

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Requirements for user interaction support in future CACE environments

Ravn, Ole; Szymkat, M.

Published in:
Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design

Link to article, DOI:
10.1109/CACSD.1994.288902

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ravn, O., & Szymkat, M. (1994). Requirements for user interaction support in future CACE environments. In
Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design (pp. 381-386).
IEEE. DOI: 10.1109/CACSD.1994.288902

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CACSD.1994.288902
http://orbit.dtu.dk/en/publications/requirements-for-user-interaction-support-in-future-cace-environments(5567b220-54c5-4d4f-9ae5-056a2e88f7f2).html

Requirements for user interaction support in future
CACE environments

0. Ram M.Szyiiikat

Technical Universit!: of Denmark
Inst,itute of Automatic Cont.rol Systems

Building 326
DK-2800 Lyngby. Denmark

or@sl .dth .dk

Abstract
Based 011 a review of user interaction modes and
tlie specific needs of tlie CACE domain tlie paper
describe requirements for user interaction in future
CACE environiiients. Taking aliotlier look at tlie
design process in CACE key areas in need of more
user interaction support are pointed out. Three con-
cepts are described through exaniples, dynamic data
access. parallel evaluation and active docunieiita-
tion. Tlie features of esisting tools are sunin~arized
The problem of how easily or ' n a t u r a l l ~ * tlie nokel
concepts are integrated. is stressed.
Keywords: l'ser interface; Programming: Design
Process; Actike documents:

1 Iiit r o d u c 1, io 11
Future CACE environments should provide t,he sup-
port for tlie nest. generation of styles of interaction
between t.lie designer and computer. The traditional
concepts are based mainly on ideas adopted from
universal programming languages, (script files. func-
tion files, d a h objects). There is a need to include
the designer as a cooperating factor i n design pro-
cess.

Tlie objectives related to novel interaction styles
depend on environiiient capabilit,ies, and 1.0 some
extent on the preferred type of user behaviour. I n
general the approach t.0 buildiiig model descrip-
tions should enhance systeniat.ic treatment of model
represent at ions t.li rough st a nda r d i zed progra 111 171 i ng
techniques. Their fuiict~ionalit!. should support pro-
tection of the consistency of model descriptions,
standardization of retrieval, updating and transfor-
mation nietliods, including construct ion of variant
versions.

St .Staszic Technical L'niversity
Division of Control Engineering

a1 .hlickiewicza 30
30-059 Krakow, Poland
msz@ear tli .ia .agh .edu.pl

Achieving t.liese objectives requires standardiza-
tion of model data modification procedures (replac-
ing tlie traditional read-eval-display loop). I n the
specific cont.est of CACE tools tlie requirements for
user interactioii support. are closely related to the
iterative nature of the design process. In partic-
ular the design decisions should he automatically
logged to enhance reverting operations, variant de-
velopment, multi-t.lireaded dialogue. and active doc-
ument Features of the user created modules.

Tlie crucial role in supporting user interact.ion is
played by tlie user interface wliic11 should be able
to implement certain general, mcclianisiiis as inter-
leavahility. concurrency, reversihility and rel'etitive-
ness. Tlie paper includes a short overview of cur-
rently available techniques in interactively oriented
packages.

The general model of user interface coiisists of the
descr i p t ions of severa I elemen t.a ry pli ases following
each other. These are [SI:

0 user action (mouse cursor movements, key-
board test input, etc.),

0 int.erface Feedback (liigliligliting the selected
area, opening the dialog bos et.c.).

0 changing interface state (setting the values of
interface coiitrol variables),

e initiating (.lie computation tasks (esecutiiig as-
signed function callhacks).

Tlie consecutive phases mentioned above involve
only primitive elements of the the user interaction.
Usua l ly the dialog between the user and the inter-
act iiig software tool i,s acconiplislirtl on-line (conver-
sational interaction) or i t m a y be pre-programmed
(programmatic interaction). (61, .

0-7803-1800-5/94/$3.00@ 1994 I E E E

38 1

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

The interaction modes define the appropriate
communication protocol for user-software informa-
tion exchange. The most used ones in the today’s
CACE environments are combined modes includ-
ing menus, forms, command languages and various
forms of graphical manipulation. These heteroge-
neous solutions, typically implemented within one of
the GUI standards, e.g. MS Windows or X-Window
System, are often referred to as windowbased inter-
action mode. It is important to stress here that only
the most outer layer of the user interaction support,
including the appearance (look-and-feel) of the in-
terface devices is defined by the GUI. The essential
part of the interface construction, related to tlie ‘us-
ability ’of the CACE software, relies on the bindings
between modelling and computational services and
the user interface itself. This area will be called tlie
user interaction support.

The conventional user interfaces of currently
available CACE tools are typically built around con-
versational and programmatic concepts which are
well established in almost all types of existing ap-
plication software, [SI. Most of tlie user octrons sup-
ported by the interface involve [l], [2]:

access to model data and computation results
(via querying or browsing).

manipulation on model data and computation
routines (paramet.er setting. etc.).

instantaneous configuration of the software (af-
fecting overall working contest).

various consistency cliecks.

program state retrieval and creation of execu-
tion reports (logging).

The prevailing part of existing CACE tools sup-
ports the sequeni ta l rnleraclton slyle. ie. a type of
the dialog where the user actions have to be or-
ganized i n a certain ordered manner. The naviga-
tion through the cascade of menus is a basic esam-
ple, the execution of sequences of commands serves
as another one. The repetitions or parallel dialog
threads are often available, but not directly sup-
ported. The asytichrorjous tiiltrarlton style, where
many tasks are at the user disposal at the same time
and sequencing within one task is independent of se-
quencing within the other is an alternative. I n what
follows we will try to precise what kind of interac-
tion style would be preferred in tlie future CACE
environments due to the specific propertie% of con-
t.ro1 systems design.

2 CACE specific requireiiieiits
. for the user interaction

support

As pointed out in an earlier work [i], [$I, [2], looking
at the nature of the design process gives insight into
the needs of the user of CACE systems. In order to
determine potential focus points for future work on
refining and enhancing user interaction support the
design model in Figure 1 is revisited. It should also
be pointed out here that the problems of user in-
teraction relies on the esistence of good and well
proven numerical methods for the underlying anal-
ysis and design. These tools are to a large extent
available today but the problems to use them ef-
ficiently. Here an enhanced user interaction sup-
port. will benefit, the overall efficiency of the CACE
environment. Many of the problems and questions
asked in t.he development of user interaction support
are common to niany domains of engineering, e.g..
circuit design, digital filter design, machine engi-
neering. Especially software engineering ha5 a large
coninion problem basis with CACE [$I.

Start I

Goal generation 5 = a
Iteration

Design

stop

Figure 1: A simple view on t.he design process

The design process model shown in Figure 1 is a
very simple abstraction but still i t provides a way
of classifying user actions during the design. The
model consists of 6 phases:

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

0 Goal Generation. This phase initiates the de-
sign process. The problem and the desired
features of the solution are determined. This
phase is nornially done in cooperation with the
customer, other engineers etc. Kormally no for-
malized tools or methods are used here.

0 Modelling. The modelling phase is used to de-
termine a model of the system to be controlled.
This is normally a mathematical model which
can be used by the tools of tlie following phases.
Models of different complexity may be derived
such as linear plant models for the design of lin-
ear controllers and t hen non-linear plant mod-
els in the evaluation phase. hlany CACE tools
exist for assisting the user during this phase.

0 Analysis. The derived model is analyzed in or-
der to gain an understanding of the system and
the potential problems. Tlie analysis results are
used as a basis for choosing a controller struc-
ture. Not just the normal numerical tools are
applicable in this phase: the potential benefits
of using syinbolic manipulation tools are be-
coining more and more evident and niaiiy of
the numerical packages have built-in symbolic
tools or interface to them.

0 Design. A possible controller structure is se-
lected and the parameters are chosen in order
to niatcli the design goals It may be useful to
consider more controller structures and com-
pare their performance in parallel hlany took
for designing standard LQ, LQG etc controllers
esist .

0 E t ~ ~ l u a t r o n . The different controllers are con-
sidered in tliis phase and coinpared with respect
to the features of the desired solution set up in
tlie first phase of the design process. Tlie de-
gree of compliance wit li the goals is determined
and the best controller selected. Tlie evaluation
phase may use simulation of the system or use
partially tlie real-time interface i n order to se-
lect. the best controller. More models may be
used in order to gain insight into what features
of the system and tlie controller liniit the per-
form an ce .

0 Implcmentai tori . The chosen mathematical
description of t.he controller is implemented.
More and more tools are emerging i n this field.
The standard packages have C-codP generat ion
tools and offer Iiardwarr which can be used for
testing the controller in a laboratory environ-
ment. The main problem here is the balance

, <

between code efficiency. liard\varc dependency
and the degree of automation of the phase.

Another eleinent of the design process model is
the tiemtion \vhicli is its fundamental property.
Tlie iteration can be performed manually, senii-
automatically or automatically. The iterative na-
tare of the design process is also an important ele-
ment which we will return to.

An overall evaluation of the design phases indi-
cates that most CACE tools are available for the
hiodelling, Analysis and Design phases. Some tools
are also available for the Implementation phase.
However there is a lack of tools for the rest of the
phases and the iteration. Some environments being
developed at universities, (41. support the iteration
but these in turn are not generally available.

I n Figure 2 another view of the design process is
sliown [3]. Here the mathematical abstraction level
is niore apparent. The modelling and implementa-
tion phases represent traiisitions between the phys-
ical structme and the model structure level. The
analysis and design phases appear as transitions be-
tween the model structure and the control structure
level. CACE tools are generally available for the
more abstract levels and not so much for tlie lower
levels.

Control structure
/

\

t+lementation j J p i c a t y u r e
I

I

t Design process I
Figure 2: Another view on tlie design process.

Looking at the design process indicates that there
is a strong iieed for user iiiteractioii support in the
niore 'soft' areas. These are Goal generation, Eval-
uation and iteration. The iterative nature of the
design process gives rise to more explicit automa-
tion of certain design /oops. On the other hand i t
inay be dificult to decide beforehand which decision
on certain stage leads to the successful design. This
would require a support of parallel or variant,design
proced iires.

383

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

It is important t o define !.he qualities required
from the interaction support. which are needed t.o
meet the needs of the control syst,em designer. \!'e
will

0

0

0

concentrate on the following ones:

rnferleauobrlrfy - meaning that the user can in-
terrupt one task, skip to another task, come
back to the first one, and so on, with possibly
many other tasks,

concurrency - meaning that several tasks may
be simultaneously (or virtually simultaneously)
executed,

repe t i t i veness - meaning that certain tasks may
be recorded and replayed wlien needed by tlie
user,

re t lers tbr l t ty - meaning that the state before the
task execution may be fully restored, indepen-
dent of the results.

All the requirements specified above are direct-ly re-
lated to t.he support of variant design ('what i f '
scenarios, et.c.). I n general, we cqwct. that fut.ure
CXCE environments will be able to perform simul-
taneous visualization of !.lie results of the same de-
sign parameter change i n alternai ive cont,rol system
structures.

I n what follo\vs we will consider also even more
demanding requirenients related to tlie i r i t t l l i g r n f
in ter face definit.ion. These requirements involve
probably more t.he user interaction support as a
whole than tlie user int.erface itself. They go much
deeper into data representation and tlie applica-
tion domain. \Ye wi l l recall here the 'spreadslieet
metaphor'. I n tlie automatic recalciilation niotle the
manipulat io11 on specifc cells proiluces 'inimediat e'
adjustments i n row or column suins. I n general, this
coiicept coiiiplies wit.lie t,he idea acttce d o c u m c i i f .
In fact the user defines certain relations between
tlie manipulated objects, and the software is ah!e to
upd at e the context aut om at ically .

In tlie case of control system design a similar sit.-
uation appears whenever we have parameterized de-
sign schemes. Let us specify t.lie requirement con-
cerning t.lie user action support related t.0 this kind
of software behaviour as n,rla-i)rogrammirig. Tlie
explanation of this t,erm is as follows. In order to ob-
tain t.he desired effect tlie user should be able to cre-
ai,e his O\VII two-way bindings hetween the interface,
data manageineiit and computation layers. This
may be done explicitly or i t may be deduced from
t.lie usage contest, provided t h a t general rules of
meta-programmiiig are known. The simplest exani-
ple is the command initiat.ing re-execution of a cer-

t ain set of previous commands in anot,lier workspace
context.

3 Examples
Three examples of novel user int,eraction elements
are described below. These elements can be h i -

plemented wit.li the current st.andard packages, but
t.he key issue is the ease wit.li which they can be
used by even less experienced users. The availability
and the degree of int,egration is also of paramount
importance when evaluating the usefulness of the
suggest.ed element,s. The following examples imple-
mented using current tools were int.ended to illus-
t.rate possible benefits that should be easily accessi-
ble i n fut.ure CACE environment,^.

3.1 Dynamic Data Access

The concepts of control systems as objects, and
views and actions on them have been described ear-
lier [i]. Here the main ideas are recaptured i n Figure

System

Figure 3: DFnamic views and actions.

Tlie control syst,em is an object in tlie CACE en-
vironment, and multiple views can be setup relating
to it. These views can be graphical or alphanumeric
and contain analysis results such as a step response
and tlie rise time. The updates of the views are
triggered by events. either explicitly as a request
for update or as an act.ion being made. The action
on the syst.em (object) can be. e.g., changing the
gain of t.lie cont,roller graphically. \!'hen the action
and the update of the views are linked the oper-
ation of the overall CACE environment is like di-
rect manipulat.ion. For coiiiples systems and many
views tlie currently available con~puter resources arv
likely 1.0 limit the performance. I n that case an asyn-
chronous mode should be used as even a small time
delay in tlie direct ~iianipulatioii limits tlie useful-
ness. Some hspects of the above ideas can be fouud

384

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

in SIMULIKK and ANDECS [4]. The idea of this
concept is to support. the user in tlie iteration of t.lie
design process in order to facilitate extensive exper-
imentation to help get a better feeling of the system.
Some optimization tools coan be coupled with the it-
eration in order to achieve the design goal automat-
ically or semi-automatically [4]. A key point of the
concept is the ease with which tlie v i ew and actions
can be setup and modified, there is a great need for
some form of maybe graphical meta-programming.
In any case such an implementation should give bet-
ter interaction possibilities to the iteration than a
conventional script file.

3.2 Parallel evaluation
Another phase of the design process where there is
a need of user interaction support is the evaluation
phase. Experimenting with inore controllers in par-
allel will ease the evaluation. The perforiiiance of
the controllers can be viewed at the same time thus
making i t easier to see the benefits of, e.g., an LQ
controller versus a PID controller for the same sys-
tem. Figure 4 illustrates the parallel evaluation con-
cept for different controllers and Figure 5 the same
idea for system models of different complexity.

Object 1 -
I - I

Figure 4: Parallel evaluation of different cont,rollers.

With such a feature i n the CACE environment tlie
effect of, e.g., a limit 011 the control signal would he
easily found in one esperiment . Figure G shows tlie
control and output signals of the system with and
without the limitation.

Figure 5 : Parallel e~aluat~ioii of different model rep-
resentations.

Again the key issue is the degree of integration of
the concept into the CACE environment.

3.3 Active document
A concept which finds some use in text processing
is active document.. A best processiiig syst.ein such

Figure 6: Control signal and output signal for the
parallelly evaluated system.

as Framehfaker has built-in variables and an inter-
face enabling the invocation of external programs.
The usefulness of active documents io user inter-
action support is best shown by an example. A
test robot has been built in the laboratory, the con-
trollers have been designed and implemented For
some reason the gear ratio i n one of the axes should
be changed and the controller redesigned In some
current CACE system [4], [9] there is a database
storing the history of projects From this database
the design calculation could be reconstructed. How-
e\er if the documentation of the robot and the con-
troller were written as an active document and given
an engine for updating the document (similar to a
spreadsheet) the redesign could be done autoinat-
ically after the value of the gear ratio had been
changed.

Active documents and hypertext are used w i t h
success in other domains such as network coniniuiII-
cation e.g. the 'Mosaic' client for the \Vide \Yorld
\\'eh where data is retrieved and displayed in cor-
rect format b? clicking on a hypertext area. The
user does not have to know the actual site where
the data is stored, to connect or unpack it. Thls
gives the user superior interaction possibilities and
a good overview of the data accessible ia the system

4 Currently available
solutioiis

The popular GUI environments such as ?(-\\'indo\v
System or hlS \Yindo\vs offer a variety of tools and
ii~ecl~anisnis for developiilg user int.erfaces, e.g.. X-

385

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

toolkits, Motif, Openlook, Visual C++ and many
others, all a t low to medium levels of implemen-
tation. There are also available more high-level ori-
ent,ed development. systems such as Bricklin’s Demo,
Hypercard, SinitliersBarnes Protot,yper, [5]. I n fact
due to their generality, which is by no means a de-
ficiency, their are loosely related CACE.

The need for the more powerful doinain-specific
user interadon support tools has already resuhed
in certain evolution of existing CACE environments,
just to ment,ion: hlat.lab v.4.0 - Handle Grapli-
ics, Simulink’s - interactive simulation concept and
meta-programming features, configurable GUI of
Xmath or hlabhematica’s notebooks. We do hope
t.liat some of t,lie ideas presented in this paper may
influence the fut.ure deve1opment.s i n this area.

The general remark whjclt appljes here is tha t
most of the tools give only low level int.eract.ion sup-
port. This seems to be sufficient for software devel-
opers implementing t.he CACE t.ools rather, t h a n
t,o application domain orienkd users. On t.he other
hand the latter category seems to he able to verify
the usahlity of t.he user action support.

Another import.ant issue wliicli should he ad-
dressed here is the gelieral problem of the st.andard-
izatjon of the user interaction support w h i c h \voultl
require a serious collective effort of tlie CACE com-
niun i t y.

5 Coiiclusioii

hluch of what has been presented here is available
using existing CACE. The real problem is how easily
or ‘naturally’ it is achieved. Som~tinies i t is just a
mat.ter of interaction or programming style wit.liin
tlie given tool. I n many cases ext.erna1 user interface
management systems W O U I ~ he u!jef111. The worst
thing (for the user) would be to redesign a n existing
tool. A s is generally agreed the nature of coinputer
software is evolutionary. One ma!. hope that some
of the requirements proposed here wi l l be accepted
by the developers of future CACE software.

Ac kn ow 1 ed g m e 11 t

Refereiices
[l] H.A.Barker, hl.CIien. P.\Y. Grant., C.P.

Jobling! P.Townsend: A n open archtecture
for Coni p u ter- Assist ed Control Engineering.
IEEE cs’s Ii’orkshop oit Coriipultr Aided Con-
trol S y s t c i i i Dcsigii - CACSD’92, Kapa, VSA.
Marc11 17-19, 1992.

[2] H.A.Barker, C.P.Jobling, O.Ravn, h1.Szymkat:
A requirements analysis of fut,ure environments
for comput.er-aided control engineering. f L t h
IFAC Ii’orld Congrtss, Sydney, Australia, 19-
23 July 1993.

131 A . Christensen: hlodels of Control Design
- hlodelling and Yalidation i n Ship Control.
P1i.D. Thesis. Technical Cniversity of Den-
mark 1 992.

[J] G . Griibel, H-D. Joos, R . Finsterwalder, h.1. Ot-
ter: The AXDECS design environment for coil-
trol engineering. Preprints 12th IF.4C Il’odd
Coa grcss, Sydney, Australia, 1993.

[5] D.His. H.Res Hartson: Developing user inter-
faces - ensuriiig t lie usability through product
a n d process. J.\\’iley, New York 1993.

[GI G.Iiappe1. A.3l.Tjoa: Graphical user inter-
faces for object-oriented data base systenis. Cy-
bcri t f t ics n i i d Sy.stciti .5 Rcsrorch 1992, \’ienna.
A ust ria. p p . 1 2.1 T - 12.54 .

[i] O.Ravn: On user friendly interface construc-
tion. Proccedings of thr IEEE C’SS If-orkshop
ori Co inpu l r r A i d t d Coittrol s ? ~ S f E l l ? Dcsigit -
C.ACSD’R9. Tampa. \;SA. 198‘3. pp.3.5-40.

[8] O.Ra\n. 31.Szynikat: The evolution of CACSD
tools - a software engineering perspective.
Proctcdiitgs of t l t c IEEE CSS Il.orkshop oit

Coinpuifr A d c d Cbnirol Sysi~nr Dfsigir -
C‘.4CSD’92, Napa, PSA. Marcli 17-19, 19‘32.
pp.22.5-231.

[9] J .H. Taylor. A l . Riinvall, H . A . Sutherland: Fu-
t.ure developments i n modern environments for
CADCS. Procccdtitgs of Ihc JFAC Syn?posiuin
01) Computer Aided Dtsigi i ti1 Coirtrol Systems.
Swansea, U K q July 15-17, 1991. pp.51-62.

hl. Szymkat acknowledges tlie support lie recei\ed
under the grant KBN-8-8528910’2 Computer s\ s-
tems of control and d ~ o s j o n inaking - theor?. forinal
tools and computer aids.

386

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

