

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

On the use of a pruning prior for neural networks

Goutte, Cyril

Published in:
Proceedings of the IEEE Signal Processing Society Workshop Neural Networks for Signal Processing

Link to article, DOI:
10.1109/NNSP.1996.548335

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Goutte, C. (1996). On the use of a pruning prior for neural networks. In Proceedings of the IEEE Signal
Processing Society Workshop Neural Networks for Signal Processing (pp. 52-61). IEEE. DOI:
10.1109/NNSP.1996.548335

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NNSP.1996.548335
http://orbit.dtu.dk/en/publications/on-the-use-of-a-pruning-prior-for-neural-networks(bda4933d-9168-4466-bba1-eaeab32a96da).html

O N THE USE OF A PRUNING PRIOR FOR
NEURAL NETWORKS

Cyril Goutte*
Department of Mathematical Modeling - Bygn. 349

Technical University of Denmark
DK-2800 Lyngby, Denmark

Phone: $45 4525 5738
Fax: $45 4288 0117

E-mail: gout te@ei. dtu. dk

Abstract. We adress the problem of using a regularization prior that
prunes unnecessary weights in a neural network architecture. This prior
provides a convenient alternative to traditional weight-decay. Two ex-
amples are studied to support this method and illustrate its use. First
we use the sunspots benchmark problem as an example of time series
processing. Then we adress the problem of system identification on a
small artificial system.

OVERVIEW

It is well known that the use of a regularization term during optimization
improves the general accuracy of the model obtained. In the case of neu-
ral networks, regularization is most often used through the addition of a
weight-decay term to the cost function in order to improve the generaliza-
tion abilities of the solution [5]. Other methods for improving these abilities
include pruning, a.long the lines of OBD [6].

These techniques have been applied to a wide variety of problems, including
time series and system identification. In this paper, we analyse the use of
another regularization term, due to [Ill, which is supposed to have some
pruning capabilities [3] . After presenting this technique, we illustrate its use
on both time series-the well known sunspots benchmark-and a system
identification problem.

The results obtained tend to illustrate in a convincing way the effect of this

*visiting student, 1995-1996. Permanent adress: Equipe connexionniste - LAFORIA,
UniversitC Paris VI, 4 place Jussieu, 75252 Paris Cedex 05, France. E-mail:
goutteOlaforia.ibp.fr

0-7803-3550-3/96$5.00@ 1996 52

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

http://goutteOlaforia.ibp.fr

prior on 1e;sriiing.

PRUNING PRIOR

Neural networks have been applied extensively to many kinds of problems.
Among those, we will here consider time series modelling and system identi-
fication, which constitute important applications of signal processing. .

The basic neural network model we will consider here is the multi-layered
perceptrons model, with one hidden layer. This neural network model, having
n~ inputs, 7 1 ~ hidden units and one output', contains p = (711 + 2) n~ + 1
parameters. We will write these parameters wji for the weight going from
input i to the hidden cell j , and Wj for the weight goi.ng from hidden cell j
to the output. The response of the network to an input 2 = [2i]l, , , , ,nI is:

where 12 is a-usually sigmoid-Lransfer function. W, and the t u j o are the
biases of the model.

The parameter identification procedure ltnowii as training is performed by
optimizing a cost function including two terms:

C(w) = S(2u) + @qw) (2)

where the first part of the right-hand side, S (w) , is the usual average quadra-
tic cost calculated on N input-output examples (~ (~ 1 , Y(~)), that is: S(w) =

(~ (~ 1 - f w (d'))) . A regularization term R(w) has been added to
S(w). This is known as formal regularization [2] , the effect of which is weighed
by parameter I . An optimal value of exists, for which the generalization
abilities of the solution that minimizes (2) are superior to those of the un-
regularized solution-and possibly equal when

Another way to improve generalization, is to use pruning algorithms to get rid
of unnecessary parameters. Among pruning methods fix neural networks, the
most common are OBD [6] and OBS [4]. These methods physicaly decrease
the capacity of the model in order to limit over-fitting,. They go by the name
of structural regularization.

In the case of weight-decay, the additional term coriresponds to a gaussian
prior on the weight distribution. We will here address the use of a new kind of
regularization function, introduced by [ll]. It corresponds to a Laplace prior

2

= 0.

'We will consider the case of one output, as it is all we need for the applications
we consider here. It should be understood, though, that this is not a limitation of the
model, and by no means of the prior, but only a case-specific setting driven by practical
considerations.

53

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

on the weights, and leads to the following expression for the regularized cost:

where W is the set of weights on which we regularize, and is a positive
regularization parameter. Interesting insight into the effect of this new prior
ca.n be obtained by stating the obvious: at the minimum W of (3), the first
derivatives are 0. For any non-zero weight, the first derivative of the quadratic
cost reads:

This means that the value of any nun zero parameter is found at a point
where the sensitivity of the data misfit to this parameter is in accordance
with (4). If this is not possible (i.e. the sensitivity is nowhere that high), the
parameter is forced to 0 and pruned out of the network. We have studied this
prior in [3] and analysed its joint formal and structural regularization effect
on a simple case.

On a practical aspect, the fact that, the regularization function is not analyt-
ical in 0 might be seen as possibly causing problems. In order to analyse that
particular point, we have compared results obtained with the absolute value
to those obtained with an analytical approximation:

re(.) = t l n (2ch (:)) (5)

that converges uniformly towards 1 . I. Results obtained using (5) have been
slightly but consistently worse than wit,h the standard absolute value. The
reason for this is not so clear. It is our understanding that for high values of
6, the convergence should be similar to that of the standard absolute va,lue,
but is hampered by numerical problems due the calculation of ch (z/t). On
the other hand, for low values of E , the zone in weight space where the deriva-
tive of (5) i s close to zero is rather large, which suppresses the effect of the
regularization before the weights are significantly close to 0.

TIME SERIES PROCESSING

In order to illustxate the use of the pruning prior for time series processing, we
chose the well known sunspots data. These have been historicaly the first time
series studied using an aut,oregressive model [12]. They have been established
since [IO] as one of the benchmarks for time series prediction algorithms using
neural networks. This series is a yearly record of average sunspot activity. It
has been recorded since 1700, and displays a cyclic pattern with maxima.
The time between these ranges from 7 to 17 years, with a median of 11 years.

In accordance with previous work, we attempt to predict one value using the
twelve previous ones, leading to a network with 12 input units and one output

54

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

First and second layer weight values

L-

2 r I

-20 20 40 60 80 100 120
Input-to-hidden weight no.

I
- 2 L - 3 4 6 8 10

Hidden-to-output weight no.

Neural Network
Y(t-l)\

Input layer Hidden layer Output layer

Figure 1: Top-left: input-to-hidden weights, by hidden unit,. Every hidden unit has
13 incoming connections: weights 1Gl3 go to HU 1, weights 14-26 t o HU 2, etc.
Bottom-left: hidden-to-output weights. Right: the network. Dotted lines correspond
to connections that are one order of magnitude lower thein those in solid line. A
vertical line through a cell corresponds to an active threshold.

unit. The available data constitutes 268 input-output pairs which are split
into three sets. In the training set, we try to predict activities from 1712 to
1920, amounting to 209 examples, the test set uses data from 1921 to 1955
(35 pairs), and the validation set runs from 1956 to 1979 (24 examples).

Performance is measured in terms of average relative variance (arv), which
is the ratio between the average squared error of the model and the variance
of the data2

The model we used is a 12-10-1 neural network, containing 141 paraine-
ters, which can be considered as highly over-paramet*rized compared to the
209 data in the training set. Training is performed by minimizing the cost
function (3) as mentionned above. The optimization t#echnique is a standard
conjugate gradient, similar to [8], implemented under .the SN simulation soft-
ware, froin Neuristique [l]. The regularization parameter is set with the help
of the test set, by chosing the value of X that minimizes the test error, and
t,he results are evaluated on the validation set. This scheme is not very sat-
isfying, but has been adopted because it makes use of the 3 available sets in
a manner similar to that of [lo].

21t should be noted here that the more widely used definition scales by the overall
variance of the data. This gives artificially high values of the error on the validation set,
where the intrinsic data variance is around twice as high as in the other sets. A more
“proper” definitionof the arv quantity would relate the error of the model and the variance
of the data calculated on the same set E,,, (yk - f (~ k)) ~ / (y, - (yk)kEs)2.
In order to ease comparison with other papers, we will stick to the widely used definition.
The proper numbers can be obtained by multiplying the given. values by 1.277, 0.903 and
0.496 for the training, test and validation sets respectively.

55

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

log abolute value of input-to-hidden weights

L-ddId 4 -2 0

lorlwl

Figure 2: Left: magnitude of the input-to-hidden weights. Notice the logarithmic
y-axes. Right: distribution of the log absolute value of the weights. Notice the two
modes corresponding to the pruned and not pruned weights.

Results The parameters of one of the networks we obtained are displayed
on figure 1. It can be seen that in the course of the learning procedure, 6
of the hidden units have been disabled, and effectively pruned. Some of the
input connections of the remaining hidden units have also been driven to 0
(e.g. in the third hidden unit). The solution displayed here is typical of those
we obtained: 3 units perform most of the work, with one (sometimes two)
additional units contributing to a lesser extent. Concerning the inputs, the
biggest contributions come from the first units, one middle unit (t - 8 here)
and the last two units. This pattern has already been observed by [9] using
a completely different method.

Figure 2 corroborates this by displaying the distribution of the weights. On
the left panel, the magnitude plot shows that input weights of the sa,me
network have been more or less clustered in two categories: roughly, the active
weights are greater than when the rest are gathered below loe4 . Again,
we see that six hidden units have been effectively discarded. On the right,
the empirical distribution of the absolute values of the weights of 10 networks
trained with t,he pruning prior. With a logarithmic X-axis, it clearly displays
two modes, one corresponding to the pruned parameters, and the other to
those that are still in use. Apart from its illustrative purpose, this provides a.
way of empiricaly counting the number of effective parameters. This number
can be used to obtain an algebraic estimat,e of the generalization error.

This leads us to discussing the empirical distribution of the weights. A natural
idea would be tlo test this empirical distribution against the Laplace distri-
bution that we used as a prior. I t should be clear from the plots presented
here that the solution parameters do not follow a Laplace distribution, and
that is to be expected. As Bayesians are well aware, one should indeed not
confuse the probability of the weights (the posterior, i.e. regularized cost)
with the assumption on their distribution (the prior, i.e. the regularization

56

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

Model/arv
Linear
Weigend & al. [lo]
Svarer & al. [9]
Pruning prior

Table 1: Comparison of the results obtained using different methods. The linear
model includes an intercept. The results reported for Svarer ib al. are averaged over
9 retrained networks; for the pruning prior we averaged over’ 10 network solutions.

functional)

Of higher interest is the consideration of the actual empirical distribution. IF-
used a Kolmogorov-Smirnov test to check each of the 10 network solutions
obtained against the empirical distribution obtained by the combination of
the rest of them. The result of this test is that only two networks have
significance level between 1 and 5 percents against the others. The rest has
higher significance level, up to 90%.

Train Test Valid at ion

0.131 0.128 0.36
0.082 0.086 0.35

0.090 f 0.001 0.082 f 0.007 0.35 f 0.05
0.082 f 0.001 0.082 f 0.002 0.357 5 0.013

(1712-1920) (1921-1955) (1956-1979)

Why aren’t there any 0 weight? It should be understood that (4) is valid
for the exact minimum, obtained after a continuous optimization. In the case
of numerical learning, we proceed by dicrete optimization, minimizing (3)
in a number of steps, until the gradient is considered sufficiently small. An
unnecessary parameter will typicaly endure oscillations around 0 with an
amplitude decreasing with the step size. It will hence get closer to 0 but it is
extremely unlikely that it will reach this exact value. This leads to one more
remark: the technique known as “early stopping” is a poor combination with
the pruning prior. By stopping before the minimum is reached, (4) will not
stand, and therefore we have no guarantee on the pruning effect.

Table 1 displays the overall results obtained using the ,zbove procedure com-
pared with previously released results. The figures reported by [9] are av-
eraged over 9 successful trainings, and the results reported for the pruning
prior are averaged over 10 trainings.

SYSTEM IDENTIFICATION

In this section, we consider the example of a simple system taken from [7]:

The left panel of figure 3 displays the behaviour of the system for two different
kinds of input signal: a step signal of low frequency, anti a random step signal,
which corresponds to the training sequence we use to identify the parameters
of the models below.

57

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

Output of the system I

Training sequence
Average of 10000
St. dev. of 10000

Output of the model
~. . - . - - . - . I

y(t - 1) y(t - 2) u(t) u(t - 1) 1
0.053 0.247 0.469 -0.198 -0.060
0.055 0.321 0.449 -0.117 -0.000
0.060 0.082 0.073 0.079 0.051

'._.._..._I

0 SO 100 IS0
-11

Time steps

'_.._.._..I

so 100 1 so 200
Time stem

Time steps I I Time stem

Figure 3: Left: response of the system (6) to two different input signals. Right: re-
sponse of a linear model, trained on the noisy bottom signal, to the same sequences.
In all plots, the dashed line corresponds to the input signal and the solid line is the
system/model response. The dotted line on the right is the modeling error, i.e. the
difference between the solid line on the right (model) and its counterpart on the
left (system).

The random step signal is made out of steps of random lengths and amplitude.
This type of signal allows for a better representation of the frequency domain
than a purely random signal. For training, we generate 200 data using such
a signal as input u(t) . The output y (t) is then corrupted by Gaussian noise,
a = 0.5. This high value of the noise has been taken to comply with [7]. In
order to evaluate the results, we generate a large validation set of 10,000
data to get a hopefully fairly accurate estimate of the generalization error.
In all models below, we use the two last values of both u and y as input :
[y (t - l), y(t - 2), u(t) , u(t - l)] is the input vector of the model that attempts
to predict y (t) .

Linear modeling , We first perform a linear identification on our 200 noisy
da.ta. The values of the parameters are gathered in the following table. We
also mention the average and standard deviat,ion of the coefficients obtained
in 10,000 experiments using as many different sequences of 200 noisy data.

Predictably, the main linear influences come from ~ (t) and y(t - 2). The
right panel of figure 3 displays the behaviour of the linear model for the same
signals as before. It is clear that the linear model is unsatisfactory.

58

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

First and second layer weight values I Neural Network

I

. J
2 4 6 8 IO -0.5'

Hidden-to-outDut weight no. Input layer Hidden layer Output layer

Figure 4: Top-left: input-to-hidden weights, by hidden unit. Every hidden unit
has 5 incoming connections: weights 1-5 go to HU 1, weights 6-10 to HU 2, etc.
Bottom-left: hidden-to-output weights. Right: the network. Dotted lines correspond
to connections that are one order of magnitude lower than those in solid line. A
vertical line through a cell corresponds to an active threshold.

Non-linear modeling The second step is to use a neural network to per-
form the idlentification. We use a 4-10-1 network to try to fit the data. This
neural network model contains 61 parameters (including bias), which can be
considered as slightly over-parameterized, compared to the 200 data a t hand.

Training is performed as a.bove, by minimizing the regularized cost (3). The
regularization parameter is tuned using an additional set of 100 data, and
the performance is evaluated on the 10,000 data of the validation set.

Results Figure 4 displays a plot comparable to figure 1, but for our system
identification case. One can see that among the 10 hidden units originaly in
the model, only 1 remains in use. All the other hidden units have been pruned
out of the network.

The table 'below summarizes the results obtained by both the linear and the
non-linear model 011 the noisy training set and on the non-noisy validation
set. In this table, N N means Neural Networks. The numbers indicated are
the mean squared error (MSE) over the training (resp. validation) set3.

Number of Training set Validation set
parameters (200 data) (10,000 data)

0.120
0.122
0.053

Unregularized N N 0.095
Regularized N N 0.150

These resu.lts show that the non-linear regularized model predictably achieves

3The performance on the validation set is higher as we chose to validate on non-noisy
data, w h e n the training set has a relatively high level of noise.

59

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

performance well above the linear model. Furthermore, the use of the pruning
prior limits the number of parameters to roughly the same amount as for the
linear model. The parameters show the same pattern as in the linear case:
the main contribution arises from ~ (t) and y(t - 2). The influence of the other
inputs and the non-linearity of the model allow for an error that is half that
of the linear model.

SUMMARY

This paper adressed the use of a regularization function that is different from
the traditional weight-decay. It has sound motivation: it corresponds to the
use of a Laplace distribution as a prior on the weight distribution, instead of'
the usual Gaussian prior. This formal regularization also provides for struc-
tural regularization by pruning unnecessary weights. The use of the pruning
prior is backed by encouraging experiments performed both on time series
processing, with the well-known sunspots series, and on system identificat,ion.

Our experience with the pruning prior is generaly positive. Its use provides
the expected results in a convincing way.

ACKNOLEDGEMENT

This work was performed thanks to a grant from the Danish Rector's Con-
ference. Acknoledgements are gratefully directed to Patrick Gallinari for co-
ments on a earlier draft of this paper.

I am especialy indebted to Lars Kai Hansen for numerous comments and
ideas related to this study.

REFERENCES

[l] L. Bottou and Y . Le Cun. SN: A simulator for connectionist, models. In
NeuroNimes 88, pages 371-382, Nimes, France, 1988.

[2] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and
J . Hopfield. Large automatic learning, rule extraction, and generaliza-
tion. Complex Systems, 1:877-922, 1987.

[3] C. Goutte and L. K. Hansen. Regularization with a pruning prior. Neu-
ral Networks, submitted 1995. preprint available at ftp://ei.dtu.dk/.

[4] B. Hassibi and D. G. Stork. Second order derivatives for network prun-
ing: Optimal brain surgeon. In S.J. Hanson, J .D. Cowan, and C.L. Giles,
editors, Advances in Neural Information Processing Systems,
volume 5 of NIPS, pages 164-171. Morgan Kaufmann, 1993.

60

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

ftp://ei.dtu.dk

[5] A . Krogh and J. A. Hertz. A simple weight, decay can improve gener-
alization. In J. E. Moody, S. J. Banson, and R. P. Lippman, editors,
Advances in Neural Information Processing Systems, volume 4
of NIPS, 1992.

[6] Y. Le Cun, J . S. Denker, and S. A. Solla. Optimal brain damage. In
D. S. Touretzky, editor, Advances in Neural Information Process-
ing Systems, volume 2 of NIPS, pages 598-605. Morgan-Kaufmann,
1990.

[7] L. Ljung, J . Sjoberg, and T. McKelvey. On the use of regularization in
system identification. Technical Report 1379, Department of Electrical
Engineering, Linkoping University, S-58 1 83 Linkoping, Sweden, 1992.

[SI W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C. Cambridge University Press, 2nd edition,
1992.

[9] C. Svarer, L.K. Hansen, and J . Larsen. On design and evaluation of
tapped-delay neural network architectures. In H.R. Berenji et al., edi-
tor, IEEE International Conference on Neural Networks, IC”,
pages 46-51, Piscataway, N J , 1993. IEEE.

[lo] A S. VVeigend, B. A. Huberman, and D. E. Rumelhart. Predicting the
future: a connectionist approach. International .Journal of Neural
Systems, 1(3):193-210, 1990

[ll] P. M. Williams Bayesian regularization and pruning using a laplace
prior. Neural Computation, 7(1):117-143, 1995.

[la] G . U . Yule. On a inethod of investigating periodicities in disturbed series
with special reference to Wolfer’s sunspot numbers Philos. Trans. R.
Soc. Lond. Ser. A , 226:267, 1927.

61

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 11:29:10 UTC from IEEE Xplore. Restrictions apply.

