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O N  THE USE OF A PRUNING PRIOR FOR 
NEURAL NETWORKS 

Cyril Goutte* 
Department of Mathematical Modeling - Bygn. 349 

Technical University of Denmark 
DK-2800 Lyngby, Denmark 

Phone: $45 4525 5738 
Fax: $45 4288 0117 

E-mail: gout te@ei. dtu. dk 

Abstract. We adress the problem of using a regularization prior that 
prunes unnecessary weights in a neural network architecture. This prior 
provides a convenient alternative to traditional weight-decay. Two ex- 
amples are studied to support this method and illustrate its use. First 
we use the sunspots benchmark problem as an example of time series 
processing. Then we adress the problem of system identification on a 
small artificial system. 

OVERVIEW 

It  is well known that the use of a regularization term during optimization 
improves the general accuracy of the model obtained. In the case of neu- 
ral networks, regularization is most often used through the addition of a 
weight-decay term to the cost function in order to improve the generaliza- 
tion abilities of the solution [5]. Other methods for improving these abilities 
include pruning, a.long the lines of OBD [6]. 

These techniques have been applied to a wide variety of problems, including 
time series and system identification. In this paper, we analyse the use of 
another regularization term, due to [Ill, which is supposed to have some 
pruning capabilities [3 ] .  After presenting this technique, we illustrate its use 
on both time series-the well known sunspots benchmark-and a system 
identification problem. 

The results obtained tend to illustrate in a convincing way the effect of this 
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prior on 1e;sriiing. 

PRUNING PRIOR 

Neural networks have been applied extensively to many kinds of problems. 
Among those, we will here consider time series modelling and system identi- 
fication, which constitute important applications of signal processing. . 

The basic neural network model we will consider here is the multi-layered 
perceptrons model, with one hidden layer. This neural network model, having 
n~ inputs, 7 1 ~  hidden units and one output', contains p = (711 + 2) n~ + 1 
parameters. We will write these parameters wji for the weight going from 
input i to the hidden cell j ,  and Wj for the weight goi.ng from hidden cell j 
to the output. The response of the network to an input 2 = [2i]l, , , , ,nI is: 

where 12 is a-usually sigmoid-Lransfer function. W, and the t u j o  are the 
biases of the model. 

The parameter identification procedure ltnowii as training is performed by 
optimizing a cost function including two terms: 

C(w)  = S(2u)  + @qw) ( 2 )  

where the first part of the right-hand side, S ( w ) ,  is the usual average quadra- 
tic cost calculated on N input-output examples ( ~ ( ~ 1 ,  Y(~)), that is: S(w) = 

( ~ ( ~ 1  - f w  (d'))) . A regularization term R( w) has been added to 
S(w).  This is known as formal regularization [ 2 ] ,  the effect of which is weighed 
by parameter I .  An optimal value of exists, for which the generalization 
abilities of the solution that minimizes (2)  are superior to those of the un- 
regularized solution-and possibly equal when 

Another way to improve generalization, is to use pruning algorithms to get rid 
of unnecessary parameters. Among pruning methods fix neural networks, the 
most common are OBD [6] and OBS [4]. These methods physicaly decrease 
the capacity of the model in order to limit over-fitting,. They go by the name 
of structural regularization. 

In the case of weight-decay, the additional term coriresponds to a gaussian 
prior on the weight distribution. We will here address the use of a new kind of 
regularization function, introduced by [ll]. It corresponds to a Laplace prior 

2 

= 0. 

'We will consider the case of one output, as it is all we need for the applications 
we consider here. It should be understood, though, that this is not a limitation of the 
model, and by no means of the prior, but only a case-specific setting driven by practical 
considerations. 
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on the weights, and leads to the following expression for the regularized cost: 

where W is the set of weights on which we regularize, and is a positive 
regularization parameter. Interesting insight into the effect of this new prior 
ca.n be obtained by stating the obvious: at the minimum W of (3), the first 
derivatives are 0. For any non-zero weight, the first derivative of the quadratic 
cost reads: 

This means that the value of any nun zero parameter is found at a point 
where the sensitivity of the data misfit to this parameter is in accordance 
with (4). If this is not possible (i.e. the sensitivity is nowhere that high), the 
parameter is forced to 0 and pruned out of the network. We have studied this 
prior in [3] and analysed its joint formal and structural regularization effect 
on a simple case. 

On a practical aspect, the fact that, the regularization function is not analyt- 
ical in 0 might be seen as possibly causing problems. In order to analyse that 
particular point, we have compared results obtained with the absolute value 
to those obtained with an analytical approximation: 

re(.) = t l n  (2ch (:)) (5) 

that converges uniformly towards 1 . I. Results obtained using (5) have been 
slightly but consistently worse than wit,h the standard absolute value. The 
reason for this is not so clear. It is our understanding that for high values of 
6, the convergence should be similar to that of the standard absolute va,lue, 
but is hampered by numerical problems due the calculation of ch (z/t). On 
the other hand, for low values of E ,  the zone in weight space where the deriva- 
tive of (5) i s  close to zero is rather large, which suppresses the effect of the 
regularization before the weights are significantly close to 0. 

TIME SERIES PROCESSING 

In order to illustxate the use of the pruning prior for time series processing, we 
chose the well known sunspots data. These have been historicaly the first time 
series studied using an aut,oregressive model [12]. They have been established 
since [IO] as one of the benchmarks for time series prediction algorithms using 
neural networks. This series is a yearly record of average sunspot activity. It 
has been recorded since 1700, and displays a cyclic pattern with maxima. 
The time between these ranges from 7 to 17 years, with a median of 11 years. 

In accordance with previous work, we attempt to predict one value using the 
twelve previous ones, leading to a network with 12 input units and one output 
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First and second layer weight values 
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Figure 1: Top-left: input-to-hidden weights, by hidden unit,. Every hidden unit has 
13 incoming connections: weights 1Gl3 go to HU 1, weights 14-26 t o  HU 2, etc. 
Bottom-left: hidden-to-output weights. Right: the network. Dotted lines correspond 
to  connections that are one order of magnitude lower thein those in solid line. A 
vertical line through a cell corresponds to  an active threshold. 

unit. The available data constitutes 268 input-output pairs which are split 
into three sets. In the training set, we try to  predict activities from 1712 to  
1920, amounting to 209 examples, the test set uses data from 1921 to 1955 
(35 pairs), and the validation set runs from 1956 to 1979 (24 examples). 

Performance is measured in terms of average relative variance (arv), which 
is the ratio between the average squared error of the model and the variance 
of the data2 

The model we used is a 12-10-1 neural network, containing 141 paraine- 
ters, which can be considered as highly over-paramet*rized compared to the 
209 data in the training set. Training is performed by minimizing the cost 
function (3) as mentionned above. The optimization t#echnique is a standard 
conjugate gradient, similar to  [8], implemented under .the SN simulation soft- 
ware, froin Neuristique [l]. The regularization parameter is set with the help 
of the test set, by chosing the value of X that minimizes the test error, and 
t,he results are evaluated on the validation set. This scheme is not very sat- 
isfying, but has been adopted because it makes use of the 3 available sets in 
a manner similar to that of [lo]. 

21t should be noted here that the more widely used definition scales by the overall 
variance of the data. This gives artificially high values of the error on the validation set, 
where the intrinsic data variance is around twice as high as in the other sets. A more 
“proper” definitionof the arv quantity would relate the error of the model and the variance 
of the data calculated on the same set E,,, (yk - f ( ~ k ) ) ~  / (y, - (yk)kEs)2.  
In order to ease comparison with other papers, we will stick to the widely used definition. 
The proper numbers can be obtained by multiplying the given. values by 1.277, 0.903 and 
0.496 for the training, test and validation sets respectively. 
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Figure 2: Left: magnitude of the input-to-hidden weights. Notice the logarithmic 
y-axes. Right: distribution of the log absolute value of the weights. Notice the two 
modes corresponding to the pruned and not pruned weights. 

Results The parameters of one of the networks we obtained are displayed 
on figure 1. It can be seen that in the course of the learning procedure, 6 
of the hidden units have been disabled, and effectively pruned. Some of the 
input connections of the remaining hidden units have also been driven to 0 
(e.g. in the third hidden unit). The solution displayed here is typical of those 
we obtained: 3 units perform most of the work, with one (sometimes two) 
additional units contributing to a lesser extent. Concerning the inputs, the 
biggest contributions come from the first units, one middle unit (t  - 8 here) 
and the last two units. This pattern has already been observed by [9] using 
a completely different method. 

Figure 2 corroborates this by displaying the distribution of the weights. On 
the left panel, the magnitude plot shows that input weights of the sa,me 
network have been more or less clustered in two categories: roughly, the active 
weights are greater than when the rest are gathered below loe4 .  Again, 
we see that six hidden units have been effectively discarded. On the right, 
the empirical distribution of the absolute values of the weights of 10 networks 
trained with t,he pruning prior. With a logarithmic X-axis, it clearly displays 
two modes, one corresponding to  the pruned parameters, and the other to 
those that are still in use. Apart from its illustrative purpose, this provides a. 
way of empiricaly counting the number of effective parameters. This number 
can be used to  obtain an algebraic estimat,e of the generalization error. 

This leads us to discussing the empirical distribution of the weights. A natural 
idea would be tlo test this empirical distribution against the Laplace distri- 
bution that we used as a prior. I t  should be clear from the plots presented 
here that the solution parameters do not follow a Laplace distribution, and 
that is to be expected. As Bayesians are well aware, one should indeed not 
confuse the probability of the weights (the posterior, i.e. regularized cost) 
with the assumption on their distribution (the prior, i.e. the regularization 
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Model/arv 
Linear 
Weigend & al. [lo] 
Svarer & al. [9] 
Pruning prior 

Table 1: Comparison of the results obtained using different methods. The linear 
model includes an intercept. The results reported for Svarer ib al. are averaged over 
9 retrained networks; for the pruning prior we averaged over’ 10 network solutions. 

functional) 

Of higher interest is the consideration of the actual empirical distribution. IF- 
used a Kolmogorov-Smirnov test to check each of the 10 network solutions 
obtained against the empirical distribution obtained by the combination of 
the rest of them. The result of this test is that only two networks have 
significance level between 1 and 5 percents against the others. The rest has 
higher significance level, up to 90%. 

Train Test Valid at ion 

0.131 0.128 0.36 
0.082 0.086 0.35 

0.090 f 0.001 0.082 f 0.007 0.35 f 0.05 
0.082 f 0.001 0.082 f 0.002 0.357 5 0.013 

(1712-1920) (1921-1955) (1956-1979) 

Why aren’t there any 0 weight? It should be understood that (4) is valid 
for the exact minimum, obtained after a continuous optimization. In the case 
of numerical learning, we proceed by dicrete optimization, minimizing (3) 
in a number of steps, until the gradient is considered sufficiently small. An 
unnecessary parameter will typicaly endure oscillations around 0 with an 
amplitude decreasing with the step size. It will hence get closer to 0 but it is 
extremely unlikely that it will reach this exact value. This leads to one more 
remark: the technique known as “early stopping” is a poor combination with 
the pruning prior. By stopping before the minimum is reached, (4) will not 
stand, and therefore we have no guarantee on the pruning effect. 

Table 1 displays the overall results obtained using the ,zbove procedure com- 
pared with previously released results. The figures reported by [9] are av- 
eraged over 9 successful trainings, and the results reported for the pruning 
prior are averaged over 10 trainings. 

SYSTEM IDENTIFICATION 

In this section, we consider the example of a simple system taken from [7]: 

The left panel of figure 3 displays the behaviour of the system for two different 
kinds of input signal: a step signal of low frequency, anti a random step signal, 
which corresponds to the training sequence we use to  identify the parameters 
of the models below. 
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Output of the system I 

Training sequence 
Average of 10000 
St. dev. of 10000 

Output of the model 
~. . - . - - . - . I 

y(t - 1) y(t  - 2) u( t )  u(t - 1) 1 
0.053 0.247 0.469 -0.198 -0.060 
0.055 0.321 0.449 -0.117 -0.000 
0.060 0.082 0.073 0.079 0.051 

'._.._..._I 

0 SO 100 IS0 
-11 

Time steps 

'_.._.._..I . . . . . . . 

so 100 1 so 200 
Time stem 

Time steps I I Time stem 

Figure 3: Left: response of the system (6) to two different input signals. Right: re- 
sponse of a linear model, trained on the noisy bottom signal, to the same sequences. 
In all plots, the dashed line corresponds to the input signal and the solid line is the 
system/model response. The dotted line on the right is the modeling error, i.e. the 
difference between the solid line on the right (model) and its counterpart on the 
left (system). 

The random step signal is made out of steps of random lengths and amplitude. 
This type of signal allows for a better representation of the frequency domain 
than a purely random signal. For training, we generate 200 data using such 
a signal as input u( t ) .  The output y ( t )  is then corrupted by Gaussian noise, 
a = 0.5. This high value of the noise has been taken to comply with [7]. In 
order to evaluate the results, we generate a large validation set of 10,000 
data to  get a hopefully fairly accurate estimate of the generalization error. 
In all models below, we use the two last values of both u and y as input :  
[ y ( t  - l),  y( t  - 2), u( t ) ,  u(t  - l)] is the input vector of the model that attempts 
to predict y ( t ) .  

Linear modeling , We first perform a linear identification on our 200 noisy 
da.ta. The values of the parameters are gathered in the following table. We 
also mention the average and standard deviat,ion of the coefficients obtained 
in 10,000 experiments using as many different sequences of 200 noisy data. 

Predictably, the main linear influences come from ~ ( t )  and y( t  - 2).  The 
right panel of figure 3 displays the behaviour of the linear model for the same 
signals as before. It is clear that the linear model is unsatisfactory. 
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First and second layer weight values I Neural Network 
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Hidden-to-outDut weight no. Input layer Hidden layer Output layer 

Figure 4: Top-left: input-to-hidden weights, by hidden unit. Every hidden unit 
has 5 incoming connections: weights 1-5 go to HU 1, weights 6-10 to HU 2, etc. 
Bottom-left: hidden-to-output weights. Right: the network. Dotted lines correspond 
to connections that are one order of magnitude lower than those in solid line. A 
vertical line through a cell corresponds to an active threshold. 

Non-linear modeling The second step is to use a neural network to per- 
form the idlentification. We use a 4-10-1 network to  try to fit the data. This 
neural network model contains 61 parameters (including bias), which can be 
considered as slightly over-parameterized, compared to the 200 data a t  hand. 

Training is performed as a.bove, by minimizing the regularized cost (3). The 
regularization parameter is tuned using an additional set of 100 data, and 
the performance is evaluated on the 10,000 data of the validation set. 

Results Figure 4 displays a plot comparable to figure 1, but for our system 
identification case. One can see that among the 10 hidden units originaly in 
the model, only 1 remains in use. All the other hidden units have been pruned 
out of the network. 

The table 'below summarizes the results obtained by both the linear and the 
non-linear model 011 the noisy training set and on the non-noisy validation 
set. In this table, N N  means Neural Networks. The numbers indicated are 
the mean squared error (MSE) over the training (resp. validation) set3. 

Number of Training set Validation set 
parameters (200 data) (10,000 data) 

0.120 
0.122 
0.053 

Unregularized N N  0.095 
Regularized N N  0.150 

These resu.lts show that the non-linear regularized model predictably achieves 

3The performance on the validation set is higher as we chose to validate on non-noisy 
data, w h e n  the training set has a relatively high level of noise. 
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performance well above the linear model. Furthermore, the use of the pruning 
prior limits the number of parameters to roughly the same amount as for the 
linear model. The parameters show the same pattern as in the linear case: 
the main contribution arises from ~ ( t )  and y(t - 2).  The influence of the other 
inputs and the non-linearity of the model allow for an error that is half that  
of the linear model. 

SUMMARY 

This paper adressed the use of a regularization function that is different from 
the traditional weight-decay. It has sound motivation: it corresponds to the 
use of a Laplace distribution as a prior on the weight distribution, instead of' 
the usual Gaussian prior. This formal regularization also provides for struc- 
tural regularization by pruning unnecessary weights. The use of the pruning 
prior is backed by encouraging experiments performed both on time series 
processing, with the well-known sunspots series, and on system identificat,ion. 

Our experience with the pruning prior is generaly positive. Its use provides 
the expected results in a convincing way. 
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