

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

An Approach to Interface Synthesis

Madsen, Jan; Hald, Bjarne

Published in:
Proceedings of the 8th International Symposium on System Synthesis

Link to article, DOI:
10.1109/ISSS.1995.520607

Publication date:
1995

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Madsen, J., & Hald, B. (1995). An Approach to Interface Synthesis. In Proceedings of the 8th International
Symposium on System Synthesis IEEE. DOI: 10.1109/ISSS.1995.520607

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ISSS.1995.520607
http://orbit.dtu.dk/en/publications/an-approach-to-interface-synthesis(a079430d-7f78-47db-8163-f19fddc483f1).html

An Approach to Interface Synthesis *

Jan Madsen and Bjarne Hald
Department of Computer Science

Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

This paper present a novel interface synthesis approach
bused on a one-sided interface description. Whereas most
other approaches consider interface synthesis as optimizing
a channel to existing client/sewer modules, we consider
the interface synthesis us part of the client/server module
synthesis (which may contain the re-use of existing mod-
ules). The interface synthesis approach describes the basic
transformations needed to transform the server interJCace
description into an interface description on the client side
of the communication medium. The synthesis approach is
illustrated through a point-to-point communication, but is
applicable to synthesis of a multiple client/server environ-
ment. The interface description is based on a formalization
of communication events.

1 Introduction

System level design may be viewed as the process of
mapping a conceptual model into a physical structure of
cooperating components. In this view a system is considered
as a set of servers and clients that communicate via a
communication medium.

In this paper we address the problem of automatically
obtaining a customized implementation of the interface
between cliendserver modules, termed interface synthesis.
The main motivation is to adapt the interface during system
implementation, rather than having a $xed communication
architecture as is the case in most hardware/software code-
sign approaches, e.g., [2, 5, 61 which are using memory
mapped 110.

The simplest system consists of a single client invoking
one operation from a server, i.e., a point-to-point com-
munication. This corresponds to the traditional view of
hardwarekoftware codesign where we initially have an
application which can not fulfill some given timing re-
quirements. In order to meet these timing requirements, a
subtask suitable for speedup is identified and moved to an
other module (hardware or software) capable of achieving
the required speedup. I.e., the original application becomes
a client which has to invoke the server in order to complete
its computation.

We present a general interface model and an approach
to interface synthesis which allows for communication op-
timization during cliendserver synthesis.

*This research has been sponsored by the Danish Technical Research
Council under the “Codesign” programme.

01995 ACM 0-89791-771-5/95/0011/0016 $3.50

System [@

I
I.

Module
Library
U

System i
Channel Server

Impl. Impl.

Figure 1 : The communication synthesis flow for point-to-point
communication.

2 Problem Formulation

Our synthesis approach is described in figure 1. The
figure outlines the different steps involved in synthesizing
a point-to-point communication. After system partitioning,
which also selects the high-level communication protocol
between the client and server, we first synthesize the server
as this is the task to be speeded up. When synthesizing the
server we may use traditional hardware synthesis in order to
create a new implementation or we may re-use an existing
module. Having synthesized the server, the next step is to
synthesize the channel from the selected media. The media
selection may be guided by the achieved server speed-up
and the system timing requirements, or it may be guided
from the system partitioning. Finally, we may synthesize
the client to complete our system.

This approach is different from the ones in [3, 71 where
both client and server are assumed implemented before in-
terface synthesis. In [3] both modules may, however, be
rescheduled to fulfill timing requirements. In [7] the focus is
to optimize the channel utilization by interleaving different
point-to-point communications on the same medium, re-

Permission to make d@dhanl mpy of all or part of‘ thi~ m a M
without fee is gmnted, pmvidd that wes a~ not made or disixibuted
for pmSt or mmmercid advantage, the ACM m p y ~ @ t I m a notic?, the
title of the publimtion and its date a m , and notice is given that
mpying is by p m i s i o n ofthe Association for Computing Machinay, Inc.
(ACM)). To mpy o t h e m k , to republish to past on savers or to
~ b u t e t o l i s t s , r e q u i r e s p r i o r s ~ c ~ o n a n d / a a f e e .

16

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 05:35:57 EST from IEEE Xplore. Restrictions apply.

quiring extra wires for channel identification, i.e., a channel
always contains separate wires for data, synchronization and
identification. Others, e.g., [11, have addressed the prob-
lem of interfacing standard components with incompatible
protocols.

The protocol selected during the partitioning phase pre-
scribes how and when to provide operands and pick up
results from the server in order to execute a particular server
operation. From the protocol description we may extract the
interface of the server, i.e., a one-sided interface describing
how the client has to interact with the server in order to
perform the server operation. The interface synthesis is
defined in terms of this interface description. Two interface
synthesis tasks may be identified;

1.

2 .

Server implementation which transforms the abstract
interface description into an implementation defining
the exact sequence and timing of transfers.

Channel synthesis which maps the server interface to
the client-end of the channel, i.e., describing how to
transfer data and control to the server using the interface
of the channel. This task is also referred to as channel
mapping [9].

In this paper we are focusing on channel synthesis, i.e., how
to obtain a physical implementation of the channel. Thus,
we assume that the server has already been implemented
and that the medium (or set of media) has already been
selected.

3 Interface Protocol Representation

The interface protocol to a module is specified as a
Protocol Flow Graph (PFG) which prescribes how andl when
to provide input and receive output from a module. A PFG
may represent both abstract and concrete interface pro1 ocols;
An abstract interface protocol corresponds to an interface
at the specification level, i.e., before module synthesis.
The abstract PFG is extracted from the protocol description
obtained during partitioning. A concrete interface protocol
corresponds to an interface at the implementation level,
i.e., after module synthesis (scheduling and allocation). A
detailed description of the implementation of functional
modules and the relation to PFGs may be found in [4].

Figure 2a illustrates the abstract PFG for a fixed point
multiplier (FMULT) with data dependent execution time.
The PFG prescribe that the client has to send the values a
and b to the server, and when the flag d is raised the result c
may be received by the client.

The interface protocol specified by a PFG may formally
be described in terms of communication events. Throughout
this paper we will use the notation based on communication
events to describe our interface synthesis approach, and
the graph based PFG notation to visualize various innerface
protocols.

3.1 Interface Protocol Notation

A basic communication event is concerned with the
transfer of a single value;

a b

iT+7 b-

d Q

a b

Figure 2: The Protocol Flow Graph for a fixed point multiplier: a)
Abstract view, b) Implementation view.

Definition 1 Let e be a basic event dejined as:
A

e = ?v I!v

where v is a value to be transferred, and ?U and !uprescribes
input and output values respectively.

As an interface protocol prescribes the order of value trans-
fers, we define the following temporal relations between
events;

Definition 2 Let op denote a temporal relation between two
events, i.e., el op e2. There are four relations; two serial
and two parallel:

Serial (gS)
ei w e j

ei D~ e j

Parallel (B P)
ei # e j

ei II e j

ei and e j are executed sequentially in any
order
ei and ej are executed sequentially and
with n - 1 cycles in between. n = 1
is denoted D and indicates consecutive
cycles. The case where any number of
cycles may elapse in between the two
events is denoted b*

ei and e j may be executed in parallel or
in any ordel:
ei and e j has to be executed in parallel.

In this context parallel means simultaneously within the
same cycle, where a cycle is defined as the period between
to consecutive events on a synchronization signal, e.g., the
rising edge of a synchronous clock.

A set of value tiransfers which has to be transferred within
a givenjixed number of cycles, is denoted a timed event, i.e,
Definition 3 A timed event t is an event dejined as:

A t = ?v 1!v I eope
where,

O P # D*

i.e., an event in which no relation of type D* occurs.

17

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 05:35:57 EST from IEEE Xplore. Restrictions apply.

Example 1: At the implementation view, a timed event
relates values to be transferred to actual cycles. This
means that in some cycles no values are to be transferred.
Considering the example of a 4 cycle adder; in the first cycle
the two operands a and b are transferred to the adder and in
cycle 4 the result c is transferred from the adder. This may
result in the following timed event:

0

Synchronization is obtained through special synchroniza-
tion events. A synchronization event blocks the communi-
cation until some condition becomes true. The condition is
evaluated on values obtained through a set of value trans-
fers. This scheme corresponds to a generalization of the
implementation ofhandshaking as described in e.g., [7]. We
define the synchronization event as;

Definition 4 A synchronization event w is an event which is
repeated until some boolean expression expr becomes true:

w = (e : expr)+ n

the event e is always executed once.

the expr is evaluated by the client on data obtained from e ,
i.e., a synchronization event implements a polling mecha-
nism.

We can QOW give the complete definition of an event;

Definition 5 Let e be an event recursively deJned as:
A

e = ?v /!U I e op e I (e : expr)'

I€ an event describes the complete interface protocol to a
module, we will denote this event a PFG in order to relate
the two notations, i.e., PFG = e.

3.2 Server Interface

The interface to the server is described as a PFG. After
server synthesis, detailed information about the sequence
and timing of data and control transfers have been deter-
mined. This may be reflected in the PFG as illustrated
in figure 2b. Each timed event is now associated with an
instruction, which must be invoked in order to perform the
actual data transfer. The implementation view of the PFG
is an extended version of the protocol description used in
AMICAL [81.
Example 2: As an example, the PFG of figure 2a, i.e., the
specification view, may formally be expressed as:

PFGFMULT = ((?U ?b) D* (! d : d = 1)' D* !c)

and the PFG of figure 2b, i.e., the implementation view, as:

PFGFMULT = ((? ~ T R F 1 1 ?U 1 1 ?b) D* (?ZEST 1 1 ! d :

d = 1)' P* (?& 1 1 !e))

Notice the introduction of instruction invocations in the
implementation view.
0

a b

Figure 3: The WRITF! PFG of; a) a synchronous medium; b) an
asynchronous medium.

As previously stated, this paper is concerned with channel
synthesis assuming that the server has been synthesized.
Thus for the rest of this paper we are concerned with the
implementation view of PFGs, i.e., PFGs where op = D~ I
I / .
3.3 Medium Interface

The communication medium, m, takes care of the phys-
ical data transport. Examples of communication media are
on-chip data busses, collections of wires or a VMEbus.
On an abstract level each medium provides the possibil-
ity of sending and receiving data. On a lower level each
medium specifies the protocol to send and receive data,
e.g., 4-phase handshake or fixed-delay, and the data size
to be transferred. In our representation each medium pro-
vides a READ (-!) and a WRITE (-?) operation for which
the low level interface is described by a PFG; PFG,,,
and PFG,,, respectively. Figure 3a shows the WRITE
operation for a synchronous medium; the implementation
view (?a b2) specifies that the next data value cannot
be transferred until at least 3 cycles have elapsed. Fig-
ure 3b shows an example of an asynchronous medium;
PFG,,, = ((?rep 1 1 ?a) D* (! a & : ack = I)+) specifies
a handshake protocol where the values rep and a are send,
and where the next data value cannot be transferred until
ack has been received.

4 Channel Synthesis

A channel is an adaptation of a medium (or set of media)
to a clienvserver configuration. The channel is thus the
outcome of interface synthesis. The need for a channel
representation arises from the need to map the server PFG
to the client-end of the medium. In this context the channel
provides the necessary access operations in order for the
client to be able to invoke an operation in the server.

The adaptation of a medium to a clientherver configura-
tion requires control logic and memory at the server-end of
the medium.

The mapping of the server PFG to the client-end is done
in two steps:

1. Expand the server PFG according to the bit-width of
the medium. This involves the possible expansion of

18

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 05:35:57 EST from IEEE Xplore. Restrictions apply.

both timed events and values.

2. Substitute the sendlreceive events with the corre-
sponding medium WRITEmEAD PFGs; PFG,,, and
PFGm,, .

Example 3: Consider the server timed event t = (?IS D ?b)
and a synchronous medium m = (?w D~) (see figure 3a)
with a bit-width of 8, then table 1 shows the steps involved in
mapping the server PFG to the client-end for three different
bit-width of a and b. In the second mapping, we hiave to
segment a and b in step 1, as they are both 16 bits wide and
the medium can only transfer 8 bits at a time. In the third
mapping, a and b may be combined in step 1 as thiey are
both 4 bits wide and thus, fits into a single transfer.
0
The example illustrates data and event segmentation ias well
as data combination. In order to identify these situations,
we need a way to deduce the bit-width of values, events and
the medium.

Definition 6 Let p (X) be the number of bits necesrrary to
represent the data contained in X , where X may be an event
(e), a value (U) , or a medium (m):

I
I
I

w .++,
I
I

9

I
I
I

r -45 I

I

9

a b

Figure 4: Medium PFGs for a synchronous 8-bit bus; a) PFG,,,;
b) PFGm,,.

If v is a combined value we have to consider the original
values of v when doing the segmentation.

The transformation of step 2 is straight forward:

Axiom 2 (Substitution)
number of bits needed to represent value v.

"?U,, !v, E e :

'U, 4 vi = PFGm,2U[w/vt],

v, 2 vi = PFGm,T[~/v,]

P (v)

P (v)

max(P(e,), P(e,))
P(&) + P(e,)

for OP E 8 s

for O P E @P

number of bits available in medium vi.

Definition 7 The density of a transfer v in the context of a
medium m is dejined as:

i.e., .(U) states how much of the medium, in terms of bits,
that has to be used in order to fulfill the required tiransfer
of value U . Thus, .(U) indicates whether a transfer has to
be segmented (.(U) > 1) or may be used in combination
with other transfers (.(U) < 1). These are the basic
transformations involved in step 1.

As two or more values transferred in a single cycle may
be viewed as a single effective value, we define the ejTective
event as:

Definition 8 An effective event e,# is an event e in which,

the new value v;vj is denoted a combined value.

From the definition of cr(e) we can now formulate the
transformation of step 1, i.e., e - e'.

Axiom 1 (Expansion)
Data segmentation:

1

3 v ~ e , # : a (v) > 1 : O - W ~ D ~ Z D ... D V ~

5 Hardware Generation

The ori inal server PFG still specifies how to perform
the wantet operation at the sewer-end of the medium.
Thus, hardware is needed to store data at the server-end,
and to control wlhen enough data has been transferred in
order to execute the server operation. To explain the
hardware generation, consider a simple case where the
communication media is a synchronous 8-bit bus able of
transferring data within a single clock cycle. In this case
the READ and WRITE operations take 8-bit arguments and
the corresponding PFGs consists of a single timed event as
shown in figure 4. The operation we want to invoke is the
FMULT' operation of figure 2b which has two 8-bit input
arguments and one 16-bit output argument. The first timed
event tl = (?Z'TRF 1 1 ?a 11 ?b) of PFGFMULT speciifies that the
two input arguments a and b should be transferred in the
same cycle, along with a control code that must be assigned
to the server control port in order to execute instruction i ~ m .
However, as:

the media only allows one argument to be tr#ansferred in
each cycle. To encompass this limitation we nieed a buffer
and a control unit (FSM) on the server-end of the channel.
The control unit will examine the output of the medium until

'A detailed discussion of this and other examples may be found in a
full version of this paper.

19

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 05:35:57 EST from IEEE Xplore. Restrictions apply.

bit-width
m u b

8 8 8
8 16 16
8 4 4

Table 1: Steps involved in mapping a server PFG to the client-end for different bit-width of data values and medium.

client-end PFG . server PFG

(? u ~ ? b) -!A (? u ~ ? b)

(?U D ?b)

(? u ~ ? b) ?: (?U II?b) 4 ((?U D2) 11 (?b D2)) E ((?U 11 ?b) D2)

((?a D2) D (?b D2)) E (?U D3 ?b b2)
(?ai b3 ?a2 D3 ?bl D3 ?bZ D2) ?: ((?U1 D ?a21 D (?bl D ?b2)) 2

A

@\ (MEDIASIATA I c,)

SERVERP, := BUk
SERVERP,,,, := 1

SERVER%:= BUF 1 BU5 :I MEDIA.DATA

which means that we have to expand t3,eff into
U i ~ s c)] = 3 transfers. As t3 only contains 2 values,
ill ot expansion and data segmentation has to take place,

i.e., c has to be segmented into 2 value transfers, c1 and c2.
Result segmentation is controlled by the server-end FSM.

A synchronization event specifies a test to be performed
by the client. As the values necessary to evaluate the
synchronization condition have already been acquired by
means of transfers, the actual synchronization is unaffected
by the choice of media. The actual implementation of a syn-
chronization event depends on wheter a part of the medium
can be allocated synchronization, as assumed in [7].

0

Example 4: Figure 6 shows the resulting client-end PFG
and implementation of the FMULT example. Formally the
client-end PFG may be written as:

PFGFMULT = ((?ZTRF D ?U D ?b) D* (?ZEST D ! d : d = 1)'
D* (?ZR= D !CI D !C2))

Figure 5: Channel hardware: a) overview, b) control unit FSM, c)
client-end PFG.

it recognizes a control code signifying that it should buffer
a number of arguments and execute a server instruction.
Figure 5a shows the buffer and control unit that handle
execution of the ~ T R F instruction. Figure 5b shows the FSM
that controls the buffering and server execution. Seen from
the client-end, the i ~ w instruction has now been changed
so as to execute in three cycles as shown in figure 5c.
This example illustrates the main principle of the hardware
generation.

The output of data from the server, as in the ;TEST
instruction, requires that the client sends an appropriate
control code to the server-end FSM. The FSM will then
execute the server instruction, buffer the results and send
them to the client in the following cycles. If a result is
wider than the media it must be segmented at the server-end
and reassembled at the client-end. For the third timed event
t 3 = (?ims 11 ?e) we have:

6 Conclusion and Future Work

We have presented an approach to interface synthesis
based on a one-sided interface model. In the context of this
model, transformations involved in solving the interface
synthesis problem has been presented. In particular we
have focused on channel synthesis, i.e., the process of
transforming the server PFG into a client-end PFG, as a
direct mapping. However, interface synthesis consists of
both transformations and optimizations.

If the medium is able to transfer data within a single
cycle (as is the case in figure 6, one buffer and a state for
each instruction may be saved as the instruction execution
may take place in the same cycle as the last value transfer.

Even-though the sequence of data transfers to the server
is fixed, data may be send in any order over the medium,
increasing the possibility of data combination, andlor giving
the client synthesis the freedom to select the order. These
are topics for further investigation.

Finally, our approach may be used to solve the traditional
interface problem in which both client and server has been
implemented prior to interface synthesis. In this case we
need to introduce hardware (i.e., FSM and buffers) on the

20

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 05:35:57 EST from IEEE Xplore. Restrictions apply.

’r
IN

n

1 ~MEDIA.DATA = inEd / (MEDIA.DATA I iEsJ

\ 1 IWEDIA.DATA :I BUb MEDIA.DATA := BUG

IWEDIA.DATA := BU5

I I BUb :=MEDIA.DATA

I I BUG :E MEDIA.DATA

SERVERPm, :E 1
SERVERP, := BUG
SERVER% := BU5

Client-end PFG Server-end FSM

Figure 6: Client-end PFG and implementation of the FMULT example.

client side in order to transform the client-end PFG b,ack to
the original server PFG, i.e., introducing an extra step in the
channel synthesis.

[5] A. Jantsch, P. EYlervee, J. Oberg, A. Hermani, ,and H. Ten-
hunen. Hardwarehoftware partitioning and mininnizing mem-
ory interface traffic. In proceedings of EURO-DAC, pages
226-23 1,1994.

Acknowledgements

We are greateful for comments and suggestions from
Anne Haxthausen, Robin Sharp and JGrgen Staunstrup.

References

[l] G. Boriello and R. Katz. Synthesis of interface transducer
logic. In proceedings of ICCAD, 1987.

[2] R. Emst, J. Henkel, and T. Benner. Hardware/software co-
synthesis for microcontrollers. IEEE Design & Test qf Com-
puters, pages 64-75, December 1993.

[3] D. Filo, D.C. Ku, C.N. Coelho, and G. De Micheli. Interface
optimization for concurrent systems under timing constraints.
IEEE Trans. on VLSI Systems, pages 268-281, September
1993.

[4] B.G. Hald and J. Madsen. A flexible architecture represen-
tation for high-level synthesis. In proceedings of APNCHDL,
pages 247-250,1994.

[6] A. Kalavade and E.A. Lee. A global criticalitynocal phase
driven algorithme for the constrained hardwarekoftware par-
titioning problem. In Proceedings of the 3rd lnternational
Workshop on Hardware/So@are Codesign, p>ages 42-48,
1994.

[7] S. Narayan and D.D. Gajski. Protocol generation for commu-
nication channels. In proceedings of DAC, pages 547-548,
1994.

[8] I. Park, K. O’Brien, and A.A. Jerraya. Amical: Architectural
synthesis based on vhdl. In G. Saucier and J. Trilhe, editors,
Synthesis for Control Dominated Circuits. North-Holland,
1993.

[9] M. Voss, T.B. Ismail, A.A. Jerraya, and K-H. Kapp. Towards a
theory for hardwarehoftware codesign. In proceedings of the
3rd International Workshop on HardwardSofrWare Codesign,
pages 173-180,1994.

21

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 02,2010 at 05:35:57 EST from IEEE Xplore. Restrictions apply.

