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Technical University of Denmark, DK-2800 Lyngby, Denmark 

Abstract 

This paper present a novel interface synthesis approach 
bused on a one-sided interface description. Whereas most 
other approaches consider interface synthesis as optimizing 
a channel to existing client/sewer modules, we consider 
the interface synthesis us part of the client/server module 
synthesis (which may contain the re-use of existing mod- 
ules). The interface synthesis approach describes the basic 
transformations needed to transform the server interJCace 
description into an interface description on the client side 
of the communication medium. The synthesis approach is 
illustrated through a point-to-point communication, but is 
applicable to synthesis of a multiple client/server environ- 
ment. The interface description is based on a formalization 
of communication events. 

1 Introduction 

System level design may be viewed as the process of 
mapping a conceptual model into a physical structure of 
cooperating components. In this view a system is considered 
as a set of servers and clients that communicate via a 
communication medium. 

In this paper we address the problem of automatically 
obtaining a customized implementation of the interface 
between cliendserver modules, termed interface synthesis. 
The main motivation is to adapt the interface during system 
implementation, rather than having a $xed communication 
architecture as is the case in most hardware/software code- 
sign approaches, e.g., [2, 5, 61 which are using memory 
mapped 110. 

The simplest system consists of a single client invoking 
one operation from a server, i.e., a point-to-point com- 
munication. This corresponds to the traditional view of 
hardwarekoftware codesign where we initially have an 
application which can not fulfill some given timing re- 
quirements. In order to meet these timing requirements, a 
subtask suitable for speedup is identified and moved to an 
other module (hardware or software) capable of achieving 
the required speedup. I.e., the original application becomes 
a client which has to invoke the server in order to complete 
its computation. 

We present a general interface model and an approach 
to interface synthesis which allows for communication op- 
timization during cliendserver synthesis. 

*This research has been sponsored by the Danish Technical Research 
Council under the “Codesign” programme. 
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Figure 1 : The communication synthesis flow for point-to-point 
communication. 

2 Problem Formulation 

Our synthesis approach is described in figure 1. The 
figure outlines the different steps involved in synthesizing 
a point-to-point communication. After system partitioning, 
which also selects the high-level communication protocol 
between the client and server, we first synthesize the server 
as this is the task to be speeded up. When synthesizing the 
server we may use traditional hardware synthesis in order to 
create a new implementation or we may re-use an existing 
module. Having synthesized the server, the next step is to 
synthesize the channel from the selected media. The media 
selection may be guided by the achieved server speed-up 
and the system timing requirements, or it may be guided 
from the system partitioning. Finally, we may synthesize 
the client to complete our system. 

This approach is different from the ones in [3, 71 where 
both client and server are assumed implemented before in- 
terface synthesis. In [ 3 ]  both modules may, however, be 
rescheduled to fulfill timing requirements. In [7] the focus is 
to optimize the channel utilization by interleaving different 
point-to-point communications on the same medium, re- 
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quiring extra wires for channel identification, i.e., a channel 
always contains separate wires for data, synchronization and 
identification. Others, e.g., [ 11, have addressed the prob- 
lem of interfacing standard components with incompatible 
protocols. 

The protocol selected during the partitioning phase pre- 
scribes how and when to provide operands and pick up 
results from the server in order to execute a particular server 
operation. From the protocol description we may extract the 
interface of the server, i.e., a one-sided interface describing 
how the client has to interact with the server in order to 
perform the server operation. The interface synthesis is 
defined in terms of this interface description. Two interface 
synthesis tasks may be identified; 

1. 

2 .  

Server implementation which transforms the abstract 
interface description into an implementation defining 
the exact sequence and timing of transfers. 

Channel synthesis which maps the server interface to 
the client-end of the channel, i.e., describing how to 
transfer data and control to the server using the interface 
of the channel. This task is also referred to as channel 
mapping [9]. 

In this paper we are focusing on channel synthesis, i.e., how 
to obtain a physical implementation of the channel. Thus, 
we assume that the server has already been implemented 
and that the medium (or set of media) has already been 
selected. 

3 Interface Protocol Representation 

The interface protocol to a module is specified as a 
Protocol Flow Graph (PFG) which prescribes how andl when 
to provide input and receive output from a module. A PFG 
may represent both abstract and concrete interface pro1 ocols; 
An abstract interface protocol corresponds to an interface 
at the specification level, i.e., before module synthesis. 
The abstract PFG is extracted from the protocol description 
obtained during partitioning. A concrete interface protocol 
corresponds to an interface at the implementation level, 
i.e., after module synthesis (scheduling and allocation). A 
detailed description of the implementation of functional 
modules and the relation to PFGs may be found in [4]. 

Figure 2a illustrates the abstract PFG for a fixed point 
multiplier (FMULT) with data dependent execution time. 
The PFG prescribe that the client has to send the values a 
and b to the server, and when the flag d is raised the result c 
may be received by the client. 

The interface protocol specified by a PFG may formally 
be described in terms of communication events. Throughout 
this paper we will use the notation based on communication 
events to describe our interface synthesis approach, and 
the graph based PFG notation to visualize various innerface 
protocols. 

3.1 Interface Protocol Notation 

A basic communication event is concerned with the 
transfer of a single value; 

a b 

iT+7 b-  

d Q 

a b 

Figure 2: The Protocol Flow Graph for a fixed point multiplier: a) 
Abstract view, b) Implementation view. 

Definition 1 Let e be a basic event dejined as: 
A 

e = ?v I!v 

where v is a value to be transferred, and ?U and !uprescribes 
input and output values respectively. 

As an interface protocol prescribes the order of value trans- 
fers, we define the following temporal relations between 
events; 

Definition 2 Let op denote a temporal relation between two 
events, i.e., el op e2. There are four relations; two serial 
and two parallel: 

Serial (gS) 
ei w e j  

ei D~ e j  

Parallel ( B P )  
ei # e j  

ei II e j  

ei and e j  are executed sequentially in any 
order 
ei and ej are executed sequentially and 
with n - 1 cycles in between. n = 1 
is denoted D and indicates consecutive 
cycles. The case where any number of 
cycles may elapse in between the two 
events is denoted b* 

ei and e j  may be executed in parallel or 
in any ordel: 
ei and e j  has to be executed in parallel. 

In this context parallel means simultaneously within the 
same cycle, where a cycle is defined as the period between 
to consecutive events on a synchronization signal, e.g., the 
rising edge of a synchronous clock. 

A set of value tiransfers which has to be transferred within 
a givenjixed number of cycles, is denoted a timed event, i.e, 
Definition 3 A timed event t is an event dejined as: 

A t = ?v 1!v I eope 
where, 

O P  # D* 

i.e., an event in which no relation of type D* occurs. 
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Example 1: At the implementation view, a timed event 
relates values to be transferred to actual cycles. This 
means that in some cycles no values are to be transferred. 
Considering the example of a 4 cycle adder; in the first cycle 
the two operands a and b are transferred to the adder and in 
cycle 4 the result c is transferred from the adder. This may 
result in the following timed event: 

0 

Synchronization is obtained through special synchroniza- 
tion events. A synchronization event blocks the communi- 
cation until some condition becomes true. The condition is 
evaluated on values obtained through a set of value trans- 
fers. This scheme corresponds to a generalization of the 
implementation ofhandshaking as described in e.g., [7]. We 
define the synchronization event as; 

Definition 4 A synchronization event w is an event which is 
repeated until some boolean expression expr becomes true: 

w = ( e  : expr)+ n 

the event e is always executed once. 

the expr is evaluated by the client on data obtained from e ,  
i.e., a synchronization event implements a polling mecha- 
nism. 

We can QOW give the complete definition of an event; 

Definition 5 Let e be an event recursively deJned as: 
A 

e = ?v /!U I e op e I (e : expr)' 

I€ an event describes the complete interface protocol to a 
module, we will denote this event a PFG in order to relate 
the two notations, i.e., PFG = e. 

3.2 Server Interface 

The interface to the server is described as a PFG. After 
server synthesis, detailed information about the sequence 
and timing of data and control transfers have been deter- 
mined. This may be reflected in the PFG as illustrated 
in figure 2b. Each timed event is now associated with an 
instruction, which must be invoked in order to perform the 
actual data transfer. The implementation view of the PFG 
is an extended version of the protocol description used in 
AMICAL [ 81. 
Example 2: As an example, the PFG of figure 2a, i.e., the 
specification view, may formally be expressed as: 

PFGFMULT = ((?U ?b)  D* ( ! d  : d = 1)' D* !c) 

and the PFG of figure 2b, i.e., the implementation view, as: 

PFGFMULT = ( ( ? ~ T R F  1 1  ?U 1 1  ?b) D* (?ZEST 1 1  ! d  : 

d = 1)' P* (?& 1 1  !e)) 

Notice the introduction of instruction invocations in the 
implementation view. 
0 

a b 

Figure 3: The WRITF! PFG of; a) a synchronous medium; b) an 
asynchronous medium. 

As previously stated, this paper is concerned with channel 
synthesis assuming that the server has been synthesized. 
Thus for the rest of this paper we are concerned with the 
implementation view of PFGs, i.e., PFGs where op = D~ I 
I /  . 
3.3 Medium Interface 

The communication medium, m, takes care of the phys- 
ical data transport. Examples of communication media are 
on-chip data busses, collections of wires or a VMEbus. 
On an abstract level each medium provides the possibil- 
ity of sending and receiving data. On a lower level each 
medium specifies the protocol to send and receive data, 
e.g., 4-phase handshake or fixed-delay, and the data size 
to be transferred. In our representation each medium pro- 
vides a READ (-!) and a WRITE (-?) operation for which 
the low level interface is described by a PFG; PFG,,, 
and PFG,,, respectively. Figure 3a shows the WRITE 
operation for a synchronous medium; the implementation 
view (?a b2 ) specifies that the next data value cannot 
be transferred until at least 3 cycles have elapsed. Fig- 
ure 3b shows an example of an asynchronous medium; 
PFG,,, = ((?rep 1 1  ?a) D* ( ! a &  : ack = I)+) specifies 
a handshake protocol where the values rep and a are send, 
and where the next data value cannot be transferred until 
ack  has been received. 

4 Channel Synthesis 

A channel is an adaptation of a medium (or set of media) 
to a clienvserver configuration. The channel is thus the 
outcome of interface synthesis. The need for a channel 
representation arises from the need to map the server PFG 
to the client-end of the medium. In this context the channel 
provides the necessary access operations in order for the 
client to be able to invoke an operation in the server. 

The adaptation of a medium to a clientherver configura- 
tion requires control logic and memory at the server-end of 
the medium. 

The mapping of the server PFG to the client-end is done 
in two steps: 

1. Expand the server PFG according to the bit-width of 
the medium. This involves the possible expansion of 
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both timed events and values. 

2. Substitute the sendlreceive events with the corre- 
sponding medium WRITEmEAD PFGs; PFG,,, and 
PFGm,, . 

Example 3: Consider the server timed event t = (?IS D ?b)  
and a synchronous medium m = (?w D~ ) (see figure 3a) 
with a bit-width of 8, then table 1 shows the steps involved in 
mapping the server PFG to the client-end for three different 
bit-width of a and b. In the second mapping, we hiave to 
segment a and b in step 1, as they are both 16 bits wide and 
the medium can only transfer 8 bits at a time. In the third 
mapping, a and b may be combined in step 1 as thiey are 
both 4 bits wide and thus, fits into a single transfer. 
0 
The example illustrates data and event segmentation ias well 
as data combination. In order to identify these situations, 
we need a way to deduce the bit-width of values, events and 
the medium. 

Definition 6 Let p ( X )  be the number of bits necesrrary to 
represent the data contained in X ,  where X may be an event 
(e),  a value ( U ) ,  or a medium (m): 

I 
I 
I 

w .++, 
I 
I 

9 

I 
I 
I 

r -45 I 

I 

9 

a b 

Figure 4: Medium PFGs for a synchronous 8-bit bus; a) PFG,,,; 
b) PFGm,,. 

If v is a combined value we have to consider the original 
values of v when doing the segmentation. 

The transformation of step 2 is straight forward: 

Axiom 2 (Substitution) 
number of bits needed to represent value v. 

"?U,, !v, E e : 

'U, 4 vi = PFGm,2U[w/vt], 

v, 2 vi = PFGm,T[~/v,] 

P ( v )  

P ( v )  

max(P(e,), P(e,)) 
P(&) + P(e,) 

for OP E 8 s  

for O P  E @P 

number of bits available in medium vi. 

Definition 7 The density of a transfer v in the context of a 
medium m is dejined as: 

i.e., .(U) states how much of the medium, in terms of bits, 
that has to be used in order to fulfill the required tiransfer 
of value U .  Thus, .(U) indicates whether a transfer has to 
be segmented (.(U) > 1) or may be used in combination 
with other transfers (.(U) < 1). These are the basic 
transformations involved in step 1. 

As two or more values transferred in a single cycle may 
be viewed as a single effective value, we define the ejTective 
event as: 

Definition 8 An effective event e,# is an event e in which, 

the new value v;vj is denoted a combined value. 

From the definition of cr(e) we can now formulate the 
transformation of step 1, i.e., e - e'. 

Axiom 1 (Expansion) 
Data segmentation: 

1 

3 v ~ e , # : a ( v ) > 1  : O - W ~ D ~ Z D  ... D V ~  

5 Hardware Generation 

The ori inal server PFG still specifies how to perform 
the wantet operation at the sewer-end of the medium. 
Thus, hardware is needed to store data at the server-end, 
and to control wlhen enough data has been transferred in 
order to execute the server operation. To explain the 
hardware generation, consider a simple case where the 
communication media is a synchronous 8-bit bus able of 
transferring data within a single clock cycle. In this case 
the READ and WRITE operations take 8-bit arguments and 
the corresponding PFGs consists of a single timed event as 
shown in figure 4. The operation we want to invoke is the 
FMULT' operation of figure 2b which has two 8-bit input 
arguments and one 16-bit output argument. The first timed 
event tl = (?Z'TRF 1 1  ?a 11 ?b)  of PFGFMULT speciifies that the 
two input arguments a and b should be transferred in the 
same cycle, along with a control code that must be assigned 
to the server control port in order to execute instruction i ~ m .  
However, as: 

the media only allows one argument to be tr#ansferred in 
each cycle. To encompass this limitation we nieed a buffer 
and a control unit (FSM) on the server-end of the channel. 
The control unit will examine the output of the medium until 

'A detailed discussion of this and other examples may be found in a 
full version of this paper. 
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bit-width 
m u b  

8 8 8 
8 16 16 
8 4 4 

Table 1:  Steps involved in mapping a server PFG to the client-end for different bit-width of data values and medium. 

client-end PFG . server PFG 

( ? u ~ ? b )  -!A ( ? u ~ ? b )  

(?U D ?b)  

( ? u ~ ? b )  ?: (?U II?b) 4 ((?U D2 ) 11 (?b D2 )) E ((?U 11 ?b) D2 ) 

((?a D2 ) D (?b D2 )) E (?U D3 ?b b2 ) 
(?ai b3 ?a2 D3 ?bl D3 ?bZ D2 ) ?: ((?U1 D ?a21 D (?bl D ?b2)) 2 

A 

@\ (MEDIASIATA I c,) 

SERVERP, := BUk 
SERVERP,,,, := 1 

SERVER%:= BUF 1 BU5 :I MEDIA.DATA 

which means that we have to expand t3,eff into 
U i ~ s c ) ]  = 3 transfers. As t3 only contains 2 values, 
ill ot expansion and data segmentation has to take place, 

i.e., c has to be segmented into 2 value transfers, c1 and c2. 
Result segmentation is controlled by the server-end FSM. 

A synchronization event specifies a test to be performed 
by the client. As the values necessary to evaluate the 
synchronization condition have already been acquired by 
means of transfers, the actual synchronization is unaffected 
by the choice of media. The actual implementation of a syn- 
chronization event depends on wheter a part of the medium 
can be allocated synchronization, as assumed in [7]. 

0 

Example 4: Figure 6 shows the resulting client-end PFG 
and implementation of the FMULT example. Formally the 
client-end PFG may be written as: 

PFGFMULT = ((?ZTRF D ?U D ?b) D* (?ZEST D ! d  : d = 1)' 
D* (?ZR= D !CI D !C2)) 

Figure 5: Channel hardware: a) overview, b) control unit FSM, c) 
client-end PFG. 

it recognizes a control code signifying that it should buffer 
a number of arguments and execute a server instruction. 
Figure 5a shows the buffer and control unit that handle 
execution of the ~ T R F  instruction. Figure 5b shows the FSM 
that controls the buffering and server execution. Seen from 
the client-end, the i ~ w  instruction has now been changed 
so as to execute in three cycles as shown in figure 5c. 
This example illustrates the main principle of the hardware 
generation. 

The output of data from the server, as in the ;TEST 
instruction, requires that the client sends an appropriate 
control code to the server-end FSM. The FSM will then 
execute the server instruction, buffer the results and send 
them to the client in the following cycles. If a result is 
wider than the media it must be segmented at the server-end 
and reassembled at the client-end. For the third timed event 
t 3  = (?ims 11 ?e) we have: 

6 Conclusion and Future Work 

We have presented an approach to interface synthesis 
based on a one-sided interface model. In the context of this 
model, transformations involved in solving the interface 
synthesis problem has been presented. In particular we 
have focused on channel synthesis, i.e., the process of 
transforming the server PFG into a client-end PFG, as a 
direct mapping. However, interface synthesis consists of 
both transformations and optimizations. 

If the medium is able to transfer data within a single 
cycle (as is the case in figure 6, one buffer and a state for 
each instruction may be saved as the instruction execution 
may take place in the same cycle as the last value transfer. 

Even-though the sequence of data transfers to the server 
is fixed, data may be send in any order over the medium, 
increasing the possibility of data combination, andlor giving 
the client synthesis the freedom to select the order. These 
are topics for further investigation. 

Finally, our approach may be used to solve the traditional 
interface problem in which both client and server has been 
implemented prior to interface synthesis. In this case we 
need to introduce hardware (i.e., FSM and buffers) on the 
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’r 
IN 

n 

1 ~MEDIA.DATA = inEd / (MEDIA.DATA I iEsJ 

\ 1 IWEDIA.DATA :I BUb MEDIA.DATA := BUG 

IWEDIA.DATA := BU5 

I I BUb :=MEDIA.DATA 

I I BUG :E MEDIA.DATA 

SERVERPm, :E 1 
SERVERP, := BUG 
SERVER% := BU5 

Client-end PFG Server-end FSM 

Figure 6: Client-end PFG and implementation of the FMULT example. 

client side in order to transform the client-end PFG b,ack to 
the original server PFG, i.e., introducing an extra step in the 
channel synthesis. 

[5] A. Jantsch, P. EYlervee, J. Oberg, A. Hermani, ,and H. Ten- 
hunen. Hardwarehoftware partitioning and mininnizing mem- 
ory interface traffic. In proceedings of EURO-DAC, pages 
226-23 1,1994. 

Acknowledgements 

We are greateful for comments and suggestions from 
Anne Haxthausen, Robin Sharp and JGrgen Staunstrup. 

References 

[l] G. Boriello and R. Katz. Synthesis of interface transducer 
logic. In proceedings of ICCAD, 1987. 

[2] R. Emst, J. Henkel, and T. Benner. Hardware/software co- 
synthesis for microcontrollers. IEEE Design & Test qf Com- 
puters, pages 64-75, December 1993. 

[3] D. Filo, D.C. Ku, C.N. Coelho, and G. De Micheli. Interface 
optimization for concurrent systems under timing constraints. 
IEEE Trans. on VLSI Systems, pages 268-281, September 
1993. 

[4] B.G. Hald and J. Madsen. A flexible architecture represen- 
tation for high-level synthesis. In proceedings of APNCHDL, 
pages 247-250,1994. 

[6] A. Kalavade and E.A. Lee. A global criticalitynocal phase 
driven algorithme for the constrained hardwarekoftware par- 
titioning problem. In Proceedings of the 3rd lnternational 
Workshop on Hardware/So@are Codesign, p>ages 42-48, 
1994. 

[7] S. Narayan and D.D. Gajski. Protocol generation for commu- 
nication channels. In proceedings of DAC, pages 547-548, 
1994. 

[8] I. Park, K. O’Brien, and A.A. Jerraya. Amical: Architectural 
synthesis based on vhdl. In G. Saucier and J. Trilhe, editors, 
Synthesis for Control Dominated Circuits. North-Holland, 
1993. 

[9] M. Voss, T.B. Ismail, A.A. Jerraya, and K-H. Kapp. Towards a 
theory for hardwarehoftware codesign. In proceedings of the 
3rd International Workshop on HardwardSofrWare Codesign, 
pages 173-180,1994. 

21 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 05:35:57 EST from IEEE Xplore.  Restrictions apply. 


