing
approximation, and a traffic shaping mechanism for dynamic
control of the maximum output rate from the module.
Backpressure from the switch unit to the input queueing units
adjusts the transmission rate from the weighted fair queueing
modules to the total load per switch unit output port.

Fig. 6. VLSI architecture of the weighted fair queueing unit

155
-b Mh/s

The queueing units is based on a VLS% design with a block of
external S W memory. The architecture 0% the K S I design i s
illustrated in Fig. 6.

The design implements the following: Input//Outpu% Line i/f9
DatdAddress ctrl for external S W i/f3 CPU i/f ~ modules for
bucket sorting, cell queueing, port scheduling and a global
control unit.

A. Bucker sort

The bucket sort controller inserts and removes timestamp and
connection identifier pairs from buckets. The buckets are
searches for non-empty buckets, and spacing time is updated.

B. Cell queueing

The queue controller maintains per-connections cell queues.
Cells are discarded when the queues are full. The allocation of
b d e r length is controlled via external CPU interface. Queue
length is allocated from a pool of cell buffers, shared by all
connections.

C. Port scheduler

The output from the weighted fair queueing modules are
scheduled with a round robin discipline. If a module has any
non-empty per-connection cell queues, the weighted fair
queueing approximation will decide from which queue the next
cell is transmitted. Incoming cell that are not mapped to any of
the modules, are passed directly from input to output of the
queueing unit.

D. GIobal ctd

A central contxoll unit (not shown in) implements a stare
machine, that controls the other modules.

E. Line i / f

The incoming line interface implements an 8 bit parallel
synchronous interface. Synchronization to the incoming cell
flow is performed and mis-matched cells are discarded. The cell
labels are decoded. The outgoing line interface implements a 8
bit parallel synchronous interface with control signals for an
external FIFO module.

F. External memory i / f

The external SRAM interface consists of an address bus
controller, and a data bus controller. Data for write operations
are multiplexed and memory addresses are calculated. The
databus is 48 bit wide, and the address bus 21 bits wide. The
data bus controller implements a hamming parity
codingldecoding, capable of detecting and correcting single bit
errors.

G. CP I/ if

The VLSI design implements app. 50 registers that can be
accessed by an external processor unit in the MC68000 series.
Readwrite accesses are with SI4 CPU cycles. A single bit
interrupt is included. The interface implements registers for
CPU access to the external SRAM.

684

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:35:01 UTC from IEEE Xplore. Restrictions apply.

IY IMPLEMENTATION DETAILS

The management of the bucket sort mechanism is ilhstrated
in Fig. 7. A bucket consists of head and tail pointers to ip. linked
list of bucket entries. The bucket is empty if both these pointers
are nil. A bucket entry consists: of a connection identifier, a
timestamp offset and a pointer to another bucket entry

the

where b is the bucket number. It is therefore sufficient to store a
timestamp offset in the bucket entry. If N connectioins are
supported, there must be a total of N bucket entries. A bucker
entry is idle for every connection queue that i s empty. Two
global head and tail pointers, IdleEntryHead and ldleEm@Tail
maintain a linked list of idle bucket entries.

The bottleneck in the bucket soirt mechanism's scalability for
speed, is the search for the next nlon-empty bucket, which must
be performed per cell slot period. In the worst case, all buckets
must be scanned, which will require a relatively large bucket
memory access bandwidth. In order to reduce the memory
bandwidth demands, a single bit status flag indicating w:hether
a bucket i s empty or non-empty is maintained. When searching
for a non-empty bucket, the single bit status flags are scanned.

The organization of the per-connection queues is illustrated in
Fig. S. Every connection maintains a queue length counter and
a maximum queue length value. Incoming cells are discarded
when queue length is equal to maximum queue length. The cell
queues are maintained as linked lists. Every connections
maintains head and tail pointers to a linked list of cells buffers.
Two global pointers, IdleCellHead and IdleCellTail, maintain a
linked list of idle cell buffers.

Fig. 8. The
...

Fig. 7. The memory organization of'thle bucket sorting mechanism.

Every bucket defines a timestamp base ab , , from which
timestamp can be calculated as follows:

cell

memory organization of 'the per-cmnection cell queues

The total imemory requirement is a function of the maximum
number of c:onnections N. the number of buckets B, length of
the timewidow Tw,,,dow and the maximum per-connection cell
queue length. Table IV illustrates memory size and bandwidth
access for the different memory blocks used to implement
weighted fair queueing. The memory size is for a single port

TABLE IV
MEMORY REQUIREMENTS

P N=2048, B=128, TwIndow=8192, Qmax=32768
2 external memory interface can support max 200k cell buffers

The bucket empty status flags and bucket memory require a
relatively small amount of memory, and consumes a relatively
large part of the total memory access bandwidth. This memory
is therefore well suited to be realized as on-chip memory in a
VLSI design. The memory for the bucket entries, queue ctrli and
cell buffers is well suited for realization as stand alone memory
external to the %SI design, because of the relatively large
memory size.

The problem of implementing linked lists, is that the entire
list must be re-initialized when bit errors; occurs. If extra parity
bit for error detection and correction is added to the memory
interface, e.g. a hamming parity coding, the stability of the
design can be increased significantly.

V. VLSI IMPLEMENTATION

The VLSI design was implemented in <a lpm CMOS process,
using a standard cell layout approach. The design process was
fully automated, with gate level synthesis from a VHDL
description. The VLSI characteristics are presented in Table V.

685

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:35:01 UTC from IEEE Xplore. Restrictions apply.

TABLE V
VLSI DESIGN S m r

Technology
Die size 83x8,s m2
Transistor count 130k
Power supply 5.0V

Pin counVpackage type 174lPGA 179
Operating clock frequency 23MHz
Module Gate count estimate’
Cell queue management 1900
Bucket sort mechanism 3100
Port scheduling 2500
Line i/f 2100
External SRAM access ctrl 2500

1 . 0 ~ CMOS standard cell layout

Power consumption PSW

DFF Register is equivalent to 3.5 NAND gates

It should be noted that the gate count cost for the per-
connection queue management controller and bucket son
mechanism which implements the weighted fair queueing
approximation is relatively %ow (app. 5000 gates). The design
implements a large degree of pipeline structures. If sub-micron
technology is available, major parts of the pipelining can be
removed, and the total gate count can be reduced with app.
25%.

VI” CQNCLLJSION

This paper evaluates a sophisticated cell scheduling and queue
management method known as Weighted Fair Queueing.
Weighted fair queueing has swong tbeoretkal supportt, and can
provide several advantages that are interesting with the
evohtion of new complex A’FM service classes. A special focus
was made on the practical realization of weighted fair queueing.
It has been illustrated how the theoretical model can be
approximated. A complete queueing unit implementing
weighted fair queueing and realized as a MLSI compont~~t has
been presented. The presented design has shown that it i s
possible to approximate weighted fair queueing with a model
that can be realized at relatively IOW implementation cost and
complexity.

REFERENCES

ITV-% Recommendation 1.371, “Traffic Control and Congestion Control in B-
%SDN”,july 1995
The ATM Foruq “Traffic management specification, version 4.0”, June 1995
J. Nagle 1987. “Qn packet switches with infinite storage”, YEEE Transactions
on Communications, 35:435-438, 1987.
A. Demers, S.Keshav and S.Sbenker. “Analysis and simulation of a fais
queueing algeritha”. In ACM SIGCOM ‘89, 1989
J.W. Roberts. “Virtual spacmg for Flexible Traffic Control”
S.Jamaloddin Golestani. “A Self-clocked Fair Queuing Scheme for Broadband
Applications”. I INFOCOM ‘94.
Bryan Lyles. “Bed Effort Traffic aka “Class-Y” aka =PI”. COST 242
Seminar, L’Aquila, 27-28 September 9994.
H.S.Chao. “A novel architecture for queue management in the ATM netw~rk”.
IEEE JSAC, 9(7): 1.110-1 118. September 1991

686

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:35:01 UTC from IEEE Xplore. Restrictions apply.

