

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

NNCTRL - a CANCSD toolkit for MATLAB(R)

Nørgård, Peter Magnus; Ravn, Ole; Poulsen, Niels Kjølstad; Hansen, Lars Kai

Published in:
Proceedings of the 1996 IEEE Symposium on Computer-Aided Control System Design

Link to article, DOI:
10.1109/CACSD.1996.555320

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nørgård, P. M., Ravn, O., Poulsen, N. K., & Hansen, L. K. (1996). NNCTRL - a CANCSD toolkit for MATLAB(R).
In Proceedings of the 1996 IEEE Symposium on Computer-Aided Control System Design (pp. 368-373). IEEE.
DOI: 10.1109/CACSD.1996.555320

http://dx.doi.org/10.1109/CACSD.1996.555320
http://orbit.dtu.dk/en/publications/nnctrl--a-cancsd-toolkit-for-matlabr(0dc8ef38-5661-450a-bb42-b87f552ab217).html

Proceedings of the 1996 IEEE International Symposium

Dearborn, MI September 15-18,1996
TA01 1O:OO on Computer-Aided Control System Design

M. N@rgaard*, 0. Ravn*, N.K. Poulsen**, & L.K. Hansen**

*Department of Automation, building 326. pmn, or@iau.dtu.dk
Department of Mathematical Modelling, building 32 1 . nkp, lkh@imm.dtu.dk

Technical University of Denmark (DTU), 2800 Lyngby, Denmark

**

Abstract

A set of tools for Computer-Aided Neuro-Control System
Design (CANCSD) has been developed for the MATLAB
environment. The tools can be used for construction and
simulation of a variety of neural network based control
systems. The design methods featured in the toolkit are:
direct inverse control, internal model control, feedforward,
feedback linearization, optimal control, instantaneous line-
arization, and nonlinear predictive control. Furthermore,
the toolkit has been given a flexible design which allows
for incorporation of the user’s personal control algorithms.

1. Introduction

In this paper we discuss an engineering tool for design of
control systems for processes which are hard to model in a
deductive fashion. Our approach to the problem has been
the typical system identification approach: 1) Conduct an
experiment with the process to acquire a set of data and use
this to infer a model of the process. 2) Design a control
system for the identified model. Whenever possible, it is
recommended to rely on the linear system identification
techniques [7] followed by a conventional controller design
[3]. However, when this strategy fails to work, neural net-
works are often recommended instead (1161, [5]). This is
due to their excellent ability to model nonlinear systems,
which has been reported on several occasions [15]. While
there seemed to be a lack of generic tools for neural net-
work based control system design we decided to develop
some ourselves. This paper presents the result of our efforts
- The NNCTRL toolkit.

Having decided to attempt a neural network strategy for
solving a particular control problem, different approaches
are possible:
e Model based or not model based.
e A network used directly as the controller or an indirect

design based on a neural network model of the process.

While there may be opposing opinions on whether or not it
is a good idea to let a neural network implement the actual
controller, most strategies are model based and thus require

a neural network model of the process. A typical working
procedure for design of model based controllers with neu-
ral networks can be divided into the following three major
tasks (which are not necessarily performed independently):

System Identification. That is, to infer a process model
from a set of data collected in an experiment.
Based on the identified model, construct a controller
(which might be a neural network as well) and simulate
the closed-loop system. This is done in order select a
suitable control design and to tune the design parame-
ters.

IB Implementation in a real-time system and application to
the real process.

While the NNSYSID toolbox described in [IO] was de-
signed explicitly for solving the system identification task,
the NNCTRL toolkit presented in this paper has been de-
veloped to assist the control engineer in solving the second
task. The toolkit is developed in MATLAB due the excel-
lent data visualization features and its support for simula-
tion of dynamic systems. It has also been a motivation that
MATLAB is extremely popular in the control engineering
community. Apart from the NNSYSID toolbox the toolkit
requires the Signal Processing toolbox provided by the
Mathworks, Inc. Although not a vital requirement it is also
an advantage if SIMULINK@ is available. If it is not pres-
ent MATLAB’s build-in ODE solver is used instead.

0

The toolkit has been given a structure that facilitates incor-
poration of new control concepts. This is an attractive fea-
ture if the ones provided in advance are not sufficent for
the problem under consideration, or if the user simply
would like to test new ideas Furthermore, since all the
code is written as ‘m-files’, it is very easy to understand
and modify the existing code if desired.

The paper begins by describing the fundamental program
structure shared by the different neural network based con-
trol systems. The functions in the toolkit are then presented
by category according to type of control system to which
they belong. Finally some comments on the real-time per-
spectives are given.

368

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:08:25 EST from IEEE Xplore. Restrictions apply.

2. The Basic Concept

--*

-

Main loop begin
Compute reference Simulink, Matlab

Compute output from process

(Update I Design controller
weights) for next sample

End loop
Plot simulation results

or neural net
Compute control model

Time updates

Each of the boxes in fig. 1 symbolizes a MATLAB script
file or function. The three basic components are:

A function describing the process to be controlled. The
process can be specified as either a SIMULINK model,
a MATLAB function containing the differential equa-
tions, or a neural network model of the process. The
SIMULINK and MATLAB options are of course only
relevant when a physical model exists.
A MATLAB script file containing initializations speci-
fied by the user. Some initializations typically required
are: choice of reference signal, sampling frequency,
name of SimulinkMATLAB function implementing the
process, PID or neural network based controller, design
parameters for the controller. This file has a prespeci-
tied name and format associated with the type of con-
trol system. The name is always concluded by the let-
ters init.m (for example it is called invinitm in direct
inverse control and npcinit. m in nonlinear predictive
control). When working with NNCTRL a “template”
initialization file is copied to the working directory and

modified to comply with the application under consid-
eration.
The main program which automatically reads the ini-
tialization file and simulates the process. This program
usually contains the letters c0n.m in its name to em-
phasize that it is the control system simulation program
(for example invconm for direct inverse control).

3. Implemented Control Systems

In this chapter the different types of controllers imple-
mented in the NNCTRL toolkit are briefly explained. This
includes: control with inverse models, feedforward, input-
output linearization, optimal control, controllers based on
instantaneous linearization, and nonlinear predictive con-
trol.

Control with Inverse Models
The most fundamental neural network based control system
designs are propably those using the “inverse” of the proc-
ess as the controller. The idea is, that if the process can be
described by

y(t + 1) = g(y(t),.. . , y (t - n + I),u(t),.. .,u(t - m))

a network is trained as the inverse of the process:

i (t) = 2-l (y(t + I) , y(t), . . ., y(t - n + l),u(t - I), u(t - m))

The inverse model is subsequently applied as controller for
the proces by inserting the desired output, the reference
r(t+l), instead of the output y(t+l). There are several ref-
erences on this principle. See for example [12], [4], and

In relation to the training of inverse models and simulation
of control systems incorporating these, the toolkit provides

General training of inverse models.
Specialized back-prop training of inverse models.
File with design parameters for speciull.
Specialized training with simplified recursive
Gauss-Newton method.
File with design parameters for speciuZ2.
Specialized training, recursive Gauss-Newt. met.
Function for evaluating inverse models.
Program for simulating direct inverse control.
File with design parameters for invcon.
Program for simulating internal model control.
File with design parameters for imccon.
Program for simulating PID+feedfonvard control.
File with design parameters for ffcon.

le following files:
general
special1
invinitl
special2

invinit2
special3
invsim
invcon
invinit
imccon
inicinit
ffcon
finit

Two methods have been implemented to support the estab-
lishment of inverse models: general training and special-
ized training [12]. In general training a network is trained
off-line to minimize the criterion (8 specifies the network
weights):

369

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:08:25 EST from IEEE Xplore. Restrictions apply.

N
J , (6) = z (w - 4tlQ))’

1=l

An experiment is performed and a set of corresponding
inputs and outputs are stored. Subsequently the function
general, which applies a version of the Levenberg-
Marquardt method [I], is invoked.

Specialized training is an on-line algorithm related to
model-reference adaptive control. The idea is minimize the
criterion:

Before the training of the inverse model is initiated a model
of the process is required. This is created with the
NNSYSID toolbox [IO] from a data set collected in an ini-
tial experiment. Unlike general training, the control design
is thus “model-based’’ when specialized training is applied
to build the inverse model. Details on the principle can be
found in [4]. Three different versions of the scheme have
been implemented: One using a recursive back-propagation
algorithm for minimizing the criterion (speciull), a more
rapid that is using a recursive Gauss-Newton algorithm
(occationally referred to as a recursive prediction error
method, [7]) (special3), and one that uses a simplified re-
cursive Gauss-Newton algorithm (speciul2). The typical
working procedure is to initialize the inverse model with
general training and the proceed with specialized training
to fine-tune the network.
Once an inverse model has been trained, there are different

an inverse model used as feedforward controller can be
excellent for improving the reference tracking. This has
been proposed in [17] and [16]. The concept is imple-
mented inflcon.
The functions for specialized training have been imple-
mented in a relatively general fashion to allow for model-
reference control. That is, the following criterion is mini-
mized:

The user must the specify the desired closed-loop model
H(q-’).

Inp~t-Output Linearization
Feedback linearization is a common strategy for controlling
certain classes of nonlinear processes. The toolkit offers a
simple example of a discrete feedback linearizing control-
ler that are based on a neural network model of the process.
The NNSYSID toolbox contains a function, which identi-
fies models with the following structure:

S (t) = f (y (t) , . ..,y(t - n + I), u(t - I), . . . , u(t - m + I)) +
g(y(t), . . ., y (t - n + I), u(t - I), . . ., u(t - m + l))u(t)

with f and g being two separate networks. An input-output
linearizing controller is obtained by calculating the controls
according to:

w(t) - f (y (t) , . . ., y(t - n + l),u(t - I),. .., u(t - m + 1))
g(y(t) ,... , y (t - n +I) , u(t - I), ... ,u(t - m + 1))

u(t) =

in which it can be for purposes* The Selecting the virtual control, w, as an appropriate linear
combination of past outputs plus the reference allows for toolkit provides three different concepts:

an arbitrarily assignmeni of the closed-loop poles. As for
the model-reference controller, feedback-linearization is
thus a nonlinear counterpart to pole with full
zero cancellation (see [171).

Direct inverse control:
As the name indicates, the inverse model is used as the
controller directly.

fifblcon
f l f i n i t

Simulate control by feedback linearization.
File with design parameters forfilcon.

u(t) = 2-l (r(t + I), y (t) , . . ., y (t - n + I), u(t - I), u(t - m))

invcon is used for simulating the closed-loop system, while
design parameters are specified in the file invinit.

Internal model control:
This design is discussed in [4]. The control signal is syn-
thesized from a “forward” model of the process as well an
inverse model. An attractive property of this design is that
it produces an off-set free steady-state response despite the
process is affected by a constant disturbance. It is imple-
mented in the file imccon.

Feedforward
Using inverse models for feedback control leads to a dead-
beat type control, which is unsuitable in most cases. If a
PID-controller already has been tuned for stabilizing the
process (which is common in many industrial applications),

Q p ~ i ~ ~ l Control
A simple training algorithm for design of optimal control-
lers has been implemented by a small modification of the
specialized training algorithm. The modification consists of
an additional term which are added to the criterion to pe-
nalize squared controls:

The training of the network is very similar to specialized
training and is also performed on-line. As for specialized
training, a “forward” model of the process must be identi-
fied in advance with the NNSYSID toolbox in advance.
The following files are provided:

370

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:08:25 EST from IEEE Xplore. Restrictions apply.

opttruin
optrinit
optcon
optinit

Train optimal controller with recur. Gauss-Newt.
File with design parameters for opttrain.
Simulate optimal control (similar to invcon).
File with design parameters for optcon.

Instantaneous Linearization
In [161 a technique for linearizing neural network models
around the current operating point is pursued. The idea is
summarized in the following. Assume that a deterministic
model of the process under consideration has been estab-
lished with the NNSYSID-toolbox:

y(t) = g(y(t - 1) ,..., y(t - n),u(t - d) , . . .,u(t - d - m))

The "state" z(t) is then introduced as a vector composed of
the arguments to the function g:

z(t) = [y(t - 1) '.. y(t - n) u(t - d) ... u(t - d - m)]'

At time t=z linearize g around the current state z(z) to ob-
tain an approximate model: - y(t)=-a ,y"(t - l) - ...- a,y"(t-n)

+b,u"(t - d)+. . .+b,u"(t - d - m)

where

bi =

and

y"(t - i) = y(t - i) - y (z - i)
Z(t - i) = u(t - i) - u(z - i)

Seperating the portion of the expression containing compo-
nents of the current state vector, the approximate model
may alternatively be written as:

Y(t) = (1 - A(q-'))y(t) + q-"B(q-')u(t) +

where the bias term, c(z), is determined by

c(z) = y(z)+a,y(z-l)+..+a,y(z-n)
-b,,u(z - d)--.-b,u(z - d - m)

and

A(q-') = 1 + a,q-'+. . .+a,,q-"

B(4- l) = b,, + b,q-'+ ...+ b,q-"

The approximate model may thus be interpreted as a linear
model affected by a DC-disturbance, C(Z), depending on
the operating point. Clearly, it is straightforward to apply
this principle for design of control systems. The control
systems that result from this are in some sense gain

scheduling controllers with an infinite schedule. As op-
posed to the previously mentioned concepts, the controller
is in this case not directly implemented by a neural net-
work. The following files are associated with this principle:

lincon

lininit
diophunt

dio
upccon

apcinit

Simulate control using approximate pole place-
ment or minimum variance.
File with design parameters for lincon.
General function for solving Diophantine equa-
tions.
Prepares problem for being solved by diophunt.
Simulate control using approximate generalized
predictive control.
File with design parameters for upccon.

Approximate pole placement and minimum variance:
Together lincon, lininit, and diophant have adopted this
idea for realization of different controllers. Three different
concepts have been implemented:

Pole placement with all zeros canceled. The zeros are
canceled and the controller is designed to make the
closed-loop system follow a desired transfer function
model.
Pole placement with no zeros canceled. Only the poles
of the closed-loop system are moved to prescribed lo-
cations.
Minimum Variance. Based on the assumption that the

bias, ((z), is integrated white noise: <(z) = - , the

so-called MV1-controller has been implemented. This
controller is designed to minimize:

A

where I, specifies the information gathered up to time t:

I , = {Y(t>, y(t - I), . . ., y(O), u(t - I), . * .,U(O)}
The functions diu and diophant are provided for solving
the Diophantine equations.

Approximate GPC:
The idea behind generalized predictive control (GPC),
which is implemented in apccon and apcinit, is at each
iteration to minimize a criterion of the following type:

N z N"
J, (t ,U(t))= C [w (t + i) - - (t + i)] 2 +pC[Au(t+ i - l)] '

r=N, ,=I

with respect to the N,, future controls

U(t) = [u(t) . .. u(t + Nu - l)]'

and subject to the constraint

Au(t+i)=O, Nu 4 i < N , - d

N I is denoted the minimum costing horizon, Nz the predic-
tion (or maximum costing) horizon, and Nu the (maximum)

37 1

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:08:25 EST from IEEE Xplore. Restrictions apply.

control horizon. p is a weighting factor penalizing varia-
tions in the controls. C(Z), is modelled as integrated white
noise and the future predictions are determined as the
minimum variance predictions. The optimization problem,
which must be solved at each sample, results in a sequence
of future controls, U(t) . From this sequence the first com-
ponent, u(t), is then applied to the process. [111 details the
concept and describes an application.

Nonlinear Predictive Control
The instantaneous linearization technique has its shortcom-
ings if the nonlinearities are not relatively smooth. Unfor-
tunately practically relevant criterion based design methods
founded directly on the nonlinear neural network model are
few. One of the most promising strategies is a nonlinear
version of the predictive controller discussed above. Only
this time the predictions of future outputs are not obtained
through a linearization, but from succesive recursion of the
nonlinear model:

j (t + kit) = g(j (t + k - 11,. . . , j (t + k - min(k,n)),

YO>, . . . , Y O - max(n - k,O)),
u (t - d +k),...,~(t- d - m + k))

The optimization problem is in this case much more diffi-
cult to solve and an iterative search method is required. It is
referred to [9] for a derivation of the control law and for a
discussion of relevant optimization algorithms. The toolkit
provides two methods for solving the problem: A Quasi-
Newton method applying the BFGS-algorithm for updating
the inverse Hessian and full-Newton based Levenberg-
Marquardt method.

I nucconl Simulate NPC using a Ouasi-Newton method. ” -
npccon2

npcinit File with design parameters.

Simulate NPC using a Newon based Levenberg-
Marquardt method.

4. Perspectives on Real-Time Implementation

The NNCTRL toolkit has been developed to comply with
the Integrated Real-time Control and Simulation Tool
(IRCST) developed at the Department of Automation,
DTU. The design considerations behind the IRCST system
and the basic structure of the system are described in this
section.
One of the primary objective when designing the IRCST
system was to create a tool to make experimental verifica-
tion more easily available to control algorithm developers.
Experimental verification is a very important part of the
control system design. However, in many cases it is omit-
ted because of the inherent problems associated with labo-
ratory setups, real-time computing, programming etc. The
IRCST system attempts to solve some of these problems
for the algorithm developers by offering a number of
buildings blocks (i.e., C-functions) and a “template.” The

template provides a structure for simulation and real-time
code for the algorithm designers without enforcing con-
straints and limiting the use of new algorithms and analysis
methods.
One important consideration in the design of IRCST has
been the possibility of porting algorithms between different
hardware platforms. In the implementation of the IRCST
system great care has been taken to ensure the portability of
the IRCST system to other real-time platforms than the
ones it was originally designed for through a clear distinc-
tion between platform dependent and platform independent
code. There are not any other tools available with the same
functionality, but several tools that address the same prob-
lems. Some examples are ControlShell [14], Chi-
merdOkina [2] and Realtime Workshop [131. IRCST fa-
cilitates datalogging, changing of design parameters and
structural changes in the controller code. It supports algo-
rithm portability, provides interfacing to data visualization
and analysis tools in MATLAB.

The use of IRCST
The IRCST system consists of three components which can
be used independently, but are most useful together:

A simulation tool/template where the process, e.g.,
modelled using SIMULINK, can be investigated when
different controllers are used. In the IRCST context this
is where the NNCTRL toolkit fits in. In the NNCTRL
version of the simulation template the proces to be
controlled can also be represented by a pre-trained neu-
ral network if no other model is available. The control
algorithms are programmed as MATLAB scripts and
also included. The template is based on a distinction in
code and data (*con.m and *init.m files, respectively),
meaning that the code normally should not be modified
during simulation. If a reconfiguration is desired the
corresponding parameter in the data portion is modi-
fied. All changes are made in the initialization file while
the control system simulation program is left untouched
during normal simulations.
A real-time tool/template, where the control algorithm
programmed in C is included. The structure of this
template is equivalent to the structure of the simulation
template and is also based on the *init/*con concept.
The transformation of the algorithm from MATLAB to
C is supported by the third component.
A methodology and a software library of platform inde-
pendent functions coded in C corresponding to MAT-
LAB functions that can support the transformation of
MATLAB code to C code. The transformation of the
control algorithm from MATLAB to C is done by the
algorithm designer who has complete control over the
process. Currently programs that automatically trans-
lates MATLAB code to C or C++ code are being de-
veloped [8] but none of these can be used at this point.
The MATLAB compiler from Mathworks, Inc. is not

a

372

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:08:25 EST from IEEE Xplore. Restrictions apply.

useful in this case as it runs only on supported MAT-
LAB platforms, which are normally not real-time plat-
forms.

Fig. 3 shows the relation between the simulation template
and the real-time/C template.

Matlab-script file
with user specified simulation
initializations

Matlab graph
window

Matlab graph
window

Figure 3. Overall structure of IRCST.
The user develops and tests the control algorithm in The
MATLAEVSIMULINK portion of IRCST in the upper part
of fig. 4. When the algorithm is performing satisfactorily it
is translated to C and build into the real-time template for
the relevant real-time hardware platform. From the parame-
ters in the initialization file used during the simulation ex-
periments, a binary MATLAB file is generated for reading
the initialized variables into the real-time template. In that
way exactly the same data is used for experiment in the
laboratory as during the simulations. The real-time tem-
plate writes user specified variables into binary MATLAB
files, which in turn can be read into MATLAB, visualized
and analyzed or compared to simulation results. It is simple
to test new combinations using simulation before the use in
real-time.
The real-time and simulation templates of IRCST are used
for different projects and courses at IAU by students as
well as by the research staff.

5. Conclusions

A MATLAB toolkit for construction and simulation of
neural network based control systems has been presented.
The toolkit provides a number of ready-made examples of
control systems which can be used directly. The different
controllers are implemented in the same basic framework
(or “template”) which is very easy to modify or extend.
Therefore, the user can easily apply of the toolkit for test-
ing hidher own controllers as well.
The toolkit has been developed to comply with IRCST
(Integrated Real-time Control and Simulation Tool) to al-
low for a simple experimental verification of the different
control systems.
The NNCTRL toolkit is available from The Institute of
Automation WWW site. The address is:
http://www.iau.dtu.dk/Projects/proj/nnctrl.html

References

[l l R. Fletcher, “Practical Methods of Optimization,”
Wiley, 1987.
121 M.W. Gertz, P.K. Khosla, “ONIKA Iconic Program-
ming Language and Human-Machine Interface,” Dept. of
Elec. and Comp. Eng. and the Robotics Institute, Carnigie-
Mellon University.
[3] A. Grace, A.J. Laub, J.N Little, C.M. Thompson ,
“Control System Toolbox User’s Guide,” The Mathworks,
Inc, 1992.
[4] K.J. Hunt, D. Sbarbaro, “Neural Networks for Nonlin-
ear Internal Model Control,” IEE Proceedings-D, Vol. 138,

[5] K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop,
“Neural Networks for Control Systems - A Survey,” Auto-
matica, Vol. 28, No. 6, pp. 1083-1 112, 1992.
[6] W.T. van Luenen, “Neural Networks for Control: on
Knowleige Representation and Learning,” Ph.D. Thesis,
Control Laboratory of Electrical Engineering, University of
Twente, Enschede, the Netherlands, 1993.
[7] L. Ljung,“System Identification - Theory for the User,”
Prentice-Hall, 1987.
[8] MATCOM, “MATCOM - a MATLAB to C++ transla-
tor and support libraries,” March ‘96 release, 1996.
[9] M. Nglrgaard, P.H. Sglrensen, “Generalized Predictive
Control of a Nonlinear System using Neural Networks,”
Preprints, 1995 International Symposium on Artificial Neu-
ral Networks, Hsinchu, Taiwan, pp. B1-33-40, 1995.
[IO] M. Nglrgaard, 0. Ravn, L.K. Hansen, N.K. Poulsen,
“The NNSYSID Toolbox - A MATLAB Toolbox for Sys-
tem Identification with Neural Networks,” accepted for the
1996 IEEE Symposium on Computer-Aided Control Sys-
tem Design, Dearborn, Michigan, USA, 1996.
[l l] M. Nglrgaard, P.H. Sglrensen, N.K. Poulsen, 0. Ravn,
& L.K. Hansen, “Intelligent Predictive Control of Nonlin-
ear Processes Using Neural Networks,” accepted for the
1 Ith IEEE Int. Symp. on Intelligent Control (ISIC), Dear-
born, Michigan, USA, 1996.
[12] D. Psaltis, A. Sideris, A.A. Yamamure, “A Multilay-
ered Neural Network Controller,” Control Sys. Mag., Vol.

[131 “Real-Time Workshop, User’s Guide, ” The Math-
Works, Inc, 1994.
[141 S.A. Schneider, V.W. Chen, G. Pardo-Castellote,
“ControlShell: a Real-Time Software Framework,” proc. of
the IEEE Int. Conf. on Robotics and Automation, 1994.
[15] J. Sjoberg, H. Hjalmerson, L. Ljung, “Neural Net-
works in System Identification,” Prep 10th IFAC symp.
SYSID, Copenhagen, Denmark. V01.2, pp. 49-71, 1994.
[161 0. Sglrensen,“Neural Networks in Control Applica-
tions,” Ph.D. Thesis. Aalborg University, Department of
Control Engineering, 1994.
[171 K.J. Astrom, B. Wittenmark, “Adaptive Control,” 2nd.
Edition, Addison-Wesley, 1995.

NO. 5, pp. 431-438, 1991.

8, NO. 2, pp. 17-21, 1988.

373

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 07:08:25 EST from IEEE Xplore. Restrictions apply.

http://www.iau.dtu.dk/Projects/proj/nnctrl.html

