

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Modular specification of real-time systems

Inal, Recep

Published in:
Proceedings of the Sixth Euromicro Workshop on Real-Time Systems

Link to article, DOI:
10.1109/EMWRTS.1994.336871

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Inal, R. (1994). Modular specification of real-time systems. In Proceedings of the Sixth Euromicro Workshop on
Real-Time Systems (pp. 16-21). IEEE. DOI: 10.1109/EMWRTS.1994.336871

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/EMWRTS.1994.336871
http://orbit.dtu.dk/en/publications/modular-specification-of-realtime-systems(6215f675-45e8-42ca-9bb3-c28e41ca2eb9).html

* Modular Specification of Real-Time Systems

Recep Inal
Department of Computer Science

Technical University of Denmark, bldg. 344
DK 2800 Lyngby, Denmark

Email: reiOid. dth. dk

Abstract
Duration Calculus, a real-time interval logic, has

been embedded in the Z specification language to pro-
vide a notation f o r real-time systems that combines
the modularisation and abstraction facilities of Z with
a logic suitable for reasoning about real-time proper-
ties [4 , 21. In this article the notation is presented
through a top-level specification of requirements for a
simple Air Traffic Monitoring system, and reasoning
is illustrated by a refinement towards a design.

Keywords: real-time systems, requirements, formal
specifications, refinement, design.

1 Introduction
A purpose of formal specifications is to contribute

to concise and understandable documentation of re-
quirements, assumptions and design. Furthermore
they shall allow a designer to reason about correct-
ness of a design with respect to requirements under
given assumptions. Previous work within the Prov-
ably Correct Systems project [l] has demonstrated use
of Duration Calculus, a real-time interval logic as a
notation for concise specification and reasoning about
real-time systems [9, 3, 51. In that work, the notation
is used in the usual mathematical fashion with implicit
declarations and modularisation through textual sub-
division. This paper illustrates an application of a new
development, where the Duration Calculus is embed-
ded in the widely used Z language [ll] which provides
a precise explicit notation for modular specifications
suitable for larger scale developments.

The timed Z notation is illustrated by means of a
case study which is based on an air traffic monitoring
problem posed by the University of Stirling[7]. The
paper is organized so it documents the development
stages:

1. Definition of a system model, and specification of

*This work is partially funded by the Commission of the Eu-
ropean Communities (CEC) under the ESPRIT programme in
the field of Basic Research Project No. 7071: ProCoS: Provably
Correct Systems”.

requirements.

2. Specification of a control design for the system
and assumptions about the environment.

3. Verification of the control design by proving that
the design refines the requirements under the as-
sumptions.

Although the documentation is presented in a top-
down fashion, it must be noted that development of a
sufficiently abstract system model and a correct design
is an iterative process.

In the conclusion we report experience with a proof
assistant tool encoded in PVS [8, 101 for mechanical
verification. In order to give a feeling of how proofs
in the Duration Calculus are structured the detailed
verifications are given in an appendix.

2 Air Traffic Monitoring System
The air traffic monitoring system monitors the posi-

tion of civil aircraft in the vicinity of an airport. Air-
craft may be landing at, departing from or crossing
over the airport. The aims of the system are:

1. to ensure aircraft do not risk mid-air collision by

2. to organize landing and departings of aircraft,

3. to collect position information from radar

coming too close to each other,

and

The components of a system model are: an Airspace
database containing the aircraft, a Radar that mea-
sures the positions of aircraft, an Alert mechanism
that alerts aircraft in collision risk, and finally one or
more Runways for the landing and departures of air-
craft. The task of a software design for the system
is to take care of the correct interplay between the
components.

The tasks of the system motivates a modular com-
position of the overall system. To keep the presen-
tation short, we will focus on the collision avoidance
part of the system, and hence describe the interplay
between Airspace and Alert components. This sub-
system will be denoted as CAS, Collision Avoidance
System. It should be noted that the developed model
is kept deliberately simple. For instance the velocity
of aircraft is not modeled, but this can easily be added,
and is used in the larger model presented in [6].

1068-3070/94 $03.00 0 1994 IEEE
16

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:23:08 UTC from IEEE Xplore. Restrictions apply.

3 System Model 3.1 Requirements
We consider a single safety requirement, REQ,

namely the fact that no collisions may take place in
the controlled air space.

REQ e O(7Col l)

The modal operator, U, means for any interval of*time.
The formula says that for any interval of time the pred-
icate ~ C o l l holds.

In this section a system model of the CAS subsys-
tem is derived in order to capture the safety require-
ment. First we introduce some design parameters:

vmaxi R : W
T I Tail Tcoii, Tinit : Time

These parameters will be explained below.

Air space:
A state is needed to track all aircraft in the controlled
air space. This state, which is a real-time database
recording all aircraft positions, will be named Pos. It
is declared in a schema.

AIRSPACE
Pos : ID + (State POSITION)

Since the notion of time is implicit in our notation we
use the keyword State to denote time varying states.
A variable with this keyword is interpreted as a func-
tion of time.

The database is a function from aircraft-identifiers,
[ID], to information about the aircraft, in this simple
case a position, which changes over time. The fact that
no aircraft can be in different places in same time is
thus captured by the model variable. The positions
are Cartesian coordinates with the origin being the
location of the radar.

POSITION 2 [x : R; y : W; z : R]

Distance between positions is computed by a function
dzst. We define first a predicate Close, which holds if
the distance between two aircraft becomes less than
some input parameter x?:

Close

x? : W
3 id1, id2 : dom Pos e

rPos(id1) = pi A Pos(id2) p21 A
id1 # id2 A dist(p1,pz) < x?

Note that in Z all free variables are universally quan-
tified.

Aircraft are surrounded and protected by a sphere,
with radius, r 2 0, that no other aircraft is permit-
ted to enter. For simplicity we assume all aircraft have
the same speed, and hence the same protection sphere.
A violation of this sphere, i.e if the distance between
two aircraft becomes less than 2r is tantamount to a
collision. Hence the predicate Coll:

Coll Close[2r/x?]

The predicate is defined by renaming of the input pa-
rameter x? to r .

4 Control System Design
In this section a refinement of the system model

towards a design is presented. The design consists
of some assumptions that should be satisfied by the
environment and a controller in terms of a finite state
automaton.

4.1 Assumptions
To detect collision risks a bigger sphere with radius,

R > r , surrounding each aircraft is needed. A collision
risk appears when the distance between two arbitrary
aircraft becomes less than 2R. Figure 1 illustrates the
idea.

Figure 1: Protection spheres

We will also assume a general maximum velocity,
'U,,, > 0, for all aircraft in the air space. The worst
collision time, Tcoll occurs when two aircraft, sepa-
rated by a distance of 2R, move against each other
with this maximum velocity. This time is given by
the equation

Furthermore we will assume that the positions only
change after T time units, i.e. a measured position is
stable for time T . In order to be able to detect COL-
sion risks in time we require that the aircraft do not
move too fast. These two assumptions are expressed
as:

A IRSPA CE

17

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:23:08 UTC from IEEE Xplore. Restrictions apply.

These formula use the chop operator ' ; I to divide an in-
terval into contiguous subintervals. The first formula
considers an interval, where a given aircraft id change
to position p1 and then away again. For any interval
of this form the length, e, is greater than T . The sec-
ond formula states that for any interval consisting of
an initial subinterval where an aircraft with id has po-
sition pl followed by a unspecified subinterval, true,
and followed by a third subinterval in which the same
aircraft has now position p2 then the flown distance is
less than U,,, (e + T) .

From AS& we are able to set an upper bound
on the sampling time T . First we need a predicate,
Allsafe, which holds ifall aircraft are safely separated:

Allsafe A ~ C l o s e [2 R / x ?]

Fact l : A potential collision is detectable if all aircraft
are safe before a collision and if T 5 Tcozz.

O(Al1Sufe ; true ; Col1 + .t 2 Tiozz - T)

Fact2: A collision risk may be missed by the system if
T > T ~ ~ z z -

O(Al1Safe ; Col1 j T > Tol l)

Proofs of these facts are given in Appendix B. As
a consequence of these lemmas we will assume that
Tcozz 2 T .

Alert:
To ensure safety, the system must alert the pilots of
aircraft being in a collision risk, i.e. whenever two
aircraft come too close to each other. The pilots of
aircraft in collision are then alerted via an air traffic
controller. We introduce a state variable, Alert, a set
of identifiers, for aircraft in collision risk. The states
of the CAS system are now collected in the schema:

r 2AEF
Alert : State P ID

The interplay between Alert and the pilots is not spec-
ified in this work, but instead we assume that an intel-
ligent plan for avoiding the collisions is produced by
the air traffic controller, and that the pilots follow the
plan and are out of the danger zone within Tal time
units. Finally we will assume that in an initial interval
of length Tinit all aircraft are safely separated. The
above assumptions are now formalised in a schema:

TCOZl 2 T

[InDanger C_ Alert] 4' [InDanger = { }1
0 < e 5 Tinit + Allsafe

T

The third assumption is expressed by use of the timed
progress operator:

D 1 $ D 2 G n ((D 1 A l = T) ; e > O + e = T ; Dz ; true)

The formula states that if a formula D1 holds for time
T on an interval then formula D2 holds initially on a
succeeding non-point interval.

The function InDanger finds all aircraft being in a
collision risk.

InDanger
AIRSPACE r ds! : State P ID

ds! = (A t : Time 0

{ i d I id : dom Pos A
3 id1 : dom Pos a ad # id1 A I d i d (POS(id) (t) , POS(id i) (t)) < 2 R))

The output parameter, ds!, records the aircraft having
a collision risk as a function of time.

4.2 Controller Design
The controller design is based on a finite state au-

tomaton. We introduce a new type PHASES to rep-
resent the phases of the automaton.

[PHASES]

The control automaton consists of three different
phases. These are introduced as:

Init, Idle, Act : PHASES

A Idle # Act A Act # Init

The Init phase describes the initial behaviour of the
controller. In the Idle phase the automaton does noth-
ing, and in the Act phase the automaton performs
actions for avoiding possible collisions. The abbrevia-
tions [Init], [Idle] and [Act] are in the following used
to denote the current phase of the automaton. The
phases of the automaton and the transitions between
them are depicted in figure 2. @-U /----.-

Figure 2: automaton

We need two new constants: E and 6. The param-
eter E is used to specify a latency time for the system
to react and move from one phase to another. The
parameter 6 is used for a latency time for the system
to enable the alert mechanism.

~ , 6 : Time

18

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:23:08 UTC from IEEE Xplore. Restrictions apply.

We decide that the automaton starts in the Init phase,
and that the Init phase is followed by the Idle phase
within time units.

I N I T I A L S ([1 -+ flnit]) A ([Init] 'Yt [Idle])

The next schema states that the Idle phase is followed
by the Act phase.

T R A N S & [Idle] + [Act]

The predicate Danger, defined as

Danger 2 Close[2R/x?]

determines when a transition is allowed to be per-
formed. The predicate states simply if there is risk
for a collision. The enabled transitions are specified
in the schema E N A B- T R A N S .

ENAB-TRANS

[Idle] A Danger 4 [Act]

[Act] A -Danger -% [Idle]

The next schema, CON-STABILITY , describe the
conditions needed to maintain a phase.

CO N-S T A B IL I T Y r AIRSPACE

[Idle] A TDanger + [Idle]

[Act] A Danger + rAct1

The actuator part of the system, i.e. the alert mech-
anism, is activated in the Act phase. This decision is
specified as:

[Act] 4 [InDanger C Alert1

The total specification of the controller design is given
by a collection of schemas:

DES1 INITIAL A T R A N S A
ENAB-TRANS A ACTIONS A
CO N-S T A B IL I T Y

As a final specification we introduce a schema for the
control design of the CAS subsystem:

C A S i A D E S l A ASMI

The proof obligation is then to show the correctness
of the control design, i.e.

CAS1 j REQ

which is verified in Appendix A.

5 Conclusion

We have illustrated an application of a Timed-Z
notation comprising of an embedding of the Duration
Calculus into the Z specification language. The ad-
vantages of this is twofold: besides specifying and rea-
soning about timing properties of real-time systems, it
provides also composite modular specifications. The
latter is a necessity when dealing with complex sys-
tems. The example of the specification of a subsystem
of the Air Traffic Monitoring System illustrates this
thesis. The other subsystems have been specified in a
similar manner as done here [6].

Another advantage of the presented approach is
the possibility for application of the existing software
tools. The presented specification and verification has
been checked by the DC/PC tool. This has resulted
in detection of some missing details. For instance the
stability of the measured positions was not captured
in the initial specification, but the proof assistant in-
sisted on the necessity of this fact. Thus for large
scale development of real-time systems the assistance
of tools for type checking and mechanical verification
is indispensable. This will not reduce design time, but
it will certainly liberate the designer from the tedious
parts of the verification, and ensure the correctness of
the design.

Acknowledgements

I am very grateful to Anders P. Ravn for his in-
spiring and indeed very valuable comments and ideas
on this case study. Thanks to Kirsten M. Hansen and
Jens U. Skakkebaek for their helpful comments and
suggestions.

References

D. Bjdrner. A ProCoS Project Description. ES-
PRIT BRA 3104, EATCS Bull. no. 39, Oct. 1989.

S.M. Brien, M. Engel, He Jifeng, H. Rischel, and
A.P. Ravn. Z Description of Duration Calculus.
Technical report, Draft. OU HJF 12/2

J. Bowen, M. F'ranzle, E.R. Riidiger, and A.P.
Ravn. Developing Correct Systems. Proc. 5th Eu-
romicro Workshop on Real- Time Systems, pages
176-187, June 1993.

M. Engel. Specifying Real-Time Systems with Z
and the Duration Calculus. To appear in ZZJW'94

K.M. Hansen, H.Rische1, and A.P. Ravn. Spec-
ifying and Verifying Requirements of Real-Time
Systems. IEEE Transactions on Software Engi-
neering, Vol 19(1):41-55, 1993.

R. Inal. Specifying and Verifying Real-Time Sys-
tems. Master's thesis, ID/DTH/RI, 1993.

K. Jackson. Aircraft Traffic Control. Technical
report, University of Stirling, 1992.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:23:08 UTC from IEEE Xplore. Restrictions apply.

[8] S . .Owre, N. Shankar, and J.M. Rushby. User
Guzde for the P VS Specification and Verification
System, Language and Proof Checker. Technical
report, CSL, SRI Intl., October 1993.

[9] J.U. Skakkebaek, H. Rischel, A.P. Ravn, and Z.
Chaochen. Specification of Embedded Real-Time
Systems. Proc. 4th Euromicro Workshop on Real-
Time Systems, pages 116-121, June 1992.

[lo] J.U. Skakkebaek, and N. Shankar. Towards a Du-
ration Calculus Proof Assistant in PVS. Techni-
cal Report ID/DTH/JUS 5/1, Lyngby, Denmark
March 1994. Paper version submitted for publica-
tion.

[ll] J.M. Spivey. The 2 Notation: A Reference Man-
ual. Prentice-Hall, 2nd edition, 1992.

A Appendix A

diction. Assume
Our single safety requirement is proved by contra-

i R E Q ~ (C l (l C 0 1 l)) e 0 C 0 l l

The formula, OColl, is split into three cases:

Case a : Coll ; true
Case b : Allsafe ; Coll
Case c : A11Safe ; Danger ; Col1

which corresponds to occurrence of a collision, respec-
tively, at the beginning of the observation interval,
immediately after a situation, where all aircraft are
safely separated, and immediately after a situation,
where a collision risk is observed.

Case b can not occur, because our design does not,
by Fact2 and ASMI, allow such big changes of posi-
tions. We examine now the first case. INITIAL de-
composes to [] or [ln i t l ; true. It is easy to see that
[1 A Coll ; true + false. The rest of the analysis of
the first case gives:

Col1 ; true A [Init] ; true
3 {INITIAL}
Coll ; true A (e 5 Tinit A [Init] V

+ {PLogic, ASMI}
Col1 ; true A AllSafe V
Coll ; true A Allsafe ; [Idle] ; true

O(Col1 A AllSafe)

Ofalse

false

e = Tinit ; [Idle] ; true)

3 CDC}

{ R > r }

* { D e }

Before starting on the analysis of Case c we state a
lemma:

Lemmal: If the automaton is in the Idle phase while

there is danger for collision then the danger will be
avoided within E + S + Tal time units.

Proof

[Idle] ; true A Danger
j { ENA B- T R A N S }
e 5 E A [Idle] A Danger V
L = E ; ([Act] ; true A Danger)

1 = E ; ([Act] ; true A Danger)

1 = E + 6 ; (Act1 ; true A Danger A
[InDanger A l e r t])

j { A S M I , CON-STABILITY, e 2 E + 6 + Tal}
1 = E + 6 + Tal ; ([Act1 ; true A [InDanger = 01)
j {Definitions}
e = E + 6 + Tal ; Allsafe

* {e 2 E }

+- {ACTIONS, e 2 E + 61

Case is split into three more cases, each depending
on the current phase of the automaton. We will go
through the case, where the current phase is Idle:

[Idle] ; true A (Allsafe ; Danger ; Coli)
3 { CON-STABILITY}
AllSafe ; ([Idle] ; true A Danger ; Coli)
+ { Lemmal}
Allsafe ; (e 5 E + 6 + Tal V

=+ CDC}
Allsafe ; 15 E + 6 + Tal ; Coll V
Allsafe ; L = E + 6 + Tal ; Allsafe ; Coll
3 {Fac t l , e > R-r - T 2 E + S + Tal}
false V A l l S a f ~ ~ ? o l l
+ {Case b , PLogic}
false

1 = E + 6 + Tal ; Allsafe) ; Coll)

The implication in the last case has been derived under
the assumption

Hence the final general design decision is:

R - r > (T + T a i + S + E) . v , , ,

This completes the verification of the correctness of
the control design.

B Appendix B

Factl: A potential collision is detectable if all air-
craft are safe before a collision and if T < Tcoll.

O(Al1Safe ; true ; Coll 3 e 2 Tcoll - T)

20

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:23:08 UTC from IEEE Xplore. Restrictions apply.

Proof:

21

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:23:08 UTC from IEEE Xplore. Restrictions apply.

