

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Design and verification of a self-timed RAM

Nielsen, Lars Skovby; Staunstrup, Jørgen

Published in:
Proceedings of the ASP-DAC '95/CHDL '95/VLSI '95

Link to article, DOI:
10.1109/ASPDAC.1995.486398

Publication date:
1995

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, L. S., & Staunstrup, J. (1995). Design and verification of a self-timed RAM. In Proceedings of the ASP-
DAC '95/CHDL '95/VLSI '95 (pp. 751-758). IEEE. DOI: 10.1109/ASPDAC.1995.486398

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ASPDAC.1995.486398
http://orbit.dtu.dk/en/publications/design-and-verification-of-a-selftimed-ram(4bd0e459-788e-4060-9760-cc050b3a1e48).html

Design and Verification of a Self-timed RAM

Lars Skovby Nielsen

Department of Computer Science
Technical University of Denmark

DK-2800 Lyngby
Tel: +45 45 25 37 45
Fax: +45 45 88 45 30
e-mail: lsn@id.dtu.dk

Abstract: This paper describes a self-timed static
RAM. A single bit RAM is described in the design
language SYNCHRONIZED TRANSITIONS and using the ver-
ification tools supporting this language, it is shown
that the design is speed-independent. Furthermore, a
transistor level implementation of the design is pre-
sented.

I. INTRODUCTION

This paper presents the design and formal verification
of a self-timed static RAM. The RAM is designed for ro-
bust operation at a wide range of supply voltages and is in-
tended for low-power applications. The paper summarizes
the design, but the main emphasis is on the formal verifi-
cation of speed-independence. The design is intended for
relatively small specialized RAM. A different approach is
needed for large general purpose RAM designs.

The characteristic property of a speed-independent cir-
cuit is that its behavior does not rely on the delays of
its components (gates). Such circuits are robust to data
and parameter variations. The speed-independence may
have significant practical advantages [5, 71, for example,
a potential reduction of power dissipation [12]. However,
to realize a design by a speed-independent circuit, the de-
sign must meet some constraints excluding behavior that
depends on delays of its components.

Although the speed-independence is a low-level circuit
property depending on physical attributes such as wire
lengths and transistor thresholds, it is possible to formu-
late sufficient constraints on high-level models. By meet-
ing these constraints the designer can be sure that the
behavior of a design allows for a speed-independent real-
ization. This paper uses the constraints presented in [lo],
these can be mechanically checked at a very early stage
of the design process.

Often significant efficiency improvements can be
achieved by compromising a strict design style in a few
well-defined parts. This is certainly the case for a design
like a RAM that can be expected to appear repeatedly in
a regular structure. Our design and verification technique

Jgrgen Staunstrup

Department of Computer Science
Technical University of Denmark

DK-2800 Lyngby
Tel: 45 45 25 37 40

Fax: +45 45 88 45 30
e-mal: jst@id.dtu.dk

enables us to suspend the formal checking of certain parts
identified by the designer who is then responsible for en-
suring the correct operation of these key parts. This pos-
sibility still allows for a formal checking of the remaining
parts of the design.

The RAM described in this paper is designed for low-
power systems using adaptive scaling of the supply voltage
[9]. This is a technique that requires robust circuitry that
can operate correctly at varying supply voltages. To ob-
tain this robustness the memory cell presented does not
use pass transistors. These can degrade logic levels and
cause malfunction at low supply voltages. Furthermore,
the design checks that data is actually stored into the
memory before the next operation is allowed. In other
designs, for example [2], such a check is not included.

The circuit models presented in this paper are behav-
ioral descriptions, not restricting the layout to a specific
implementation, however, the model is closely related to
the actual implementation. For instance, the behavior
of a C-element is described without determining how the
storage of the last output value is implemented.

The paper is organized as follows. Section I1 describes
the design of the RAM and the formal model used to
verify it. The verification technique is presented in sec-
tion 111. The verification of two parts of the design is dis-
cussed in some detail, first, a part of the control logic
that is verified completely in section 1V.A. Section 1V.B
describes the verification of the data-path, in particular
how a critical part is excluded from the verification. Fi-
nally, section V discusses some low-level issues related to
the physical design of the RAM.

This section presents the design of a self-timed RAM
and the formal model used to verify that it is speed-inde-
pendent. In a self-timed circuit there is no clock signal
to control the sequencing of a computation. Instead, this
is done explicitly by signaling the arrival of input data or
the completion of a computational step. One commonly
used scheme is a four-phase handshake protocol where the

75 1

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

communication between a sender and a receiver proceeds
in the following four phases:

Din +"$
1.

2.

3.

4.

The sender emits a value.

When the value has been received, an acknowledge-
ment is returned to the sender.

After the sender has received the acknowledgement,
a designated empty value is sent. This serves as a
spacer or reset of the communication line.

When the receiver gets the empty value, it is indi-
cated by returning a negated acknowledgement.

The values sent in the first phase are called valid to distin-
guish them from the empty value. To distinguish between
valid and empty values, a dual-rail encoding of data is of-
ten used [6] . This code requires two signals per data bit
(x.t, x. f) : one to indicate a true value, x.t, and one to
indicate a false value, x. f . The empty state is indicated
by (x.t,z.f) = (0,O).

There are several alternatives to the simple four-phase
protocol and the dual-rail code, however, a conventional
RAM uses an internal dual-rail bus and goes through a
precharge phase for each read or write operation. This
means that the internal dual-rail bus will go through what
corresponds to a valid and empty state in each readlwrite
cycle, and therefore, the dual-rail code is used in the RAM
design described in this paper.

A. The interface to the RAM

The RAM interface is shown in figure 1. It consists of
two data buses: Din and Dmt , one address bus: Adr,
and three control signals: Read, Write, and ARW,,k.
The two data buses, Din and Dout, are input and output
dual-rail buses, thus indicating when data is present. On
the address, Adr, a one-hot representation is used for the
indication of a valid address. The input control signals
are Read and Write. These signals control whether to
read or write from memory, and since both operations are
not allowed simultaneously, the pair forms a read/write
dual-rail signal. The global acknowledge signal, ARWa,k,
signals the end of each operation, and it is the only output
control signal.

Communication between the RAM and the environ-
ment is carried out using the four-phase protocol de-
scribed above. For each read or write operation the sig-
nals in question first change to the valid state and then
return to the empty state. The read cycle begins when
the Read-signal is high and a valid address is present on
the address bus, Adr. Following this, the content of the
addressed memory cells, M[Adr], is written to the output
data bus, Dout, and the acknowledge signal, ARWaCk, is
set high. When the Read-signal becomes low and the ad-
dress is removed, all signals return to the empty state,
and the handshake is completed.

Read 4
Write

I AFtWack 4
w

Dout

Read:
<Read A Val(Adr) -+ Dout, ARW,,k:= M[Adr], TRUE >>
<<TReedAl Val(Adr)-+Dout,ARWaCk := Empty,FALSE>>

<< W&te A Val(Adr) A Val(Din) -i

<< 7 WriteA- Val(Adr)A- Val(Din) -+ ARW,,k:= FALSE >>

Write:

M[Adr], ARWack:= Din, TRUE >>

Fig. 1. Interface and behavior of a RAM

The write cycle begins when the Write-signal is high
and both the address bus, Adr, and the input bus, Din,
hold a valid value. Afterwards, the value on D i n is writ-
ten into memory, and then the acknowledge is set high.
The write operation ends with all signals returning to the
empty state.

A behavioral model of a read and write operation is
also shown in figure 1. This is given using the design
language SYNCHRONIZED TRANSITIONS [lo]. Each part
of a circuit is described using one or more transitions. AS
an example, consider a Muller C-element, this is described
with the following transition.

<< a = b + y : = a >>.
In this example, a, b, and y are boolean state variables,
and whenever a = b, it is possible to assign the value of a
to y. If a # b, then y keeps its current value. Such a tran-
sition models a single independent component of a circuit.
A circuit with many components (operating in parallel) is
described by composing several such transitions (one for
each component). For example, the RAM design shown
in figure 1 consists of four transitions. In this paper, SYN-
CHRONIZED TRANSITIONS is used at a rather low level of
abstraction as illustrated in figure 1. This level is reason-
able for verifying speed-independence. In [lo] it is illus-
trated how SYNCHRONIZED TRANSITIONS is used both on
higher and lower levels to verify various other properties
of design descriptions.

B. Structure of the RAM design

This section presents the general structure of the RAM
design that is divided into several distinct parts. The
central one is a single bit memory cell arranged into a
two-dimensional array structure. In figure 2 this is shown
as a number of memory words. Based on the address the

752

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

...........................
control part t data-path

i i n p u t 1 i - . .

. . .
LJ

...........................

Fig. 2. Structure of the RAM design

select module in the control part points out a particular
word (row) of this array. Furthermore, the control part
generates signals to initiate precharging of memory cells.

In figure 3 a transistor diagram of a single-bit RAM is
shown. The memory-array has two dual-rail data buses
running vertically along each column of the array. These
are the input and output data. buses. Horizontally, the
word lines select the memory cells in each word.

In the following sections, each part of this RAM design
is described in further detail. To simplify the presenta-
tion, we focus on the single bit RAM shown in detail in
figure 3.

C. Control part

After the first two phases of either a read or write
operation, the input and output signals must return to
the empty state to prepare for the next operation. This
last empty evaluation included in each operation involves
precharging the internal output busses. This is a model
of the behavior:
Precharge:

<< Read V Write -+ Prech:= TRUE >>
<< 4 e l a c h A T(Read V Write) -+ Prech:= FALSE >>

<< Adr, A TPrech + Sek:= TRUE >>
<< TAdr, -+ Seh:= FALSE >>

Select:

The first transition describes the inactivation of the
precharge signal (note that Prech means active low), and
the second the activation. The third and the fourth transi-
tions describe the activation and inactivation of the select
signal, respectively. Precharging and evaluation of the in-
ternal output busses, is carried out in different modules
(the precharge and memory modules). To avoid exces-
sive power dissipation, these modules can never access
the output bus simultaneously, causing a fight between
the precharge pull-up and the memory pull-down tran-
sistors. The select signal must be inactive before the
precharge signal is activated, and vice versa. This is why
the precharge signal, Prech, is included in the control of
the select signals, and the state of the select signals is

CONTROL PART

.............................

i

ARW-ask --&+&a

Read -

DATA-PATH

Din.f

.. wzf ani' INPUT

4 PRECHARGE

...
Di.1

....................

.....................

ACKNOWLEDGE

OUTPUT

Dout.1 Dou1.f

Fig. 3. Transistor diagram of a single bit RAM

The state of the select signals, Se&, is derived from
the bus of select wires. Like the address bus, the select
bus is a one-hot bus, only one select wire is active at a
time. The Sel,,k signal can therefore be generated using
an OR-gate. However, depending on the size of the RAM,
and thus the number of select wires, this OR gate can be
large, adding to the RAM cycle time

The inactivation of Se1 and Prech, on the other hand,
is not critical. Immediately after the Read or Write sig-
nal is set the precharge signal can be inactivated. Sim-
ilarly, when the address is removed the select signal can
be inactivated.

During either a read or write operation one of the in-
ternal output bus wires is left floating. To avoid leakage
currents from changing the bus value during this period,
feedback inverters have been added to the output invert-
ers. The feedback inverter maintains charge at the bus
wires, but otherwise has no functional purpose. It en-
sures the static behavior of the system.

'As described, the select acknowledge signal is included in the
activation of the precharge signal. The time needed for generation
of the acknowledge signal therefore adds directly to the precharge
phase. During the other half of a read or write cycle, the reading
or writing of a value takes place concurrently with the generation

included in the control of the precharge signal. of Selack, and therefore effects the cycle-time less, if at all.

753

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

D. The memory cell

The behavioral model is divided into two parts, one
corresponding to writing a value into the selected mem-
ory cell, and the other to reading the content of the celI
and driving the output bus. The transistors pulling the
output bus low (see figure 3) can be recognized in the
model, but the actual fight taking place between the two
inverters during a change of the stored value, is not mod-
eled. Instead the two memory variables m and mm are
set to alternating values in one multi-assignment. The
memory cell is modeled as follows:

Memory:

output:
<< Sek A (Dit V Dif) -+ m, mm:= Dit, Dif >>

<< Se& A m -+ Dot:= FALSE >>
<< Se4 A mm --? Dof:= FALSE >>

This cell is not completely speed-independent (see also
section IV.B.l), but it is preferred to a speed-indepen-
dent cell, since it is smaller and has better performance
(at least compared to the speed-independent cells known
by the authors).

E. The acknowledgement cell

The acknowledge circuitry is divided into two parts, one
corresponding to the data-path and the other to the con-
trol part. To generate the data-path acknowledge signal,
RWack, the type of operation taking place, read or write,
must be known. During a read operation, the acknowl-
edge signal can be issued if data is present on the output
bus. During a write operation the acknowledge signal can
only be issued if data is present on both the input and
output busses, and if the values present correspond to one
another. Comparing the data present on input with data
on output, ensures that data has been stored in memory.
During the empty evaluation the input and output busses
must both be low, leading to the four P-transistors in se-
ries in the data-path acknowledge cell. This is a model of
the data-path acknowledge circuitry:

<< ((Dit V Read) A Dot) V ((Dif V Read) A Dof) +
RWack:= TRUE >>

<< dit V Oaf V Dot V Dof) -+ RWack:= FALSE >>
The model is closely related to the actual transistor im-
plementation, the only exception being, that the inverter
found in figure 3 is not described with a separate transi-
tion in the model. The inversion is included directly into
the transitions describing the functional behavior of the
acknowledge logic.

Before the global acknowledge, ARW,,k, can be sig-
nalled, the generation of Selack must have finished to en-
sure correct operation in the precharge control (see sec-
tion 1I.C). Furthermore, all data-path acknowledge signals
(each corresponding to a column) must be present before
ARWa,k is generated. This is realized by a single multi-
input C-element. The acknowledge control circuitry for a
single bit memory-array is modeled as follows:

<< Se&k = RWu,k -+ ARWa,k:= RWuck >>

The model closely describes the behavior of a two-input
C-eIement, but does not restrict the C-element to any
specific implementation.

F. Input and output

The input and output modules simply consist of C-
elements, and the modules isolate the RAM from the en-
vironment. When data is input, this is necessary, because
there are no constraints on the arrival time of data sig-
nals. This allows new data values to be present at the in-
put during a read operation, and thus, the memory must
be isolated to avoid corruption of data values.

During a write operation, the content of the memory
is written to the internal output bus to acknowledge that
input data has been written into memory, and therefore
the internal output bus must be isolated from the envi-
ronment during write operations. Using C-elements the
RAM can be isolated from the environment as shown in
figure 3.

111. FORMAL VERIFICATION OF SPEED-INDEPENDENCE

This section describes how to formally verify that a de-
sign is speed-independent. In section IV this verification
technique is used to show the speed-independence of the
RAM design. To simplify the description, only a single-bit
RAM is considered.

A. Characterization of speed-independence

Speed-independence is a property of a physical circuit
ensuring correct operation of a circuit despite speed vari-
ations in components. In David Muller’s pioneering work,
speed-independence was defined formally through the no-
tion of “final classes” of behavior [8]. This paper follows
the more recent trend defining a circuit to be speed-inde-
pendent if its correct operation is independent of gate
delays. It is not practical to use this definition directly,
because that would require checking a possibly infinite
number of different combinations of gate delays. Instead,
the stability condition [lo, sec. 7.31 is used; this is both
mechanically checkable and sufficient to ensure speed-
independence [4]. The essence of the approach is repeated
here. For a transition, t:

TRANSITION t << c -+ v := e >>
with a precondition c, a state variable U , and an expression
e, the stability protocol, stablet(pre,post), is defined as
follows:

stablet(pre,post) (c.pre A (w.pre # e.pre)) =+
Vx E Rt : x.pre = x.post

where Rt is the read set of the transition. The stability
protocol defines the constraint that non of the variables
read by t change while t is active. In protocols, pre and
post denote the states immediately before and after the
execution of a transition. The stability protocol is used
to formulate the implementation condition stability:

154

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

A design, D, meets the implementation condition
stability, i f and only i f the following implication
holds for all pairs of transitions, t l , t 2 , in D:

tl (pre,post) + stablet, (pre,post)

which ensures that no active transition is affected by the
state changes of other transitions. Or to put it in another
way: an active transition (t 2) will remain stable and unaf-
fected by state changes of other transitions (t l) . A design
meeting this condition is speed-independent.

To verify the above implication for a given design de-
scription, the stability protocol, stablet(pre, post), is de-
rived for each transition in the design, and the proof of the
implication is performed mechanically using the ST2LP
tool and the LARCH PROVER. A more comprehensive de-
scription of this verification technique is given in the book

To do the verification, it is usually necessary to find
invariants and protocols defining the reachable states of a
design.

1101.

RI An example of a cell

B. Localized verification

This section describes how to use a hierarchical de-
sign description for localizing the verification. In prac-
tice a complex design is structured into several (rela-
tively) independent cells with a well-defined interface.
SYNCHRONIZED TRANSITIONS has syntactical means for
describing a cell hierarchy and the verification tools use
this hierarchy to simplify the mechanical verification [lo].
When using the localized technique for showing speed-
independence, the verification consists of the following
steps:
1. formalize the cell interfaces (using formal protocols

2. develop invariants and protocols for each cell,

3. generate the stability protocol for each cell (me-

4. generate the verification conditions (mechanic),

5. verify the verification conditions (semi-mechanic).
The last step is done with a theorem prover that gives
some mechanical assistance, however, in most cases user
assistance is also needed. The two generation steps are
completely mechanical. The second step is currently done
by the designer, however, initial attempts to generate
these invariants mechanically have been promising [4]. Fi-
nally, the first step requires that the designer formalizes
all cell interfaces.

The verification of speed-independence is done one cell
at a time using the formal interface descriptions to charac-
terize the computations done in surrounding cells; further
details are given in [lo]. This localized verification tech-
nique is a major difference to other approaches such as
[l, 31 where the entire circuit is verified in one piece.

and invariants),

chanic),

This section presents an example of a cell and its interface.
A cell is an encapsulated part of a design with a well-
defined interface. The interface consists of some state
variables shared with other cells. Local state variables
of the cell are not visible in other cells. As an example
consider the precharge control. The interface of this cell
is:

CELL Prech-ctl(Read, Write, Sell Prech: Bit)
The three state variables Read, Write, and Se1 are in-
puts and Prech is an output. There are syntactical means
of expressing what is input and output, however, this is
not emphasized in this paper. The environment does not
make completely arbitrary changes to the inputs. For
example, Read and Write are never both true simultane-
ously, and when either of these change they always get the
opposite value of Prech. These (and other) constraints are
formally expressed as invariants and protocols:

INVARIANT T(Read A Write)
PRO TO COL

-.same(Read) + Readpost # Prech.post
-.same(Write) =+- Write.post # Prech.post

The protocol states that when Read or Write change, they
get a value that is opposite of Prech.post. Therefore, they
cannot change again until Prech has changed.

€32 Structure of design description

Figure 4 presents an overview of the cell structure used
to describe the RAM design and used for the formal ver-
ification.

IV. VERIFICATION OF THE RAM DESIGN

This section shows how to use the verification approach
described in section I11 to verify the speed-independence
of the RAM design. The complete RAM has been verified,
but to reduce the length of this paper only two cells are
discussed here. First the precharge control is shown to be
speed-independent. Secondly, section 1V.B. 1 illustrates
how to exclude a critical part from the verification.

A. Verification of the precharge and select control

The interfaces of the cells Prech-ctl and Sel-ctl are:

CELL Prech-ctl(Read, Write, Sel, Prech: Bat)
CELL Sel-ctl(Adr, Prech, Sel: Bat)

Where Prech is the output of the precharge control cell
and Se1 the output of the select cell. The other variables
are inputs.

Se1 only affects Prech during the falling transition of
Prech, and Prech only affects Se1 during the rising transi-
tion of Sel. A protocol describing this behavior is:

PRO TO COL
(ysame(Se1) A Sel.post + same(Prech) A Prech.post) A
(Tsame(Prech) A 7Prech.post =+- same(Se1) A-SeLpost)

755

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

CELL RAM-ctl(Read, Write, Adr, RWack,
Sell Prech, A R Wack: Bit)

CELL Prech-ctl(Read, Write, Sell Prech: Bit)
CELL Sel-ctl(Adr, Prech, Sel: Bit) ...
CELL Ackctl(Se1, RWack, ARWack: Bit) ...

Prech-ctl(Read, Write, Sell Prech)
Sel-ctk(Adr, Prech, Sel)
Ack-ctl (Sel, R Wack, A R Wack)

BEGIN

END RAM-ctl

CELL RAM(Dint, Dinf, Read, Write, Prech, Sel,

CELL Input(Dint, Dinf, Dit, Dif, Write: Bit) ...
CELL Mem-data(Dit, Dif, Sel, Read, Dot, Dof, Prech: Bat)
CELL Ack-data(Dit, Dif, Dot, Dof, Read, RWack: Bit) ...
CELL Output(Dot, Dof, Doutt, Doutf, Read: Bit) ...

Input(Dint, Dinf, Dit, Dif, Write)
Mem-data(Dit, Dif, Sell Read, Dot, Dof, Prech)
Ack-data(Dit, Dif, Dot, Dof, Read, RWack)
Output(Dot, Dof, Doutt, Doutf, Read)

Doutt, Doutf, RWack: Bit)

BEGIN

END R A M

Fig. 4. Structure of the RAM design

which is applied to both of the cells Prech-ctl and Sel-ctl.
In the select cell the signals A d r and Se1 behave according
to a four-phase protocol:

PROTOCOL
(Tsame(Adr) j same(Se1) A (Adr.poswfel.post)) A
(Tsame(Se1) + same(Adr) A (Adr.post = Sel.post))

In the precharge cell the four-phase behavior occurs be-
tween the Read/Write pair and the output signal Prech

PROTOCOL
(7 (same (Read) A same (Writ e))=+

(Tsame(Prech) + same(Read)Asame(Write) A
same(Prech)A (Val(Read.post, Wrate.post)#Prech.post)) A

(Val(Read.post, Wrate.post)=Prech.post))

Because of space limitations, it is not possible to repro-
duce the entire design description which is used for the
formal verification involving the five steps listed in sec-
tion 1II.B. The work needed for each of these steps is:

1. Formalization of the cell interface and
2. Development of local invariants and protocols.

3. Generation of the stability protocol. This is currently
done manually using a text editor, but it requires no
creativity at all.

4. Generation of the verification conditions. This
is done completely automatically using the ST2LP
translator.

5. Mechanical verification of verification conditions. In
this case no manual assistance is necessary.

Only a few seconds of CPU time (on a standard worksta-
tion) are needed for the automatic steps. In summary,
once the right interface, invariants and protocols were
found, the verification was almost fully automatic. How-
ever, it required some creativity and experimentation to
find the right invariants and protocols.

B. Verification of a memory cell

The verification of the RAM data-path is more compli-
cated than that of the control part. There are two reasons
for this:

e The data-path contains a part which is not speed-
independent and some active assistance is needed
from the designer to identify this part.

e The design description of the data-path contains sev-
eral parts with non-deterministic behavior.

In practice it is often necessary to optimize certain parts
to such an extent that their behavior depends on timing
details. Such parts are by definition not speed-indepen-
dent. It is important to be able to handle such designs
and our approach allows us to formally verify that the rest
of the design is speed-independent even though a small
well-defined part is not. The memory cell illustrates this.

€51 Dealing with non-speed-independence

As previously mentioned, the RAM design is not com-
pletely speed-independent, but the verification technique
provides a way of dealing with this. The prerequisite is
that the speed-dependent part of the design can be iso-
lated by identifying one or more transitions in the design
description that accounts for the timing dependent part.
In the memory cell there are two such speed-dependent
transitions.

Consider the situation when new data is written into
memory. If, for instance, the select signal, SeZ, is acti-
vated before new data is available at Din, then both out-
put transistors of the memory cell (figure 3) are active,
enabling a transition at one of the internal output bus
signals, Dot or Do$ Now, when new data arrives, differ-
ent from the old data stored, the state of the memory will
change and thus the previously enabled transition is dis-
abled. Therefore, the memory is not speed-independent.

The verification technique (see section 111) involves
defining a stability protocol for each transition; this pro-
tocol captures a sufficient condition for that transition to
be speed-independent. By excluding this protocol, for a
particular transition, the designer takes the responsibility
of ensuring the speed-independence of the corresponding
subcircuit, into his own hands, but does not affect the
outcome of the verification for the remaining transitions.
Note, that it is the stability protocol that is excluded, not
the transition itself. Therefore, it is verified that all other

756

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Two input C-element

parts of the design (those for which the stability protocol
is not excluded) are speed-independent.

For the RAM case, this means that no stability proto-
cols are included for the memory output transitions. This
does not mean that the set of events just described does
not occur. It is still possible that the old value in the
memory is written to the internal output bus before the
new value arrives at Din, thus leading to both outputs,
Dot and Dof, going high. This leads to yet another prob-
lem, since only one of the bus signals is acknowledged: the
transition corresponding to the inverter that is not being
acknowledged at Do, has a chance of being disabled dur-
ing the next precharge phase. However, this situation will
not occur in practice, since the inverter is the fastest gate
in a CMOS circuit. The way to solve this problem is by
simply including the inversions directly into the memory
and precharge output transitions.

B2 Verifying the data-path

All parts of the data-path have been verified following the
steps given in section 111. The effort needed to find appro-
priate invariants and protocols was substantial. However,
once these were found, the mechanical verification was al-
most automatic, but quite time consuming (almost 1/2
hour of CPU time on a standard workstation).

v . REALIZATION OF THE RAM

A transistor diagram of the RAM was presented in fig-
ure 3. This section describes the realization of the RAM
in more detail.

A. C-element

The C-elements used in the general purpose RAM de-
sign are quasi-static C-elements of the type shown in fig-
ure 5 . The feedback inverter at the output of the C-
element is a weak inverter, which compensates for leakage
currents at the internal node.

When the inputs of this C-element change from a 0
output to a 1 output (as well as the opposite), both the
pull-up and -down paths are cut off. This enables a fast
change at the output when the last input signal is chang-
ing towards 1 (the input pull-down transistors only have
to fight the pull-up transistors of the weak inverter). As
a result the C-element has non-uniform thresholds [ll].

Fig. 6. Speed-independent RAM cell

The hysteresis exhibited by the C-element can be con-
trolled through sizing of the feedback inverter, however,
at the expense of short-circuit currents. If non uni-
form thresholds can be tolerated, the short-circuit current
can be reduced significantly. For dynamic solutions the
feedback inverter is omitted and short-circuit current is
avoided in the previously described situation.

B. Layout

A generator has been constructed for layout of the de-
sign in figure 3. The generator is not a general purpose
tool, but designed for implementation of smaller size low-
power memories. To keep the power dissipation low the
strategy is to partition the memory array into several
smaller arrays, thus reducing the length of the memory
busses and the amount of capacitance being switched. Us-
ing this scheme, sense amplifiers can be avoided, and the
design maintains its speed-independent properties.

With the tool a RAM design was generated and sim-
ulated in a 1 micron ES2 process. The design is used in
ongoing work of a self-timed FIR filter design.

C. The memory cell

The memory cell of the RAM design differs from the
conventional six transistor cell [13] because it gives the
possibility to check that data has been stored in mem-
ory. As explained, the RAM cell itself is not speed-inde-
pendent. If a completely speed-independent design is re-
quired, we suggest the design in figure 6.

This memory cell uses two additional transistors, one
for each output bus, and the purpose of these transistors
is to enable only the required output transition during a
write operation. During a read operation both transistors
must be enabled. The price for the speed-independent
cell is extra circuitry and wiring, and the cell has poorer
performance.

VI. CONCLUSION

In this paper a self-timed speed-independent static
RAM is described, and a model of a single bit RAM is

757

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

given using the design language SYNCHRONIZED TRAN-
SITIONS. Using the verification tools supporting this lan-
guage, it is possible to check the speed-independence of
a self-timed design. There are two contributions in this
work. One is the design and formal model of a self-timed
RAM which is used in practical integrated circuits. The
other is the formal verification of the speed-independence
of this design.

The formal verification illustrated an important prac-
tical aspect, namely how to exclude a certain optimized
part from the formal verification.

Deriving the necessary invariants for the RAM control
part was almost straightforward. However, deriving the
invariants of the data-path was much more complicated.
Depending on the order of input events the data-path can
redch different states, although the same function is car-
ried out. This complicated the verification, and several
iterations with the mechanical tools were required, to de-
rive the needed invariants and protocols.

Acknowledgement

The work described in this paper has been supported
by the Danish Technical Research council. The authors
are grateful to Jens Sparse and Michael Kishinevsky for
many inspiring discussions and to Morten Elo Petersen
who wrote the RAM generators and participated in the
early work of the design. The memory cell presented in
figure 6 is based on a suggestion from Josh A. Tierno,
Caltech.

REFERENCES

D.L. Dill. Trace Theory for Automatic HierarchicaE
Verification of Speed-Independent Circuits. The MIT
Press, Cambridge, Mass., 1988. An ACM Distin-
guished Dissertation 1988.

Edward H. Frank and Robert F. Sproull. A Self-
Timed Static RAM. In Randal Bryant, editor,
Third Caltech Conference on VLSI, pages 275-285.
Springer-verlag, 1983.

M.A. Kishinevsky, A.Yu. Kondratyev, A.R. Taubin,
and V.I. Varshavsky. Analysis and identification of
speed-independent circuits on an event model. For-
mal Methods in Systems Design, 4(1):33-75, 1994.

Michael Kishinevsky and Jerrgen Staunstrup. Mecha-
nized verification of speed-independence. In T. Kropf
and R. Kumar, editors, Proceedings from 2nd Inter-
national Conference on Theorem Provers in Circuit
Design (TPCDSQ), volume 901 of Lecture Notes in
Computer Science, pages 146-164, Bad Herrenalb,
Germany, September 1994. Springer Verlag. pub-
lished 1995.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen
Borkovic, and Pieter J. Hazewindus. The first asyn-
chronous microprocessor: the test results. Computer
Architecture News, 17(4):95-110, June 1989.

Carver Mead and Lynn Conway. Introduction to
VLSI Systems, chapter 7: System Timing (Charles
L. Seitz), pages 218-262. Addison Wesley, 1979.

171 David E. Muller. Asynchronous logics and appli-
cation to information processing. In H. Aiken and
W. F. Main, editors, Proc. Symp. on Application of
Switching Theory in Space Technology, pages 289-
297. Stanford University Press, 1963.

[SI David E. Muller and W. S. Bartky. A theory of asyn-
chronous circuits. In Proceedings of an International
Symposium on the Theory of Switching, pages 204-
243. Harvard University Press, April 1959.

[9] Lars Skovby Nielsen, C. Niessen, Jens Sparso, and
C . k van Berkel. Low-power operation using self-
timed circuits and adaptive scaling of supply voltage.
IEEE transactions on VLSI systems, 2(4):391-397,
1994.

[lo] Jargen Staunstrup. A Formal Approach t o Hardware
Design. Kluwer Academic Publishers, 1994.

[ll] K. van Berkel. Beware the isochronic fork. Integru-

[12] Kees van Berkel, Ronan Burgess, Joep Kessels,
Ad Peeters, Marly Roncken, and Frits Schalij. A
Fully-Asynchronous Low-Power Error Corrector for
the DCC Player. In ISSCC 1994 Digest of Technical
Papers, volume 37, pages 88-89, San Francisco, 1994.

[13] N. Weste and K. Esraghian. Principles of CMOS
Addison-

tion, the VLSI journal, 13(2):103-128, June 1992.

VLSI Design - A Systems Perspective.
Wesley, Reading. 1985.

758

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 12:42:37 UTC from IEEE Xplore. Restrictions apply.

