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ABSTRACT 
We study training and generalization for multi-variate time series processing. It is sug- 

gested to used a quasi maximum likelihood approach rather than the standard sum of squared 
errors, thus taking dependencies among the errors of the individual time series into account. 
This may lead to improved generalization performance. Further, we extend the Optimal 
Brain Damage pruning technique to the multi-variate case. A key ingredient is an algebraic 
expression for the generalization ability of a multi-variate model. The variability of the 
suggested techniques are successfully demonstrated in a multi-variate scenario involving the 
prediction of the cylinder pressure in a marine engine. 

1. Introduction 

Multi-variate nonlinear time series processing mod- 
els are of interest in many neural network applica- 
tion areas. The application which motivates the 
present study is the supervision and fault diag- 
nosis of marine engines. Time-series from sensors 
mounted on the engine are used as inputs to a signal 
processing device which is able to deliver feature 
time-series from which it is possible to monitor 
the condition of the engine and take any action 
required. 

In this paper we study the training and gen- 
eralization properties of a feed-forward neural net- 
work implementation of a multi-input multi-output 
signal processing model. The standard cost func- 
tion for multiple output networks is the sum of 
mean square errors on the individual outputs; how- 
ever, we suggest instead to use a quasi maximum 
a posteriori (QMAP) approach (see e.g., [12], [16]) 
in which the dependency among the errors plays 
a significant role. The dependency among errors 
acts as a source of prior knowledge which assists 
the training and is generally expected to improve 
generalization performance. This is due to  the fact 
that the prior knowledge constraints the variation 
of the parameters in the network; thereby reduc- 
ing the so-called model variance [4]. On the other 
hand, the dependence among the errors is typically 
not known in advance; hence, it must be estimated 
from data. This implies that even though the model 

variance is decreased the model bias is increasing, 
thus facing the ubiquitous bias/variance d l  I emma 
[4]. It is important to stress that the technique 
is useful for nonlinear parametrizations only: it is 
possible to  show that the estimated weights of a 
simple linear network are invariant when including 
error dependencies. 

The paper provides numerical results on predic- 
tion cylinder pressure in a marine engine. The sug- 
gested QMAP approach gives significantly better 
predictions than using the standard sum of mean 
square errors. Further we extend pruning tech- 
niques - as reported in [14], [15] for uni-variate 
series - to  cope with multi-variate series which pro- 
vide more parsimonious models in the numerical 
example. 

2. Training Multi-Output Neural Net- 
works 

2.1. System and Model 

Define a multi-variate input and output series 
by z ( k )  = [ q ( k ) , . . . , ~ ~ ( k ) ] ~  and y(k) = 
[gl(k), . . . ,yP(k)lT, respectively. For instance if 
considering a single input signal, the input vector 
is often chosen as a tapped delay line: z ( k )  = 
[ x ( k ) , z ( k  - l ) ; . . ,z(k - p + 1)IT. Suppose the 
existence of a transfer vector function (or mapping) 
g(.) such that 

Y(kc) = g(=c(k)) -t E @ )  (1) 

'Permanent address MAN B&W Diesel A/S, Teglholms- where E(k) is a q-dimensional noise signal indepen- 
dent of x ( k )  with zero mean vector and covariance gade 41, DK-2450 Copenhagen SV. 
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matrix S. Next formulate a neural network model 
of Eq. (l), given by: 

Y(k) = f ( 4 k ) ; w )  + e @ )  (2) 

where f ( z ( k ) ;  w)  denotes the mapping of the neu- 
ral network with w being the vector of network 
parameters (weights and thresholds). 

2.2. Quasi Maximum A Posteriori Estima- 
tion 

Since maximum likelihood estimation ensures 
asymptotic efficient estimates of the weights - i.e., 
with minimal weight covariance equivalent to the 
Cramer-Rao bound - we will adopt this framework 
for training multiple output networks. However, 
we do not know if the model is complete, i.e., 
if there exist a true weight vector W O  such that 
g(z) f ( z ; w o )  Vx, so we refer to this scheme 
as quasi maximum likelihood, cf. [12, Ch. 2.3 & 
12.51, [16]. Suppose that a training set of N input- 
output pairs, 7 = { ( z ( k ) , ~ ( k ) ) } F = ~ ,  has been col- 
lected. Next define the negative sample quasi log- 
likelihood: 

-lOgPy(k)(Y(N Iz(k) ,w) 
= -logpy(k)(f(z(k);w) +e(k)  lz(k) ,w) 

- h ~ e ( k ) ( e ( k )  I %(k>,w>, (3) 

and suppose that the errors e ( k )  are i.i.d. to obtain 
the negative quasi log-likelihood: 

N 
~ ( w )  = - l o g ~ e ( e ( k )  I z ( k ) , w ) .  (4) 

k=1 

In order to assist training of the network and for 
ensuring proper generalization performance, we em- 
ploy a maximum a posteriori approach by adding a 
negative log-prior -logp(w) = R(w) to  yield the 
negative quasi log-posterior cost function P ( w )  = 
L(w) + R(w). Assume that the errors e(k) are 
Gaussian distributed with zero mean and covari- 
ance matrix E .  Apart from a constant and a trivial 
factor of 2/N, the negative log-posterior is given by 
[12, Ch. 11.31': 

P(w, E )  e z(w, E )  + R(w) = 

l N  
log det(E) + nr eT(k; w)E-'e(k; w)  +E(w) ( 5 )  

1. 
k=I 

where R(w) = R(w)/N. Both the weights w 
and the error covariance matrix E are unkn_own 
and must be estimated from data, i.e., (6, E )  = 
arg min,,E P(w , E ) .  By examining the so-called 

'Here the errors dependence on the weights is written out 
explicitly. 

concentrated log-posterior, it is possible to show 
that: 

6 = argminC(wlA=E^) W (7) 

where the regularized cost function is defined by the 
sum of the generalized mean  square error and the 
regularization term: 

C(wlA) = C(w) = S(W) + R(w) 
N = - ~ e T ( k ; w ) K 1 e ( l c ; w )  1 +R(w) (8) 

k=l N 

with A defining a positive definite, symmetric 
weighting matrix. The literature suggest a number 
of methods for carrying out this estimation, we will 
adopt the so-called iterated generalized least square 
(IGLS) procedure 1171 which is carried out as fol- 
lows: 

1. Start with an arbitrary matrix2 for A,,), e.g., 
A(,). = I ,  and choose initial weights w Set 
the iteration number, i = 1. 

2. Compute the weight estimate G(i) using 
A ( ~ )  e.g., by employing the damped Newton 
method3 (see below). 

3. Compute the estimated error covariance ma- 
trix 

4. Check if a specified stop criterion is met4. 
Otherwise, increment the iteration number, 
i t i + 1, and go to step 2. 

It is possible to show that the IGLS procedure con- 
verges under fairly mild conditions [12, Ch. 12.51. 
Moreover, when neglecting the regularization term, 
the method delivers strongly consistent (N 4 CO) 

estimators of w* and E .  Here w* denotes the 
optimal weights: w* = arg min, E { S ( w ) } ,  with 
E{.}  denoting the expectation w.r.t. the true input- 
output distribution. 

2As suggested in [2] for general nonlinear models: One 
could perform an ensemble of q neural networks, then train 
them individually, and use the estimated error covariance 
matrix as an initial guess. 

3A standard optimization procedure for the sum of 
squared error cost can also be used for a neural net with 
linear output neurons after a simple transform. Suppose 
that A;; = QTQ. Then optimize a network using the 
transformed output series 5 = Qy. Finally, if the predicted 
transformed outputs are obtained-by multiplying the hidden 
activation by the weight matrix W, the untransformed out- 
puts are obtained by using the weight matrix Q W i n  the last 
layer. 

4Note that S(w)  -+ q, and A(i1 4 E  ̂as i --t CO. 
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The damped Newton method in step 2 of the 
IGLS procedure is given by 

W(i+l) = w(i) - p(i)J-'(w(i))V(w(i)) (10) 

where p(i) is the step-size or learning parameter. 
This scheme involves the calculation of the Hessian 
matrix J ( w )  = d2C(w)/dwdwT and the gradient 
vector V(w) = dC(w)/aw. If we use the so-called 
Gauss-Newton approximation for the Hessian5 - 
which ensures positive semidefiniteness - they read: 

2 N  P r ? l ( W )  J ( w ) = - C @ ( k ;  w)A-'@~(IC;W) + - 
dW8WT' 

k=l  
N 

(11) 

where !P is the derivate matrix of the network func- 
tion, *(IC; w) = af'(z(k>; w>/dw. 

Considering neural networks specifically, related 
work can be found in [3] considering a fixed ar- 
chitecture, while [5] suggested a scheme with fixed 
A = I. 

3. Generalization and Network Opti- 
mization 

The generalization performance is expressed by the 
generalization error - or prediction risk - which for 
multiple output systems can take several forms. 

Define the generalization error matrix as the 
expected outer product of the error on a test sample 
(2; y) independent on those in the training set, i.e., 

G(G, E )  = E {e(G, E^)eT(iij, E ) }  

= 1 e(&, @eT(&, E) . p o ( z ,  y) dzdy (13) 

where po (.) denotes the true input-output density. 
One may not be interested in accessing the full 
generalization error matrix. Thus a common choice 
would be instead to define the generalization error, 
G, as the expected negative log-likelihood on a test 
sample (see Eq. (5)), 

G(&,E^)=E L & , E  = { - (  -11 
logdet(@+/e'(G)E^-'e(O) -po(z,y) dzdy (14) 

since the likelihood is used for assessing the quality 
of a model on the training data. The generalization 
error depends on the actual training set through the 

5This involves the negligence of terms which are the prod- 
uct of errors ej and second order derivative of the outputs 
w.r.t. the weights, 62fji/8weawp. The terms are negligible 
when the weights are close to  the minimum, see further [9], 
P21. 

parameters of the model, viz. the estimated weights 
& and the estimated covariance matrix E .  Thus a 
common generalization perform-ance measure is to 
consider the average of G ( w , E )  over all training 
sets of size N ,  r = E ~ { G ( w ,  Ê )>. 

As a natural extension of the work reported in 
[14], [15] for uni-variate series, we optimize the net- 
work by using Optimal Brain Damage [8] and use 
an algebraic estimate of the average generalization 
error as a stopping criterion for pruning. In line 
with [SI, [lo], [ll] we employ asymptotic expansions 
N -+ CO of the expected negative log-likelihood. 
Let 8 = (w, vec(E)) 6 ,  be the vector of all unknown 
parameters. It is possible to show that r to o ( l / N )  
is estimated by7 

where m , ~  = t r (J- ' (&)H(G))  with H = J - 
d2r?l/dwdwT denoting the Hessian matrix of the 
un-regularized cost function. 

Suppose that a set of N ,  cross-validation (test) 
samples are available, then estimates of the gener- 
alization error matrix Eq. (13) as well as the gen- 
eralization error in Eq. (14) become: 

. N ,  G(&,Z) = - - C e ( k ; & ) e ' ( k ; G ) ,  1 -  (16) 

Nc k = l  

G(&,E) = logdet(E^) + t r  (&(G,E^)g-'). (17) 

In the limit Nc -+ CO, c(&,@) -+ G(G,E^) under 
mild ergodicity conditions; however, for a finite set 
the estimate is afflicted with error. In order to 
compare competing modelss it is possible to carry 
out a statistical test of significant difference in per- 
formance. We use the technique suggested in [7], 
which incorporates the fact that the models are 
validated on the same cross-validation set. Assume 
that the generalization errzr of the two compet- 
ing A models are given by9 G1 = NT1 e1 ( I C ) ,  
Gz = NF1 C;;, & ( k ) .  The relevant test statistics 
is given by: T = A/std(A) where A = 62 -61 and 
std2 (A) = N r  ( N ,  - 1) -' E::, (& (IC) -e1 ( k )  - A)" 

~~ 

6Here vet(.) is the reshaping operator which takes a ma- 
trix as the argument and delivers a column vector. 

'In the calculations leading to this result, it is utilized 
that the Hessian matrix of the negative log-likelihood w.r.t. 
0 is block-diagonal in w and vec(E), respectively. This is a 
consequence of the fact that no regularization is used on the 
E parameters. Further, we assume that the model is quasi 
complete. 

'Consider e.g., models estimated with the QMAP ap- 
proach rather than using the standard sum of squared errors 
(the IGLS procedure with fixed A = I). 

9E.g., ! ( IC)  = NC1 logdet(g) + e ( k ; 6 ) T E h 1 e ( l c ; w )  
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It is tacitly assumed that [ ~ ( k ) ,  &(k)  are i.i.d. 
processes in time. According to the central limit 
theorem T is approximately standard Gaussian dis- 
tributed (zero mean, unity variance) for large N,. 
For instance, the critical region associated with the 
hypothesis G2 5 G1 on a a significance level is 
given by: T < U ,  where where ucr is the (Y fractile 
of the standard Gaussian distribution. For a = 5%, 
we have u1-,12 = 1.96. 

4. Numerical Experiments 

In this section we evaluate the proposed methods 
on real world marine engine data. The prediction 
of cylinder pressure is important for engine com- 
bustion analysis or fault diagnosis and nonlinear 
methods for this problem are of significant current 
interest [13]. 

Under ordinary engine operation is difficult to 
measure the cylinder pressure directly. The aim 
is consequently to measure or predict the cylinder 
pressure indirectly from measuring, say, strains in 
the cylinder. This is done by mounting a strain- 
gauge at the cylinder. The data set consists of 
simultaneous measurements of the cylinder pressure 
and cylinder strain sampled at 218.75Hz. The data 
sets are given in arbitrary units and studentisized, 
i.e., with zero mean and unity variance. Fig. 1 show 
three periods of the recorded cylinder pressure and 
strain time series, denoted c p ( k )  and sg(k) respec- 
tively. 

Samples 

non-stationarities in the time series and for a later 
model consistency check. The diagnosis of the en- 
gine is done from the predicted cylinder pressure. 

We used a two-layer feed forward neural network 
with p = 10 input units, h = 8 hidden sigmoid units 
and q = 2 linear output units, i.e., the network 
function can be written as: 

f i  ( 4 k ) ; w )  = 

( p  i=l ) 
h 

c w j ' :  tanh u&zi(k) + wio + wf (18) 
j=1 

where w = [wr,wH] is the network weight vec- 
tor consisting of 106 weights. The input is a lag 
space of strain-gauge data s ( k )  = [sg(k),sg(k - 
l), . . . , sg(k - p + 1)IT. The first output is the pre- 
diction of the cylinder pressure, ( k )  = cp  (k + 1) , 
and the second output the prediction of the strain 

The network is trained with a set of N = 250 
examples by using the IGLS procedure and the 
weight axe updated by the damped Gauss-Newton 
methodlo. For comparison we did a similar training 
with A f i e d  at the identity matrix, corresponding 
to the standard sum of mean square errors. The 
regularization is a simple weight decay, i.e., R(w) = 
K . ' I w ~ ( ~ / N  + K ~ ( w ~ ( ~ / N ,  and optimized on an in- 
dependent test set to yield optimal performance. 
When using IGLS we used K L ~ ~ ~  = &zap = 0.1, 
and for fixed A, tciX = 5 . 

The evolution of the training posterior Eq. (5) 
and the generalization error Eq. (17) on a cross- 
validation set consisting of N, = 10,000 examples 
are depicted in Fig. 2.  The figure indicates that 
updating A matrix significantly improves general- 
ization performance. The generalization error ma- 
trices when using the IGLS procediure (adaptive 
error covariance matrix) and fixed error covariance 
matrix on the cross-valiodation set are given by: 

Y^z(k) = sg(k + 1). 

= 2.5. 

- 
G~~~~ = [ 4.07 2.66 2.66 5.53 ] .10-4 (19) 

.10-4 (20) efix = [ 7.36 3.12 ] 
3.12 5.71 

Fig. 1: Recorded cylinder pressure c p ( k )  and strain-gauge 
s g ( k )  time series from a marine engine. A significant error correlation, around 0.6, is no- 

ticed. Moreover, also in the individual error vari- 
ances we obtain a significant reduction when up- 
dating the A matrix. 4.1. Testing The QMAP Approach 

A Simple modelling Scenario iS to perform a SiInUl- 
taneous one step ahead prediction of the cylinder 
pressure and strain from a lag space of strain data. 
Under standard engine 'peration Only the strain- 

1OThat is, the damped Newton method with the Gauss- 
Newton approximation for the Hessian. In order to get 
reasonable initial weights for the Gauss-Newton iteration we 
first did 15 pseudo Gauss-Newton iterations in which the 
off-diagonal elements of the Hessian matrix are left out. In 

gauge signal will be available. The prediction accu- 
racy of this signal may provide a tool for detecting 

each iteration the step-size pL(%) is adapted (by successive 
bisections) in order to enforce the cost function to decrease. 
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Fig. 2: Upper panel: The training posterior F(w,A) as a 
function of number of iterations. A pseudo Gauss-Newton 
method is used for the first 15 iterations. The training curves 
for both methods seem to converge reliably. Moreover, up- 
dating the error covariance matrix increases the speed of 
convergence. Lower panel: The estimated generalization 
error G during training. Certainly updating the covariance 
matrix gives better generalization on a 5% significance level, 
thus suggesting that the weights are more focused on their 
optimal values. Note that overtraining occurs, suggesting 
that the network is too large, and probably the weight decay 
is somewhat small. For comparison, a linear network with 
the same input lag space resulted in G = -12.31 which is 
significantly higher than using a neural network. 

h 

,.- 

-5 

-6 

-7- 

4.2. Network Optimization 

% 
I 

Fixed covariance mtu .I 

1 

The network trained with the IGLS procedure was 
pruned using optimal brain damage, and the opti- 
mal network was chosen as the one with minimal 
estimated average generalization error, cf. Eq. (15). 
In these simulation we used K : ~ ~ ~  = fii,Hdap = 1.43. 
lo-'. In Fig. 3 the evolution of network pruning is 
depicted. Pruning reduced the number of weights 
from 106 to  83 and slightly improved generalization 
performance. The optimized network is shown in 
Fig. 4 

Fig. 3: The evolution of the training posterior p, the esti- 
mated generalization error G from the cross-validation set, 
and the estimated average generalizatioz error I?. The op- 
timal network is the one with minimal r a-_s indicated by a 
vertical line. For comparison, the minimal G is also depicted 
by a vertical line. 

h 

A 

Output Layer Input Layer 

Fig. 4: Optimized neural network architecture. The input 
is a lag space of strain-gauge data, y l (k )  = c p ( k  + 1) is 
the cylinder pressure, and yz(k) = sg(k + 1) is the strain- 
gauge. Solid lines indicate positive weights, while dashed 
lines corresponds to negative weights. The vertical lines 
indicate thresholds. 

5. Conclusion 

This papers focused on training and evaluation of 
multi-output neural network signal processing mod- 
els. We adopted a quasi maximum a posteriori 
framework for parameter estimation. In particular, 
when the errors are Gaussian distributed, we sug- 
gested to  use the iterative generalized least squares 
(IGLS) procedure [17]. The cost function is a sum 
of a regularization term and the generalized mean 
square error, in which the errors are weighted ac- 
cording to a matrix A.  When the weighting matrix 
equals the identity matrix, one gets the usual sum 
of mean square errors cost. In the IGLS procedure 
A is updated iteratively according to the error CO- 

variance matrix. The benefit of using this scheme 
is a significant improvement of generalization per- 
formance which is substantiated numerically. 
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