-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
oo

Requirements for user interaction support in future CACE environments

Ravn, Ole; Szymkat, M.

Published in:
Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design

Link to article, DOI:
10.1109/CACSD.1994.288902

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Ravn, O., & Szymkat, M. (1994). Requirements for user interaction support in future CACE environments. In
Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design (pp. 381-386).
IEEE. DOI: 10.1109/CACSD.1994.288902

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13730263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CACSD.1994.288902
http://orbit.dtu.dk/en/publications/requirements-for-user-interaction-support-in-future-cace-environments(5567b220-54c5-4d4f-9ae5-056a2e88f7f2).html

Requirements for user interaction support in future
CACE environments

O. Ravn

Technical University of Denmark
Institute of Automatic Control Systems
Building 326
DK-2800 Lyngby, Denmark
or@sl.dth.dk

Abstract

Based on a review of user interaction modes and
the specific needs of the CACE domain the paper
describe requirements for user interaction in future
CACE environments. Taking another look at the
design process in CACE key areas in need of more
user interaction support are pointed out. Three con-
cepts are described through examples, dynamic data
access, parallel evaluation and active documenta-
tion. The features of existing tools are summarized.
The problem of how easily or ‘naturally’ the novel
concepts are integrated. is stressed.

Keywords: User interface: Programming: Design
Process; Active documents:

1 Introduction

Future CACE environments should provide the sup-
port for the next generation of styles of interaction
between the designer and computer. The traditional
concepts are based mainly on ideas adopted from
universal programming languages (script files. func-
tion files, data objects). There is a need to include
the designer as a cooperating factor in design pro-
cess.

The objectives related to novel interaction styles
depend on environment capabilities, and to some
extent on the preferred type of user behaviour. In
general the approach to building model descrip-
tions should enhance systematic treatment of model
representations through standardized programming
techniques. Their functionality should support pro-
tection of the consistency of model descriptions,
standardization of retrieval, updating and transfor-
mation methods, including construction of variant
versions.

0-7803-1800-5/94/$3.000 1994 1EEE

381

M.Szymkat

St.Staszic Technical University
Division of Control Engineering
al.Mickiewicza 30
30-059 Krakow, Poland
msz@earth.ia.agh.edu.pl

Achieving these objectives requires standardiza-
tion of model data modification procedures (replac-
ing the traditional read-eval-display loop). In the
specific context of CACE tools the requirements for
user interaction support are closely related to the
iterative nature of the design process. In partic-
ular the design decisions should be automatically
logged to enhance reverting operations, variant de-
velopment, multi-threaded dialogue. and active doc-
ument features of the user created modules.

The crucial role in supporting user interaction is
played by the user interface which should be able
to implement certain general' mechanisms as inter-
leavability. concurrency, reversibility and repetitive-
ness. The paper includes a short overview of cur-
rently available techniques n interactively oriented
packages.

The general model of user interface consists of the
descriptions of several elementary phases following
each other. These are [3]:

e user action (mouse cursor movements, key-
board text input. etc.),

o interface feedback (highlighting the selected
area, opening the dialog box etc.),

e changing interface state (setting the values of
interface control variables),

e initiating the computation tasks (executing as-
signed function callbacks).

The consecutive phases mentioned above involve
ouly primitive elements of the the user interaction.
Usually the dialog between the user and the inter-
acting software tool is accomplished on-line (conver-
sational interaction) or it may be pre-programmed
(programmatic interaction). [6].

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

The interaction modes define the appropriate
communication protocol for user-software informa-
tion exchange. The most used ones in the today’s
CACE environments are combined modes includ-
ing menus, forms, command languages and various
forms of graphical manipulation. These heteroge-
neous solutions, typically implemented within one of
the GUI standards, e.g. MS Windows or X-Window
System, are often referred to as window-based inter-
action mode. It is important to stress here that only

the most outer layer of the user interaction support,

including the appearance (look-and-feel) of the in-
terface devices is defined by the GUIL. The essential
part of the interface construction, related to the ‘us-
ability ’of the CACE software, relies on the bindings
between modelling and computational services and
the user interface itsel{. This area will be called the
user interaction support.

The conventional user interfaces of currently
available CACE tools are typically built around con-
versational and programmatic concepts which are
well established in almost all types of existing ap-
plication software, [6]. Most of the user actions sup-
ported by the interface involve [1], [2):

e access to model data and computation results
(via querying or browsing).

o manipulation on model data and computation
routines (parameter setting. etc.).

o instantaneous configuration of the software (af-
fecting overall working context).

e various consistency checks,

e program state retrieval and creation of execu-
tion reports (logging).

The prevailing part of existing CACE tools sup-
ports the sequential inferaction style, ie. a type of
the dialog where the user actions have to be or-
ganized in a certain ordered manner. The naviga-
tion through the cascade of menus is a basic exam-
ple, the execution of sequences of commands serves
as another one. The repetitions or parallel dialog
threads are often available, but not directly sup-
ported. The asynchronous interaction style, where
many tasks are at the user disposal at the same time
and sequencing within one task is independent of se-
guencing within the other is an alternative. In what
follows we will try to precise what kind of interac-
tion style would be preferred in the future CACE
environments due to the specific properties of con-
trol systems design.

382

2 CACE specific requirements
for the user interaction
support

As pointed out in an earlier work [7], [8], [2], looking
at the nature of the design process gives insight into
the needs of the user of CACE systems. In order to
determine potential focus points for future work on
refining and enhancing user interaction support the
design model in Figure 1 is revisited. It should also
be pointed out here that the problems of user in-
teraction relies on the existence of good and well
proven numerical methods for the underlying anal-
ysis and design. These tools are to a large extent
available today but the problems to use them ef-
ficiently. Here an enhanced user interaction sup-
port will benefit the overall efficiency of the CACE
environment. Many of the problems and questions
asked in the development of user interaction support
are common to many domains of engineering, e.g..
circuit design, digital filter design, machine engi-
neering. Especially software engineering has a large
common problem basis with CACE [8].

Start

Goal gencration

VA
(Modelli ’ '

¢ ng / —» lteration
(Analysis)

\
(Evaluation)
/>

Implementation

M

top :

Figure 1: A simple view on the design process.

The design process model shown in Figure 1 is a
very simple abstraction but still it provides a way
of classifying user actions during the design. The
model consists of 6 phases:

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

o Goal Generation. This phase initiates the de-
sign process. The problem and the desired
features of the solution are determined. This
phase is normally done in cooperation with the
customer, other engineers etc. Normally no for-
malized tools or methods are used here.

Modelling. The modelling phase is used to de-
termine a model of the system to be controlled.
This is normally a mathematical model which
can be used by the tools of the following phases.
Models of different complexity may be derived
such as linear plant models for the design of lin-
ear controllers and then non-linear plant mod-
els in the evaluation phase. Many CACE tools
exist for assisting the user during this phase.

Analysts. The derived model is analyzed in or-
der to gain an understanding of the system and
the potential problems. The analysis results are
used as a basis for choosing a controller struc-
ture. Not just the normal numerical tools are
applicable in this phase; the potential benefits
of using symbolic manipulation tools are be-
coming more and more evident and many of
the numerical packages have built-in symbolic
tools or interface to them.

Design. A possible controller structure is se-
lected and the parameters are chosen in order
to match the design goals. It may be useful to
consider more controller structures and com-
pare their performance in parallel. Many tools
for designing standard LQ, LQG etc controllers
exist.

Evaluation. The different controllers are con-
sidered in this phase and compared with respect
to the features of the desired solution set up in
the first phase of the design process. The de-
gree of compliance with the goals is determined
and the best controller selected. The evaluation
phase may use simulation of the system or use
partially the real-time interface in order to se-
lect the best controller. More models may be
used in order to gain insight into what features
of the system and the controller limit the per-
formance.

Implcmentation. The chosen mathematical
description of the controller is implemented.
More and more tools are emerging in this field.
The standard packages have C-code generation
tools and offer hardware which can be used for
testing the controller in a laboratory environ-
ment. The main problem here is the balance

383

between code efficiency. hardware dependency
and the degree of automation of the phase.

Another element of the design process model is
the tteration which is its fundamental property.
The iteration can be performed manually, semi-
automatically or automatically. The iterative na-
ture of the design process is also an important ele-
ment which we will return to.

An overall evaluation of the design phases indi-
cates that most CACE tools are available for the
Modelling, Analysis and Design phases. Some tools
are also available for the lmplementation phase.
However there is a lack of tools for the rest of the
phases and the iteration. Some environments being
developed at universities, [4], support the iteration
but these in turn are not generally available.

In Figure 2 another view of the design process is
shown [3]. Here the mathematical abstraction level
1s more apparent. The modelling and implementa-
tion phases represent transitions between the phys-
ical structure and the model structure level. The
analysis and design phases appear as transitions be-
tween the model structure and the control structure
level. CACE tools are generally available for the
more abstract levels and not so much for the lower
levels.

Control structure

71 i ! + \\ \\
/. N \

i NN
Controlier Plant N
Model! gtructure Mode\ structive

\ I

\ [l

\ |

] .

implementation Physicall struciure
I T
, |
Y Design process

Figure 2: Another view on the design process.

Looking at the design process indicates that there
is a strong need for user interaction support in the
more 'soft’ areas. These are Goal generation, Eval-
uation and iteration. The iterative nature of the
design process gives rise to more explicit automa-
tion of certain design loops. On the other hand it
may be difficult to decide beforehand which decision
on certain stage leads to the successful design. This
would require a support of parallel or variant design
procedures. '

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

It is important to define the qualities required
from the interaction support which are needed to
meet the needs of the control system designer. We
will concentrate on the following ones:

e inferleavability - meaning that the user can in-
terrupt one task, skip to another task, come
back to the first one, and so on, with possibly
many other tasks,

e concurrency - meaning that several tasks may
be simultaneously (or virtually simultaneously)
executed,

e repetitiveness - meaning that certain tasks may
be recorded and replayed when needed by the
user,

e reversibilily- meaning that the state before the
task execution may be fully restored, indepen-
dent of the results.

All the requirements specified above are directly re-
lated to the support of variant design (‘what if’
scenarios, etc.). In general, we expect that future
CACE environments will be able to perform simul-
taneous visualization of the results of the same de-
sign parameter change in alternative control system
structures.

In what follows we will consider also even more
demanding requirements related to the infelligent
interface definition. These requirements involve
probably more the user interaction support as a
whole than the user interface itself. They go much
deeper into data representation and the applica-
tion domain. We will recall here the ‘spreadsheet
metaphor’. In the automatic recalculation mode the
manipulation on specifc cells produces ‘immediate’
adjustments in row or column sums. In general, this
concept complies withe the idea active document.
In fact the user defines certain relations between
the manipulated objects, and the software is able to
update the context automatically.

In the case of control system design a similar sit-
uation appears whenever we have parameterized de-
sign schemes. Let us specify the requirement con-
cerning the user action support related to this kind
of software behaviour as meta-programming. The
explanation of this term is as follows. In order to ob-
tain the desired effect the user should be able to cre-
ate his own two-way bindings between the interface,
data management and computation layers. This
may be done explicitly or it may be deduced from
the usage context, provided that general rules of
meta-programming are known. The simplest exam-
ple is the command initiating re-execution of a cer-

384

tain set of previous commands in another workspace
context.

3 Examples

Three examples of novel user interaction elements
are described below. These elements can be im-
plemented with the current standard packages, but
the key issue is the ease with which they can be
used by even less experienced users. The availability
and the degree of integration is also of paramount
importance when evaluating the usefulness of the
suggested elements. The following examples imple-
mented using current tools were intended to illus-
trate possible benefits that should be easily accessi-
ble in future CACE environments.

3.1 Dynamic Data Access

The concepts of control systems as objects, and
views and actions on them have been described ear-
lier [7]. Here the main ideas are recaptured in Figure

e

System

Figure 3: Dynamic views and actions.

The control system is an object in the CACE en-
vironment, and multiple views can be setup relating
to it. These views can be graphical or alphanumeric
and contain analysis results such as a step response
and the rise time. The updates of the views are
triggered by events, either explicitly as a request
for update or as an action being made. The action
on the system (object) can be. e.g., changing the
gain of the controller graphically. When the action
and the update of the views are linked the oper-
ation of the overall CACE environment is like di-
rect manipulation. For complex systems and many
views the currently available computer resources are
likely to limit the performance. In that case an asyn-
chronous mode should be used as even a small time
delay in the direct manipulation limits the useful-
ness. Some aspects of the above ideas can be found

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

in SIMULINK and ANDECS [4]. The idea of this
concept is to support the user in the iteration of the
design process in order to facilitate extensive exper-
imentation to help get a better feeling of the system.
Some optimization tools coan be coupled with the it-
eration in order to achieve the design goal automat-
ically or semi-automatically [4]. A key point of the
concept is the ease with which the views and actions
can be setup and modified, there is a great need for
some form of maybe graphical meta-programming.
In any case such an implementation should give bet-
ter interaction possibilities to the iteration than a
conventional script file.

3.2 Parallel evaluation

Another phase of the design process where there is
a need of user interaction support is the evaluation
phase. Experimenting with more controllers in par-
allel will ease the evaluation. The performance of
the controllers can be viewed at the same time thus
making it easier to see the benefits of. e.g., an LQ
controller versus a PID controller for the same sys-
tem. Figure 4 illustrates the parallel evaluation con-
cept for different controllers and Figure 5 the same
idea for system models of different complexity.

~»1 Object >

Controller LY

Figure 4: Parallel evaluation of different controllers.

With such a feature in the CACE environment the
effect. of, e.g., a limit on the control signal would be
easily found in one experiment. Figure 6 shows the
control and output signals of the system with and
without the limitation.

—» Controller

Object

Figure 5: Paralle] evaluation of different model rep-
resentations.

Again the key issue is the degree of integration of
the concept into the CACE environment.

3.3 Active document

A concept which finds some use in text processing
is active document. A text processing system such

385

’ ’ LIS
1 ’ Sa S J
K 1t s e
! ’
H N ’ '[
o Y /) /|~ Control witn kma
Y K Control without bmit
o8 Lo f ‘=~ Output with it
EP - = Output without bmit

Figure 6: Control signal and output signal for the
parallelly evaluated system.

as FrameMaker has built-in variables and an inter-
face enabling the invocation of external programs.
The usefulness of active documents in user inter-
action support is best shown by an example. A
test robot has been built in the laboratory, the con-
trollers have been designed and implemented. For
some reason the gear ratio in one of the axes should
be changed and the controller redesigned. In some
current CACE system [4], [9] there is a database
storing the history of projects. From this database
the design calculation could be reconstructed. How-
ever if the documentation of the robot and the con-
troller were written as an active document and given
an engine for updating the document (similar to a
spreadsheet) the redesign could be done automat-
ically after the value of the gear ratio had been
changed.

Active documents and hypertext are used with
success in other domains such as network communi-
cation e.g. the ‘Mosaic’ client for the Wide World
Web where data is retrieved and displayed in cor-
rect format by clicking on a hypertext area. The
user does not have to know the actual site where
the data is stored, to connect or unpack it. This
gives the user superior interaction possibilities and
a good overview of the data accessible in the system.

4 Currently available
solutions

The popular GUI environments such as X-Window
System or MS Windows offer a variety of tools and

. mechanisms for developing user interfaces, e.g., X-

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

toolkits, Motif, Openlook, Visual C++ and many
others, all at low to medium levels of implemen-
tation. There are also available more high-level ori-
ented development systems such as Bricklin’s Demo,
HyperCard, SmithersBarnes Prototyper, [5]. In fact
due to their generality, which is by no means a de-
ficiency, their are loosely related CACE.

The need for the more powerful domain-specific
user interaction support tools has already resulted
in certain evolution of existing CACE environments,
just to mention: Matlab v.4.0 - Handle Graph-
ics, Simulink’s - interactive simulation concept and
meta-programming features, configurable GUI of
Xmath or Mathematica’s notebooks. We do hope
that some of the ideas presented in this paper may
influence the future developments in this area.

The general remark which applies here is that
most of the tools give only low leve] interaction sup-
port. This seems to be sufficient for software devel-
opers implementing the CACE tools rather, than
to application domain oriented users. On the other
hand the latter category seems to be able to verify
the usablity of the user action support.

Another important issue which should be ad-
dressed here is the general problem of the standard-
ization of the user interaction support which would
require a serious collective effort of the CACE com-
munity.

5 Conclusion

Much of what has been presented here is available
using existing CACE. The real problem is how easily
or ‘naturally’ it is achieved. Sometimes it is just a
matter of interaction or programming style within
the given too). In many cases external user interface
management systems would be useful. The worst
thing (for the user) would be to redesign an existing
tool. As is generally agreed the nature of computer
software is evolutionary. One may hope that some
of the requirements proposed here will be accepted
by the developers of future CACE software.

Acknowledgment

M. Szymkat acknowledges the support he received
under the grant KBN-8-85289102: Computer sys-
tems of control and decision making - theory, formal
tools and computer aids.

386

(1

(2]

References

H.A .Barker, M.Chen, P.W. Grant, C.P.
Jobling, P.Townsend: An open archtecture
for Computer-Assisted Control Engineering.
IEEE CS58 Workshop on Computer Aided Con-
trol System Design - CACSD 92, Napa, USA.
March 17-19, 1992.

H.A Barker, C.P.Jobling, O.Ravn, M.Szymkat:
A requirements analysis of future environments
for computer-aided control engineering. 2tk
TFAC World Congress, Sydney, Australia, 19-
23 July 1993.

A. Christensen: Models of Control Design
- Modelling and Validation in Ship Control.
Ph.D. Thesis. Technical University of Den-
mark,1992.

G. Griibel, H-D. Joos, R. Finsterwalder, M. Ot-
ter: The ANDECS design environment for con-
trol engineering. Preprints 12th IFAC World
Congress, Sydney, Australia, 1993.

D.Hix, H.Rex Hartson: Developing user inter-
faces - ensuring the usability through product
and process. J.Wiley, New York 1993.

G.Kappel, AM.Tjoa: Graphical user inter-
faces for object-oriented data base systems. Cy-
bernetics and Systems Research 1992, Vienna.
Austria. pp.1247-1254.

O.Ravn: On user friendly interface construc-
tion. Proccedings of the IEEE (CSS Workshop
on Computer Aided Control System Design -
CACSD 89, Tampa, USA. 1989, pp.35-40.

O.Ravn. M.Szymkat: The evolution of CACSD
tools - a software engineering perspective.
Proceedings of the IEEE CSS Workshop on
Computer Aided Control System Design -
CACSD’92, Napa, USA. March 17-19, 1992,
pp.225-231.

J.H. Taylor, M. Rimvall, H. A. Sutherland: Fu-
ture developments in modern environments for
CADCS. Proceedings of the IFAC Sympostum
on Computer Aided Design in Control Systems,
Swansea, UK, July 15-17, 1991, pp.51-62.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

