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COULOMB DRAG: A PROBE OF ELECTRON INTERACTIONS 
IN COUPLED QUANTUM WELLS 

ANTTI-PEKKA JAUBO 
~ ~ k r o e ~ e k t ~ o n ~ k  Centret 
Technical University of Denmark, Bldg. 345east 
DK-2800 Lyngby, Denmark 

1. In t roduct ion  

As semiconductor devices shrink in size and in dimensionality, interactions 
between charge carriers become more and more important. There is a sim- 
ple physical reason behind this behavior: fewer carriers lead to less effective 
screening, and hence more stronger effective interactions. A point in case 
are one-dimensional systems (quantum wires): there electron-electron in- 
teractions may lead to a behavior, which is qualitatively different from the 
standard Fermi liquid bicture (Luttinger liquids). Electron-electron inter- 
actions also play B central role in the fractional quantum Mall  effect, which 
displays, an extremely rich ghysicd behavior, and remains a very active 
area for research. Thus there is a clear need for a better understanding 
of electron-electron interactions in dimensiondy reduced semiconductor 
structures. 

A standard method of studying the properties of semiconductor sam- 
ples is to perform transport measurements, with br without magnetic field. 
Elect ron-elec t ran interactions, however, often affect transport measurements 
only indirectly, and are often masked by other mechanisms. This difficulty 
can be overcome by studying double (or multiple) layer systems, as the 
following argument shows. Consider two systems containing mobile charge 
carriers so close to  each other that the charges in the two respective sub- 
systems feel the Coulomb forces originating from the other subsystem, and 
yet so far from each other that direct charge transfer, for example by tun- 
neling, between the two systems is not possible, Experimentd realizations 
of such systems are, for example, Coulomb coupled double quantum well 
systems [l, 21, arrangements where a 3D system is close to a 2D system [3], 
or two nearby quantum wires. A scattering event between a carrier in one 
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Figure I. Coulomb drag geometry. A carrier in the drive layer (“1”) scatters from state 
ki to a state ki E Pcl - q transferring momentum q to the probe layer (“2”) ,  where a 
carrier scatters from state kp to k; z kz + g .  In general, the scattering probability may 
also depend on the transferred energy, AE = ~(k:) - ~ ( k l ) .  

system and a carrier in the other system leads to  momentum transfer be- 
tween the two subsystems (see Fig. l). Thus, if a current is driven through 
oine of the systems (henceforth the driven system is denoted as layer I), 
then an induced current is dragged in the other subsystem (layer 2). Al- 
ternatively, if no current is allowed to  flow in layer 2, a voltage is induced. 
Due to momentum conservation the two particle number currents flow in 
the same direction. Since the mechanism for the Coulomb drag is due to 
cmier-carrier scattering the drag current is proportional to  the square of 
the effective interaction between the subsystems. The available phase space 
for electron-electron scattering tends to zero at low temperatures, and con- 
sequently one would expect Coulomb drag to decrease with decreasing tem- 
perature. This expectation follows from the Fermi Golden Rule expression 
for the electron-electron scattering rate, which can qualitatively be written 
a;t!.\ 
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At low temperatures, the two Pauli factors lead to a T2-dependence, and 
this behavior is approximately seen in experiments [l]. Note, however, that 
there are small, but important deviations from the simple T2-law; these 
deviations have been the topic of much recent interest [1, 41, and we shall 
comment them below. 

The possibility for Coulomb drag was realized already long ago [ 5 ,  61, 
and the recent experimental advances [I, 2, 31 have brought about a flurry 
of theoretical works. A number of different theoretical approaches has been 
proposed. These include (i) calculations based on the Boltzmann equation 
[l, 71, (ii) the memory function approach of Ref.[8], (iii) the momentum 
balance equation method [4], and (iv) diagramniatic linear response (Kubo 
formula) approaches [9, 181. In the present review we shall discuss two of 
these approaches: the semiclassical Boltzmann equation approach [ 71, and 
the Kubo formula [9]. The Boltzmarin approach has the advantage of be- 
ing quite transparent, while the Kubo approach is needed if one wishes to 
address effects. of quantum mechanical origin, such as weak localization or 
quantizing magnetic fields. What makes these theories particularly inter- 
esting is that they lead to definite predictions of new phenomena, that have 
not yet been seen experimentally. 

2. Boltzmalnn equation approach for Coulomb drag 

The central quantity, directly relevant to experiment, is the momentum 
rehxation rate 1 / ~ ,  which can also expressed as a transresistivity, p21 = 
m / ( n 2 e 2 r ~ )  (here n2 is the carrier density in the drag layer). The momen- 
tum relaxation rate is determined by setting up Coulomb coupled Boltz- 
mann equations for the two layers (the intra-layer scattering mechanisms 
are described with a relaxation time), and the linearized form of these cou- 
pled Boltzmann equations can be used to derive a balance equation between 
the induced electric field and the drag due to  the drive current. The cal- 
culations are described in detail in Refs.[7, 111, and here we just state the 
final result, and interpret it physically. The transresistivity is found t0 be 

(2, 
Here, {cx,f3} label the Cartesian coordinates, W12(q,w) is the effective dy- 
izamicdly screened interaction between the carriers in the two layers, and 
we have defined the function 
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Fzyure 2. Temperature dependence of the drag rate scaled by T 2 .  The full bold curve 
corresponds to calculations using the finite-T form of x (q ,w) ,  the dotted curve to US- 
ing the T = 0 form of x ,  and the short-dashed curve is based on the static screening 
approximation. Also shown are the plasmon-pole approximation estimztes for the acous- 
tic plasmon (ap) and optic plasmon (op) contributions to TO', and the sum of the two 
(opi-ap). For T 2 Q . ~ T F ,  this approximation becomes less reliable due to large Landau 
damping of the modes, and hence we have plotted the results with dashed lines. 

where pt is the mobility, and r(k) is the transport relaxation time. This 
result can be understood physically as follows. In the limit of a constant 
transport relaxation time, one finds that F"(q7 U )  --+ q"Imx(q, U ) ,  where 
is the polarization function. In RPA, for example, x is given by the Lindhard 
function. Thus, the transresistivity can be approximately written as p l z  cx 

d q  dwq2 X W 2  x Imx2/ sinh2(&)) where the different factors have the 
following interpretation: (i) q2 - momentum transfer; (ii) w 2  - effective 
interaction; and (ii) Bmx combined with the sinh-factor - phase-space (this 
term can be linked, via the fluctuation dissipation theorem, to the structure 
factor). Several authors have performed numerical calculations based on 
Eq.(2), and they are summarized in Fig. 2. The following features are 
noteworthy. (i) The overall drag rate, when scaled by T 2 ,  is not a constant, 
as the simple arguments presented in the introduction would suggest. (ii) 
When compared to the experiments of Re€.[1], one sees that the calculated 
low-temperature l / r ~  (2' < 6 K ,  or, referring to Fig. 2, T .< ?"'/lo) is 
about one-half of the experimentally observed rate. The probable cause 
for this underestimation are virtual phonon-mediated interactions, which 
are not ihcluded in the calculations of Fig. 2 [I, 41. Note, however, that 
the form of Eq.(2) is quite general: the particular form of the effective 
interaction has not yet been specified. (iii) More importantly, the drag 
rate is a very sensitive function of the screening model; thus one must use 
a fairly sophisticated polarization function (neither zero-temperature nor 
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static response functions are sufficient), and at low densities even RPA may 
fail [13]. (iv) Finally, Fig. 2 contains a striking prediction [11, 121: the drag 
rate is strongly enhanced at about T = 0.5T’. The enhancement is due 
to plasmons; thus Coulomb drag offers a means of directly probing the 
collective excitations of the double-layer system. To our knowledge, this 
enhancement has not yet been experimentally verified. 

If one wishes to  study quantum mechanical effects, such as weak local- 
ization, a more refined theoretical. method is needed, and we describe such 
an approach in the next section. 

3. Kubo formula approach to Coulomb drag 

The ICubo €orormula [14] expresses the conductivity tensor in terms of the 
retarded current - current correlation function 

where 

( 5 )  ITij f fP  ’ T (x - x‘, t - t’) = - iqt  - t’)([j$(x, t),$(X’, t‘)]) . 

Here (ij] indicate the subsystem, R is the external frequency, p ; ( x )  is the 
particle density in subsystem i, and j(x, t )  is the particle current operator. 

The evaluation of CY;! (which essentially gives pzl) proceeds through 
the following steps. (i) One uses the Matsubara formalism [14] to calculate 
the (imaginary-)time-ordered correlation function corresponding to  Eq.( 5 ) ;  
(ii) The transconductivity is expanded in powers of the interaction HI:! 
between the sybsystems, 

H12 = I’ d l . 1 1  dr2Pl(rl)U12(Pl - r2)p2(rz) > ( 6 )  

and, finally, (iii) the imaginary-time correlation function is analytically con- 
tinued to extract the retarded correlation function. The upshot of the anal- 
ysis is that the dc transconductivity for uniform systems can be written as 

x ~ ? ( s ,  g ;  w+,w-jaf(--q,  - g ;  -U-, --U+> . (7) 

where nngf~) is the Bose function, and the three-particle correlation function 
A is the analytic continuation of the Fourier-transform of 

A;(x ,  T ,  XI, T’, x”, 7’9) = - ( T 7 { j % ( X ,  7)&(X1, 7 ” ) )  . (8) 
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Fzgure 9. Diagram corresponding to  the current-cursent correlation function to sec- 
ond osder in the interlayer Coulomb interaction. The shaded triangles correspond to the 
three-body correlation functions &,z given in Eq.(7), the dashed lines to the interac- 
tion, the dotted lines to the external current operators, and the arrowheads indicate the 
direction of momentum and energy transfer. 

Fig. 3 shows the ~ ~ a g r a ~ ~ a t ~ c  representation of the t r a n s c ~ n ~ ~ c t i v i t y ~  sim- 
ilar fluctuation diagrams are known from superconductivity [15, 161, and 
from the microscopic theory of van, der Waals interactions [la,  181. It can 
be shown that Eq.(7) r ~ p ~ ~ d ~ c e s  the oltzmann results in the appropriate 
limit [9]. Further, Ref491 has shown that the weak locdzation corrections 
are small, and Ref.[ IO] has discussed a ~ ~ l ~ c a ~ ~ o n s  to § u ~ ~ ~ c o i ~ ~ u c t i ~ ~  drag. 
In the following section we outfine the calculation in a quantizing magnetic 
field. 

4. Coulomb 

The combination of electron-electron interaction and strong magnetic fields 
in tw0-dimensiond electron gases has provided an exciting venue of research 
for both e x p e ~ i ~ ~ ~ ~ t ~ s t s  and theorists over the past few decades [19J. One 
well-known example of this is the fractional quantum Ball effect, where the 
physics is determined by the subtle interplay between interactions and the 
large density of states caused by all the electrons being confined to the 
lowest Landau level. Thus, phenomena involving interelectron interactions 
in a B-field often produce surprising and interesting results. 

Since Coulomb drag displays rich physics, it is quite natural to ask 
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Figure 4. (a) The diagram corresponding to the density response function x. (b) The 
triangle diagram contribution to the 3-body response functiok A. The f and y are the 
charge and current vertices, respectively, and the labels M and N denote the LL’s. 

whether an applied magnetic field would introduce SQKE further interest- 
ing aspects. It turns out, however, that experiments are not easy, and only 
very recently the first preliminary results have begun to  emerge [ZO]. A sim- 
ilar situation exists on the theoretical side: it is not at all obvious whether 
standard theories are applicable in the presence of a strong magnetic field. 
However, the rigorous linear response theory described in the previous see- 
tion provides an ideal starting point for developing a theory €or magneto- 
Coulomb drag, and we have recently completed such an calculation [21]. In 
the remainder of this review we briefly sketch some of our central results. 

A pure system in a quantizing magnetic field has a singular density 
of slates, and it is necessary to include impurities to  avoid unphysical re- 
sults. In our diagrammatic language this implies that both screening (the 
“bubble” diagram) and the triangle diagram must be evaluated with vertex 
functions (see Fig. 4). This leads to quite involved calculations [21]; how- 
eve.r, many simplifications occur in the weak-scattering limit w,r >> l (here 
wC = eB/m is the cyclotron frequency and T is the impurity scattering 
time). In particular it is possible to link A with the x(q,w) shown in Fig. 
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Figure 5. Transresistivity p21 (solid lines) and and the thermally averaged DOS 
g = &a/8p (dashed, in arbitrary units) for (a) T = 0.6Km, and (b) T = 1.5K as a 
function of magnetic field in GaAs for density = 1.5 x 10'l cm-' (EF/ICB z 60 K ) ,  well 
separation d = 350 and zero well widths. N is the EL index, and hwG = E F  corresponds 
to B = 3.1T. While the g(B)  peaks in the middle o€ the Landau level, the interlayer 
coupling is weakest there (due to large screening), pushing the peaks in p2l towards the 
edges of the Land.au level bands. 

4(a): 

Eqs.(7) and (9) form the basis of our numericd. cdculations: the response 
function x is found by solving the appropriate vertex equation in the lad- 
der approximation, and A, as given by (9)) can be used in (7) to get the 
transconductivity, and hence bhe transresistivity. 

As remarked above, we expect the low-temperature transresistivity for 
fixed I' to be directly proportional to the product of the thermally averaged 
density of states of both layers, gl(B) xgz(B) ,  around the chemical potential 
p. Since the density of states is strongly enhanced over its zero-field value, 
one might expect that (i) JpijT(wc~ >> I)! >> JpgT(B = 011, and (ii) &:(Ed) 
should more or less simply reflect the shape of gI(B)gZ(B). 
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Fig. 5 shows the results of a calculation for &f(B) for two identical 
layers at  fixed densities. For comparison, we also show g ( b ) .  As expected, 

is very large: approximately 50-100 times larger than at B = 0. This is 
in qualitative agreement with recent experimental results [20]. Also, p;.;" is 
largest when p is in the bands of extended states, and suppressed when it 
is in between the extended bands. However, the shape of pzr is markedly 
different from g 2 ( B ) .  

We can understand this surprising behavior as follows. Recall that p21 

also depends on the interlayer coupling, i.e., also on the screening properties 
of the system. For two-dimensional electron gases the screened interaction 
varies inversely with g [22]. Therefore, increasing g(B) weakens the inter- 
layer coupling, implying that the terms 9192 and tend to  work in 
opposition. This results in the following scenario when B is changed. When 
p lies in the region of localized states below a Landau level band, p 2 1  is 
very small because very few electrons have sufficient energy to be excited 
into extended,states where they contribute to  the drag. As B is increased 
so that p moves into the Landau level band, the density of extended states 
increases, while the interlayer interaction is strong due to weak screening, 
resulting in a sharp rise in p21. However, as the magnetic field is further 
increased so that p moves closer towards the center of the Landau level and 
the density of states further increases, the screening becomes so effective 
that it more than compensates for the increase in density of states, leading 
to a reduction in p21. This competition of density of states and screening 
produces the unique shape of pzl(B). 

5 .  Conclusions 

We have reviewed recent developments in the theory sf Coulomb drag. 
calculations lead to  several predictions of effects not yet seen experimen- 
tally. We conclude that Coulomb drag, in particular when combined with 
magnetic fields, is a very versatile tool for directly probing interparticle 
interactions in dimensionally restricted systems. A further line for research 
could be the study of quantum wires: there the interactions may lead to 
even more dramatic effects. 

The work described in this review is performed in collaboration with Menrik 
Smith, Karsten Flensberg, Martin BGnsager, Ben Yu-Kuang Hu, and Jari 
Kinaret. The author is grateful to his colleagues for sharing their insights, 
and for providing a pleasant working atmosphere. 

29 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 09:48:00 UTC from IEEE Xplore.  Restrictions apply. 



1. 
2 .  
3. 
4. 

5 .  

6. 
7 .  
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

16. 

17. 
18. 
19. 

20. 

21. 
2 2 .  

T. J. Gramila e t  ai-, Phys. Rev. Lett. 66, 1216 (1991). 
U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev. Lett. 68, 1196 (1992) 
B. Laikhtman and P. M. Solomon, Phys. Rev. B 41, 9921 (1990) 
91. 6.  Tso and P. Vasilopoulos and F. M. Peeters, Phys. Rev. Lett. 68, 2516 (1992); 
ibid. 7‘0, 2146 (1993); E. C. Tso and P. Vitsilopoulos, Phys. Rev. B 45,1333 (1992). 
M. B. PogrebinsE, Fiz. T e a .  Poluporovdn. II, 637 (1977) [Sov. Phys. Semicond. 
11, 372 (1977)] 
I?. J. Price, Playsica B 117, 750 (1983) 
A.-P. Jauho and B. Smith, Phys. Rev. B 47, 4420 (1993). 
L. Zheng and A, E. M ~ c ~ o n ~ d ,  Phys. Rev. B 48, 8203 (1993). 
K .  Flensberg, 14. Y.-K. Ku, A. P. Jauho, and J .  Kinaret, Phys. Rev. B52, 14761 
A .  Kamenev and Y. Breg, Phys. Rev. B 52,  7516 (1995) 
K .  Flensberg and B. Y.-K. Hu, Phys. Rev. B 52, 14796 (1995) 
K Flensberg and B. Y-K. Hu, Phys. Rev. Lett 73, 3572 (1994) 
L. Swierkowski, J. Szymaaiski, and Z, W. Gortel, Phys. Rev. Lett. 74, 3245 (1995) 
G. D. Mahan, ~ ~ ~ ~ - ~ a ~ ~ ~ c ~ e  Physics (Plenum Press, New York, 1990). 
L. G. Aslmazov and A. I. Larkin, Fiz. Tverd. Tela 10,1104 (1968), [Soviet Physics 
- Solid State 10, 875 (1968)] 
K .  Maki, Progr. Theor. Phys. (Kyoto) 39, 897 (1968); R. S. Thompson, Phys. Rev. 
B 1, 327 (1970) 
K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032 (1991) 
R. E. Goldstein, 6. Parcpla, and A. P. Smith, J. Chem. Phys. 91, 1843 (1989) 
See, for example, articles in The Quantum Hall Eflect, 2nd Edition, Eds. R. E. 
Prange and S. M. Girvin (Springer-Verlag, New York, 1990) 
N. Hill, Univemity of Cambridge, unpublished experiments. We are grateful for Dr. 
Hill for informing us about these results. 
M. Bmsager, K. Flensberg, B. Y.-K. Hu, and A. P. Jauho (unpublished) 
7’. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982) 

3 0  

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 09:48:00 UTC from IEEE Xplore.  Restrictions apply. 


