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Abstract 

A set of tools for Computer-Aided Neuro-Control System 
Design (CANCSD) has been developed for the MATLAB 
environment. The tools can be used for construction and 
simulation of a variety of neural network based control 
systems. The design methods featured in the toolkit are: 
direct inverse control, internal model control, feedforward, 
feedback linearization, optimal control, instantaneous line- 
arization, and nonlinear predictive control. Furthermore, 
the toolkit has been given a flexible design which allows 
for incorporation of the user’s personal control algorithms. 

1. Introduction 

In this paper we discuss an engineering tool for design of 
control systems for processes which are hard to model in a 
deductive fashion. Our approach to the problem has been 
the typical system identification approach: 1) Conduct an 
experiment with the process to acquire a set of data and use 
this to infer a model of the process. 2) Design a control 
system for the identified model. Whenever possible, it is 
recommended to rely on the linear system identification 
techniques [7] followed by a conventional controller design 
[3]. However, when this strategy fails to work, neural net- 
works are often recommended instead (1161, [5]). This is 
due to their excellent ability to model nonlinear systems, 
which has been reported on several occasions [15]. While 
there seemed to be a lack of generic tools for neural net- 
work based control system design we decided to develop 
some ourselves. This paper presents the result of our efforts 
- The NNCTRL toolkit. 

Having decided to attempt a neural network strategy for 
solving a particular control problem, different approaches 
are possible: 
e Model based or not model based. 
e A network used directly as the controller or an indirect 

design based on a neural network model of the process. 

While there may be opposing opinions on whether or not it 
is a good idea to let a neural network implement the actual 
controller, most strategies are model based and thus require 

a neural network model of the process. A typical working 
procedure for design of model based controllers with neu- 
ral networks can be divided into the following three major 
tasks (which are not necessarily performed independently): 

System Identification. That is, to infer a process model 
from a set of data collected in an experiment. 
Based on the identified model, construct a controller 
(which might be a neural network as well) and simulate 
the closed-loop system. This is done in order select a 
suitable control design and to tune the design parame- 
ters. 

IB Implementation in a real-time system and application to 
the real process. 

While the NNSYSID toolbox described in [IO] was de- 
signed explicitly for solving the system identification task, 
the NNCTRL toolkit presented in this paper has been de- 
veloped to assist the control engineer in solving the second 
task. The toolkit is developed in MATLAB due the excel- 
lent data visualization features and its support for simula- 
tion of dynamic systems. It has also been a motivation that 
MATLAB is extremely popular in the control engineering 
community. Apart from the NNSYSID toolbox the toolkit 
requires the Signal Processing toolbox provided by the 
Mathworks, Inc. Although not a vital requirement it is also 
an advantage if SIMULINK@ is available. If it is not pres- 
ent MATLAB’s build-in ODE solver is used instead. 

0 

The toolkit has been given a structure that facilitates incor- 
poration of new control concepts. This is an attractive fea- 
ture if the ones provided in advance are not sufficent for 
the problem under consideration, or if the user simply 
would like to test new ideas Furthermore, since all the 
code is written as ‘m-files’, it is very easy to understand 
and modify the existing code if desired. 

The paper begins by describing the fundamental program 
structure shared by the different neural network based con- 
trol systems. The functions in the toolkit are then presented 
by category according to type of control system to which 
they belong. Finally some comments on the real-time per- 
spectives are given. 
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2. The Basic Concept 

--* 

- 

Main loop begin 
Compute reference Simulink, Matlab 

Compute output from process 

(Update I Design controller 
weights) for next sample 

End loop 
Plot simulation results 

or neural net 
Compute control model 

Time updates 

Each of the boxes in fig. 1 symbolizes a MATLAB script 
file or function. The three basic components are: 

A function describing the process to be controlled. The 
process can be specified as either a SIMULINK model, 
a MATLAB function containing the differential equa- 
tions, or a neural network model of the process. The 
SIMULINK and MATLAB options are of course only 
relevant when a physical model exists. 
A MATLAB script file containing initializations speci- 
fied by the user. Some initializations typically required 
are: choice of reference signal, sampling frequency, 
name of SimulinkMATLAB function implementing the 
process, PID or neural network based controller, design 
parameters for the controller. This file has a prespeci- 
tied name and format associated with the type of con- 
trol system. The name is always concluded by the let- 
ters init.m (for example it is called invinitm in direct 
inverse control and npcinit. m in nonlinear predictive 
control). When working with NNCTRL a “template” 
initialization file is copied to the working directory and 

modified to comply with the application under consid- 
eration. 
The main program which automatically reads the ini- 
tialization file and simulates the process. This program 
usually contains the letters c0n.m in its name to em- 
phasize that it is the control system simulation program 
(for example invconm for direct inverse control). 

3. Implemented Control Systems 

In this chapter the different types of controllers imple- 
mented in the NNCTRL toolkit are briefly explained. This 
includes: control with inverse models, feedforward, input- 
output linearization, optimal control, controllers based on 
instantaneous linearization, and nonlinear predictive con- 
trol. 

Control with Inverse Models 
The most fundamental neural network based control system 
designs are propably those using the “inverse” of the proc- 
ess as the controller. The idea is, that if the process can be 
described by 

y(t + 1) = g(y(t),.. . , y ( t  - n + I),u(t),.. .,u(t - m))  

a network is trained as the inverse of the process: 

i ( t )  = 2-l (y(t + I ) ,  y(t), . . ., y( t  - n + l),u(t - I), u(t - m)) 

The inverse model is subsequently applied as controller for 
the proces by inserting the desired output, the reference 
r(t+l), instead of the output y(t+l). There are several ref- 
erences on this principle. See for example [12], [4], and 

In relation to the training of inverse models and simulation 
of control systems incorporating these, the toolkit provides 

General training of inverse models. 
Specialized back-prop training of inverse models. 
File with design parameters for speciull. 
Specialized training with simplified recursive 
Gauss-Newton method. 
File with design parameters for speciuZ2. 
Specialized training, recursive Gauss-Newt. met. 
Function for evaluating inverse models. 
Program for simulating direct inverse control. 
File with design parameters for invcon. 
Program for simulating internal model control. 
File with design parameters for imccon. 
Program for simulating PID+feedfonvard control. 
File with design parameters for ffcon. 

le following files: 
general 
special1 
invinitl 
special2 

invinit2 
special3 
invsim 
invcon 
invinit 
imccon 
inicinit 
ffcon 
finit 

Two methods have been implemented to support the estab- 
lishment of inverse models: general training and special- 
ized training [12]. In general training a network is trained 
off-line to minimize the criterion (8 specifies the network 
weights): 
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N 
J ,  (6) = z (w - 4tlQ))’ 

1=l 

An experiment is performed and a set of corresponding 
inputs and outputs are stored. Subsequently the function 
general, which applies a version of the Levenberg- 
Marquardt method [I], is invoked. 

Specialized training is an on-line algorithm related to 
model-reference adaptive control. The idea is minimize the 
criterion: 

Before the training of the inverse model is initiated a model 
of the process is required. This is created with the 
NNSYSID toolbox [ IO] from a data set collected in an ini- 
tial experiment. Unlike general training, the control design 
is thus “model-based’’ when specialized training is applied 
to build the inverse model. Details on the principle can be 
found in [4]. Three different versions of the scheme have 
been implemented: One using a recursive back-propagation 
algorithm for minimizing the criterion (speciull), a more 
rapid that is using a recursive Gauss-Newton algorithm 
(occationally referred to as a recursive prediction error 
method, [7 ] )  (special3), and one that uses a simplified re- 
cursive Gauss-Newton algorithm (speciul2). The typical 
working procedure is to initialize the inverse model with 
general training and the proceed with specialized training 
to fine-tune the network. 
Once an inverse model has been trained, there are different 

an inverse model used as feedforward controller can be 
excellent for improving the reference tracking. This has 
been proposed in [17] and [16]. The concept is imple- 
mented inflcon. 
The functions for specialized training have been imple- 
mented in a relatively general fashion to allow for model- 
reference control. That is, the following criterion is mini- 
mized: 

The user must the specify the desired closed-loop model 
H(q-’). 

Inp~t-Output Linearization 
Feedback linearization is a common strategy for controlling 
certain classes of nonlinear processes. The toolkit offers a 
simple example of a discrete feedback linearizing control- 
ler that are based on a neural network model of the process. 
The NNSYSID toolbox contains a function, which identi- 
fies models with the following structure: 

S ( t )  = f ( y ( t ) ,  . ..,y(t - n + I), u(t - I), . . . , u(t - m + I)) + 
g(y(t), . . ., y ( t  - n + I), u(t - I), . . ., u(t - m + l))u(t) 

with f and g being two separate networks. An input-output 
linearizing controller is obtained by calculating the controls 
according to: 

w(t)  - f ( y ( t ) , . .  ., y( t  - n + l),u(t - I),. .., u(t - m + 1)) 
g(y(t) ,... , y ( t  - n +I) ,  u(t - I), ... ,u(t - m + 1)) 

u(t) = 

in which it can be for purposes* The Selecting the virtual control, w, as an appropriate linear 
combination of past outputs plus the reference allows for toolkit provides three different concepts: 

an arbitrarily assignmeni of the closed-loop poles. As for 
the model-reference controller, feedback-linearization is 
thus a nonlinear counterpart to pole with full 
zero cancellation (see [ 171). 

Direct inverse control: 
As the name indicates, the inverse model is used as the 
controller directly. 

fifblcon 
f l f i n i t  

Simulate control by feedback linearization. 
File with design parameters forfilcon. 

u(t) = 2-l (r(t + I), y ( t ) ,  . . ., y ( t  - n + I), u(t - I), u(t - m))  

invcon is used for simulating the closed-loop system, while 
design parameters are specified in the file invinit. 

Internal model control: 
This design is discussed in [4]. The control signal is syn- 
thesized from a “forward” model of the process as well an 
inverse model. An attractive property of this design is that 
it produces an off-set free steady-state response despite the 
process is affected by a constant disturbance. It is imple- 
mented in the file imccon. 

Feedforward 
Using inverse models for feedback control leads to a dead- 
beat type control, which is unsuitable in most cases. If a 
PID-controller already has been tuned for stabilizing the 
process (which is common in many industrial applications), 

Q p ~ i ~ ~ l  Control 
A simple training algorithm for design of optimal control- 
lers has been implemented by a small modification of the 
specialized training algorithm. The modification consists of 
an additional term which are added to the criterion to pe- 
nalize squared controls: 

The training of the network is very similar to specialized 
training and is also performed on-line. As for specialized 
training, a “forward” model of the process must be identi- 
fied in advance with the NNSYSID toolbox in advance. 
The following files are provided: 
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opttruin 
optrinit 
optcon 
optinit 

Train optimal controller with recur. Gauss-Newt. 
File with design parameters for opttrain. 
Simulate optimal control (similar to invcon). 
File with design parameters for optcon. 

Instantaneous Linearization 
In [161 a technique for linearizing neural network models 
around the current operating point is pursued. The idea is 
summarized in the following. Assume that a deterministic 
model of the process under consideration has been estab- 
lished with the NNSYSID-toolbox: 

y( t )  = g(y(t - 1 )  ,..., y(t - n),u(t - d ) , . .  .,u(t - d - m)) 

The "state" z(t) is then introduced as a vector composed of 
the arguments to the function g: 

z(t)  = [y(t - 1) '.. y(t - n) u(t - d )  ... u(t - d - m)]' 

At time t=z linearize g around the current state z(z) to ob- 
tain an approximate model: - y( t )=-a ,y"( t - l ) -  ...- a,y"(t-n) 

+b,u"(t - d)+. . .+b,u"(t - d - m) 

where 

bi = 

and 

y"(t - i )  = y(t - i )  - y ( z  - i )  
Z(t - i )  = u(t - i )  - u(z - i )  

Seperating the portion of the expression containing compo- 
nents of the current state vector, the approximate model 
may alternatively be written as: 

Y(t) = ( 1  - A(q-'))y(t) + q-"B(q-' )u(t) + 

where the bias term, c(z), is determined by 

c(z) = y(z)+a,y(z-l)+..+a,y(z-n) 
-b,,u(z - d)--.-b,u(z - d - m )  

and 

A(q-') = 1 + a,q-'+. . .+a,,q-" 

B(4- l )  = b,, + b,q-'+ ...+ b,q-" 

The approximate model may thus be interpreted as a linear 
model affected by a DC-disturbance, C(Z), depending on 
the operating point. Clearly, it is straightforward to apply 
this principle for design of control systems. The control 
systems that result from this are in some sense gain 

scheduling controllers with an infinite schedule. As op- 
posed to the previously mentioned concepts, the controller 
is in this case not directly implemented by a neural net- 
work. The following files are associated with this principle: 

lincon 

lininit 
diophunt 

dio 
upccon 

apcinit 

Simulate control using approximate pole place- 
ment or minimum variance. 
File with design parameters for lincon. 
General function for solving Diophantine equa- 
tions. 
Prepares problem for being solved by diophunt. 
Simulate control using approximate generalized 
predictive control. 
File with design parameters for upccon. 

Approximate pole placement and minimum variance: 
Together lincon, lininit, and diophant have adopted this 
idea for realization of different controllers. Three different 
concepts have been implemented: 

Pole placement with all zeros canceled. The zeros are 
canceled and the controller is designed to make the 
closed-loop system follow a desired transfer function 
model. 
Pole placement with no zeros canceled. Only the poles 
of the closed-loop system are moved to prescribed lo- 
cations. 
Minimum Variance. Based on the assumption that the 

bias, ((z), is integrated white noise: <(z) = - , the 

so-called MV1-controller has been implemented. This 
controller is designed to minimize: 

A 

where I, specifies the information gathered up to time t: 

I ,  = {Y(t>, y(t - I), . . ., y(O),  u(t - I), . * .,U(O)} 
The functions diu and diophant are provided for solving 
the Diophantine equations. 

Approximate GPC: 
The idea behind generalized predictive control (GPC), 
which is implemented in apccon and apcinit, is at each 
iteration to minimize a criterion of the following type: 

N z  N" 
J, ( t ,U( t ) )=  C [ w ( t + i ) - - ( t + i ) ] 2  +pC[Au( t+ i - l ) ] '  

r=N, ,=I 

with respect to the N,, future controls 

U(t )  = [u(t) . .. u(t + Nu - l)]' 

and subject to the constraint 

Au(t+i)=O, Nu 4 i < N , - d  

N I  is denoted the minimum costing horizon, Nz the predic- 
tion (or maximum costing) horizon, and Nu the (maximum) 
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control horizon. p is a weighting factor penalizing varia- 
tions in the controls. C(Z), is modelled as integrated white 
noise and the future predictions are determined as the 
minimum variance predictions. The optimization problem, 
which must be solved at each sample, results in a sequence 
of future controls, U(t) .  From this sequence the first com- 
ponent, u(t), is then applied to the process. [ 111 details the 
concept and describes an application. 

Nonlinear Predictive Control 
The instantaneous linearization technique has its shortcom- 
ings if the nonlinearities are not relatively smooth. Unfor- 
tunately practically relevant criterion based design methods 
founded directly on the nonlinear neural network model are 
few. One of the most promising strategies is a nonlinear 
version of the predictive controller discussed above. Only 
this time the predictions of future outputs are not obtained 
through a linearization, but from succesive recursion of the 
nonlinear model: 

j ( t  + kit) = g( j ( t  + k - 11,. . . , j ( t  + k - min(k,n)), 

YO>, . . . , Y O  - max(n - k,O)), 
u ( t - d  +k),...,~(t- d - m + k ) )  

The optimization problem is in this case much more diffi- 
cult to solve and an iterative search method is required. It is 
referred to [9] for a derivation of the control law and for a 
discussion of relevant optimization algorithms. The toolkit 
provides two methods for solving the problem: A Quasi- 
Newton method applying the BFGS-algorithm for updating 
the inverse Hessian and full-Newton based Levenberg- 
Marquardt method. 

I nucconl Simulate NPC using a Ouasi-Newton method. ” -  
npccon2 

npcinit File with design parameters. 

Simulate NPC using a Newon based Levenberg- 
Marquardt method. 

4. Perspectives on Real-Time Implementation 

The NNCTRL toolkit has been developed to comply with 
the Integrated Real-time Control and Simulation Tool 
(IRCST) developed at the Department of Automation, 
DTU. The design considerations behind the IRCST system 
and the basic structure of the system are described in this 
section. 
One of the primary objective when designing the IRCST 
system was to create a tool to make experimental verifica- 
tion more easily available to control algorithm developers. 
Experimental verification is a very important part of the 
control system design. However, in many cases it is omit- 
ted because of the inherent problems associated with labo- 
ratory setups, real-time computing, programming etc. The 
IRCST system attempts to solve some of these problems 
for the algorithm developers by offering a number of 
buildings blocks (i.e., C-functions) and a “template.” The 

template provides a structure for simulation and real-time 
code for the algorithm designers without enforcing con- 
straints and limiting the use of new algorithms and analysis 
methods. 
One important consideration in the design of IRCST has 
been the possibility of porting algorithms between different 
hardware platforms. In the implementation of the IRCST 
system great care has been taken to ensure the portability of 
the IRCST system to other real-time platforms than the 
ones it was originally designed for through a clear distinc- 
tion between platform dependent and platform independent 
code. There are not any other tools available with the same 
functionality, but several tools that address the same prob- 
lems. Some examples are ControlShell [14], Chi- 
merdOkina [2]  and Realtime Workshop [ 131. IRCST fa- 
cilitates datalogging, changing of design parameters and 
structural changes in the controller code. It supports algo- 
rithm portability, provides interfacing to data visualization 
and analysis tools in MATLAB. 

The use of IRCST 
The IRCST system consists of three components which can 
be used independently, but are most useful together: 

A simulation tool/template where the process, e.g., 
modelled using SIMULINK, can be investigated when 
different controllers are used. In the IRCST context this 
is where the NNCTRL toolkit fits in. In the NNCTRL 
version of the simulation template the proces to be 
controlled can also be represented by a pre-trained neu- 
ral network if no other model is available. The control 
algorithms are programmed as MATLAB scripts and 
also included. The template is based on a distinction in 
code and data (*con.m and *init.m files, respectively), 
meaning that the code normally should not be modified 
during simulation. If a reconfiguration is desired the 
corresponding parameter in the data portion is modi- 
fied. All changes are made in the initialization file while 
the control system simulation program is left untouched 
during normal simulations. 
A real-time tool/template, where the control algorithm 
programmed in C is included. The structure of this 
template is equivalent to the structure of the simulation 
template and is also based on the *init/*con concept. 
The transformation of the algorithm from MATLAB to 
C is supported by the third component. 
A methodology and a software library of platform inde- 
pendent functions coded in C corresponding to MAT- 
LAB functions that can support the transformation of 
MATLAB code to C code. The transformation of the 
control algorithm from MATLAB to C is done by the 
algorithm designer who has complete control over the 
process. Currently programs that automatically trans- 
lates MATLAB code to C or C++ code are being de- 
veloped [8] but none of these can be used at this point. 
The MATLAB compiler from Mathworks, Inc. is not 

a 
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useful in this case as it runs only on supported MAT- 
LAB platforms, which are normally not real-time plat- 
forms. 

Fig. 3 shows the relation between the simulation template 
and the real-time/C template. 

Matlab-script file 
with user specified simulation 
initializations 

Matlab graph 
window 

Matlab graph 
window 

Figure 3. Overall structure of IRCST. 
The user develops and tests the control algorithm in The 
MATLAEVSIMULINK portion of IRCST in the upper part 
of fig. 4. When the algorithm is performing satisfactorily it 
is translated to C and build into the real-time template for 
the relevant real-time hardware platform. From the parame- 
ters in the initialization file used during the simulation ex- 
periments, a binary MATLAB file is generated for reading 
the initialized variables into the real-time template. In that 
way exactly the same data is used for experiment in the 
laboratory as during the simulations. The real-time tem- 
plate writes user specified variables into binary MATLAB 
files, which in turn can be read into MATLAB, visualized 
and analyzed or compared to simulation results. It is simple 
to test new combinations using simulation before the use in 
real-time. 
The real-time and simulation templates of IRCST are used 
for different projects and courses at IAU by students as 
well as by the research staff. 

5. Conclusions 

A MATLAB toolkit for construction and simulation of 
neural network based control systems has been presented. 
The toolkit provides a number of ready-made examples of 
control systems which can be used directly. The different 
controllers are implemented in the same basic framework 
(or “template”) which is very easy to modify or extend. 
Therefore, the user can easily apply of the toolkit for test- 
ing hidher own controllers as well. 
The toolkit has been developed to comply with IRCST 
(Integrated Real-time Control and Simulation Tool) to al- 
low for a simple experimental verification of the different 
control systems. 
The NNCTRL toolkit is available from The Institute of 
Automation WWW site. The address is: 
http://www.iau.dtu.dk/Projects/proj/nnctrl.html 
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