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Abstract. A feed forward neural net is trained to invert a simple 
three compartment model describing the tracer kinetics involved 
in the metabolism of ['BF]flourodeoxyglucose in the human brain. 
The network can estimate rate constants from Positron Emission 
Tomography sequences and is about 50 times faster than direct 
fitting of rate constants using the parametrized transients of the 
compartment model. 

INTRODUCTION 

Positron Emission Tomography (PET) is an important tool for mapping of 
brain metabolism and functionality [2]. The primary target of PET is recon- 
struction of concentrations of certain radioactive tracers. The useful1 tracers 
emit positrons that are locally annihilated to produce two 511 keV gamma 
rays propagating in opposite directions. The 3D distribution of the tracer 
can be reconstructed from the geometric constraints of coincident counts, 
using standard techniques (filtered backprojection). An important class of 
tracers are chemically equivalent to compounds that enter the basic brain 
metabolism. By reconstructing such tracer distributions important aspects 
of brain metabolism have been revealed. Furthermore, by investigating the 
transient response to tracer injection, it is possible to identify fundamental 
kinetic rate constants. In this study we investigate the latter approach. The 
basic kinetic model was proposed by Sokoloff et al. [l]; in subsequent stud- 
ies the model wits used to estimate rate constant in lumped regions. In the 
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work of Kanno et al. [3] pixel by pixel estimation of the rate-constants was 
introduced. This scheme has, however, not found wide spread use due to 
the complexity of the task of fitting the kinetic model transient to the large 
number of individual pixel transients. In this work we show how a neural 
network may substitute for such tedious parameter fitting procedures. The 
neural network system is trained to produce a smooth map relating a given 
transient with i ts  most likely rate constants. This will provide a much faster  
estimation time for the individual pixel rate constants 

Blood plasma 

SOKOLOFF's KINETIC MODEL 

Brain tissue 

We consider here the kinetics of the compound ['sF]flourodeoxyglucose (FDG). 
The kinetics of this tracer is similar to glucose in the initial metabolic steps. 
It passes through the blood-brain barrier (BBB), and is phosphorylized in a 
process past the BBB analogous t o  glucose. Then it ceases to react further 
and is effectively trapped. The kinetics can be modelled by a compartemental 
model involving one compartment representing the tracer density in the ar- 
terial blood outside the BBB, C;; one compartment representing the socalled 
precursor pool, Ci; and finally a compartment representing the phosphoryl- 
ized fraction behind the BBB, CG; see figure 1. In current experiments the 
arterial concentrations are measured continuously along with the scan, hence 
the concentration C; can be considered a control parameter for the compart- 
ment model. 

Figure 1: Sokoloff's three compartment model applied to phosphorylization of 
['*F]flourodeoxyg1ucose (FDG). The star on the concentrations signifies that we 
consider tracer amounts and constants 

Following the injection of the tracer, hence, the rise of the arterial blood 
concentration C;, the flow through the BBB starts. The measured PET tracer 
activity is the sum of the activities of the two compartments to the right of 
the BBB c.f. figure 1, 
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The dynamics of the three compartment model is given by: 

with 

The reverse reaction rate constant (k;) corresponding to ki is neglected. 
These equations are straightforward to integrate providing the two time de- 
pendent concentrations, 

Following injection these solutions describe the transient activity in terms 
of the measured CG(t) and the three rate constants. Conversely, for a given 
transient C$(t) and for given measured sum of concentrations C:(t) we may fit 
the three rate constants. An example is shown in figure 2. We use a simple 
least squares cost function for the fit, hence implicitly assuming Gaussian 
residuals. Optimization over the three parameters was carried out using a 
second order Newton scheme’ 

There are two different approaches from here. Up til now most studies as- 
sume that the rate constant are homogeneous in regions, see e.g. [l, 21, and the 
rate constants are fitted from the regional average activity transient. Alterna- 
tively we can fit individual rate constants for each pixel in the reconstructed 
volume [3], and anaiyse for homogeneity. However, since it is quite tedious to 
fit the kinetic model, the latter approach has not found widespread use. In 
the upper panel of figure 3 we show the result of such a pixel by pixel fit. The 
artifacts outside the elliptic area of the brain are due to the reconstruction 
scheme used (Filtered backprojection). 

The database used for these experiments are PET data collected at the 
PET center at Rigshospitalet, Copenhagen. The subject described in this 
paper is a 43 year old woman with multiple sclerosis. Data are aquired on a 

‘Based on the solution to the kinetic model it is straightforward to compute the second 
derivatives. 
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GE4096 plus (General Electric Medical Systems), sampling 15 slices simulta- 
neously. The dynamic scans after injection of 200 MBq F-18 labelled FDG are 
performed over 60 minutes, yelding 34 contiguous time frames of increasing 
duration in order to provide a reasonable sampling of the (77 curve: (10@6 
sec; 3@20 sec; 86360 sec; 5@120 sec; 8@300 sec). A single such curve is shown 
in figure 2. Images were reconstructed in 1282128 matrices ( 2 V "  pixels) by 
standard Filtered backprojection (Ramp filter with Hann window). Correc- 
tion for attenuation is based on a separate transmission scan with a rotating 
Germanium pin source. For further introduction to PET scan techniques see 

-% 011 012 0:3 0:4 0:s 0:6 o:, 0:tl 0:s 
TIME 

Figure 2 :  C,'(t) as measured by PET for a single pixel, as produced by the kinetic 
compartment model with the fitted rate constants, and as estimated by the neural 
network. 

To avoid the tedious fitting procedure we here investigate the possibility of 
identifying the inverse modelof the kinetics: we search for a map that provides 
an estimate of the three rate constants for a given observed transient. Our 
basic vehicle will be a simple feed-forward network. 

What should be used for inputs?. The PET transients depend, c.f. equa- 
tions (5-6), on the rate constants and on the time dependent arterial concen- 
tration (CG). If we want to generalize from one set of pictures to another set 
(possibly another subject) we would need to provide both the observed PET 
transient and C;(t). This will be pursued in future studies. In this work we 
tentatively train the network to predict the rate constants for pictures of a 
single sequence of PET images, hence, C$ is the same for all pixels and we 
need not provide it as input. In particular we train the network on transients 
from a small subsample of one slice of the PET volume scan Subsequently we 
apply the trained network to get the rate constants for the (large) remaining 
set of pixels. 
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Figure 3: Image (slices) showing the I;;  rate constant as determined by fitting the 
kinetic model (pixel by pixel) using a second Newton scheme (upper panel) and 
as determined by the neural net operating as inverse model for the kinetics (lower 
panel). The artifacts outside the elliptic area of the brain are due to the “Filtered 
backprojection” algorithm used for reconstruction. 
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Figure 4: Comparison of time developments for the training process of standard 
Backpropagation and the BFGS scheme. 

NETWORK DESIGN 

The network considered is a standard feed forward net with a single layer of 
hidden units. The activation function of the hidden units are hyperbolic tan- 
gents, while the output units are linearly activated. The particular network 
for this study had 34 inputs corresponding to the activity transient of a given 
pixel. The net had ten hidden units and three output units. We trained the 
network by a pseudo second order scheme, the Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) algorithm see e.g. [4]. This algorithm is a variable metric 
method that constructs a sequence of matrices approximating the inverse 
Hessian. Using BFGS instead of e.g. standard Backpropagation [5] provides 
a significant speed-up. This is quantified in figure 4, showing the time devel- 
opment of the training process with backprop and with the BFGS method 
respectively. Note the scale is in arbitrary CPU l ime units not iterations, 
since a backprop iteration is faster than a BFGS iteration. 

For most adaptive systems the objective is not to learn the training set, 
but rather to perform well on a much larger set of conceivable inputs, i.e., 
generalization. The generalization ability depends on architecture and on size 
of the training set. Hence, for a given architecture, it is important to estimate 
the necessary number of training cases (pixels) to obtain good generalization. 
This relation is quantified by the secalled learning curve of the architecture 
as shown in figure 5. We note that a mere 4000 pixels are needed to obtain 
the asymptotic level of the test error. 

Finally we apply the trained network to produce a full estimate of a "slice" 
of the PET scan as presented in the lower panel of figure 3. It is quite 
remarkable that the image quality of the rate constants reconstructed by the 
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Figure 5: Learning curve for the feed forward net trained by BFGS, approximately 
5000 pixels are needed to reach the asymptotic generalization level (about a quarter 
of the pixels in an image (slice)). 

networks inverse model is less noisy than quality obtained from the fitting 
procedure. The reason is that the network capacity is limited by the inherent 
constraints of the network architecture, while the Newton fit can lead to 
arbitrarily (wrong) rate constants for a given pixel if the transient is very 
noisy. We also note that the execution time for the feed forward network is 
about two percent of the average time needed to obtain the kinetic constants 
by fitting the transients with the Newton method. 

CONCLUSION 

We have shown how a feed forward net may be used for identification of the 
inverse model for three compartment PET tracer kinetics. Not only is the 
use of the feed forward net significantly faster than fitting the kinetic model, 
but our tentative results seem to indicate that the rate constant distribution 
is regularized by the constraints imposed by the network architecture. 
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