

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A Codesign Case Study in Computer Graphics

Brage, Jens P.; Madsen, Jan

Published in:
Proceedings of the Third International Workshop on Hardware/Software Codesign

Link to article, DOI:
10.1109/HSC.1994.336714

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Brage, J. P., & Madsen, J. (1994). A Codesign Case Study in Computer Graphics. In Proceedings of the Third
International Workshop on Hardware/Software Codesign (pp. 132-139). IEEE. DOI: 10.1109/HSC.1994.336714

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/HSC.1994.336714
http://orbit.dtu.dk/en/publications/a-codesign-case-study-in-computer-graphics(6fa69927-2909-44aa-8ff5-e8b8180b927d).html

A Codesign Case Study in Computer Graphics

Jens P. Brage Jan Madsen

Department of Computer Science
Technical University of Denmark

DK-2800 Lyngby, Denmark
e-mail: {brage, jan}@id.dtu.dk

Abstract

This paper describes a codesign case study where a com-
puter graphics application is examined with the intention
to speed up its execution. The application is specijied as
a C program, and is characterized by the lack of a simple
compute-intensive kernel. The hardwarehoftware parti-
tioning is based on information obtained from sofrware
pro@ing and the resulting design is validated through co-
simulation. A locally developed interface model, Merlin, is
used as the basis fo r eo-simulation. The achieved speed-up
is estimated based on an analysis of pmjile information.

1 Introduction

Codesign, i.e., the combined development of hardware
and software, can be roughly classified as follows:

CO-development of both hardware and software from
a specification which does not favor either implemen-
tation strategy.

Hardware design of instruction set processors. Aside
from hardware design, it also involves software anal-
ysis to optimize the instruction set.

Speed-up of an existing software application, by port-
ing parts of the program to hardware.

This paper describes a case study in the latter category:
The optimization of an existing computer graphics appli-
cation written in C. In such applications it is often possible
to locate a relatively simple computational kernel, which
can then be ported to hardware [4]. This case study reveals
a somewhat more complex situation, as the computational
load is fairly evenly distributed throughout the program.

In order to analyze the computational load distribution
of a program, profiling tools are needed for applications of
a realistic size, i.e., several thousands lines of code. Tradi-
tional software profiling tools focus on the distribution of

Figure 1: A sample Topoc image; the cylinder is generated by the
CSG intersection operator on 8 rotated cubes.

CPU time. In a codesign environment, it is equally impor-
tant to be able to analyze the flow of data between different
parts of an application: In a hardware/software environ-
ment this will be reflected by physical communication.

These analysis results are used for hardware/software
partitioning. In order to assure that the resulting,partitioned
design is still functionally correct, either verification or
validation tools are required. These tools must of course be
able to handle the semantic differences between hardware
and software representations.

Validation of the functional correctness of the resulting
design is, in this case study, done by co-simulation. As
the input specification is an executable program, it is ad-
vantageous to maintain an executable design description
throughout the design flow. Thus, the availability of a co-
simulation environment is a critical factor in the design
methodology.

132
0-8186-6315494 $04.00 0 1994 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

There are two different methodologies for CO-
simulation:

0 Execution of the software on a simulation of the target
CPU.

0 Execution of the software in native code on the simu-
lation CPU.

Ecker [3] describes a co-simulation environment based
on the first methodology, using VHDL to describe both ap-
plication specific hardware and the target CPU. This results
in a homogeneous environment, but incurs the performance
problem of simulating the execution of the software rather
than having it run in native code on the simulation CPU.

Others suggest the use of the second methodology. Dun
and Jadoul[2] uses TCP/IP tci link a Verilog hardware simu-
lator to a natively executing C: program. Gibson and Ostman
[5] uses remote procedure calls to interface a VHDL sim-
ulator with software written in C++; the interface is built
on C/C++ routines using STYX, a C interface to VHDL.
The STYX interface is also used by Herstn [7]; in this ap-
proach, co-simulation is a master-slave simulation in which
the software acts as the slave:.

In this paper, a locally developed interface model for
hardware/software systems is used. This model, called
Merlin, provides for transaction-based communication be-
tween a set of equivalent processes, each of which may
represent hardware or software. Thus, this approach is
based on the second methodology.

2 The Design Task

Computer graphics represents an important class of ap-
plications for codesign, as these applications are character-
ized by high computation loads and complex algorithms.
Each algorithm in a computer graphics application may be
classified into one of three main categories:

0 Modeling, i.e., the construction of amathematical rep-
resentation of some physical objects, the world.

0 Rendering. These algorithms convert the mathemati-
cal world model into a geometrical scene description.

0 Scan conversion, which generates the final bit-map
image from the geomebrical description.

Modeling and rendering are characterized by highly
complex algorithms and medium data rates, whereas scan-
line conversion is typically simpler but requires much
higher data rates.

The application considered in this paper,Topoc, contains
all three aspects. Topoc builds a 3D world using objects

described as polyhedra and provides a CSG (Constructive
Solid Geometry [a]) module to allow complex objects to
be constructed from simpler polyhedra. A scene is then
constructed from the world model by operations such as
hidden-surface removal and shadow casting from point and
parallel light sources. This scene is then scan converted
into the final image. During scan conversion shading is
applied to the surfaces, including surface smoothing and
transparency. Figure 1 shows a sample image produced by
Topoc.

Generating the sample image in figure 1, which is a very
simple image, takes a few minutes on a workstation (SUN
SPARC station IPX). Thus, the current implementation is
far too slow, compared to desirable rendering speeds. The
design task described in this paper is the performance op-
timization of Topoc, by moving parts of the application to
dedicated hardware.

Performance improvement may also be obtained by se-
lecting better algorithms, by restructuring the code and the
data structures, or even by changing the target CPU. How-
ever, in this paper we will not consider these alternatives:
The C program is considered the fixed specification for
Topoc.

Topoc contains about go00 lines of C code. A study
of the program reveals that Topoc has no simple compute-
intensive algorithm kernel, which would form the natural
basis of a hardware engine. Thus, speed-up may only be
obtained by a detailed study of the application.

3 The Design Process

This section outlines the design process and the follow-
ing sections then describe each step in detail.

First a detailed analysis is made, to reveal computational
bottlenecks; this is used to guide the hardwarekoftware
partitioning task. The analysis takes two forms; manual
examination of the data and control structures of the pro-
gram, and automatic profiling by running the application
on sample input data. The profiler extracts information on
the amount of time spent in each function in the program,
and provides an analysis of the structure of function calls,
the call-tree. The call-tree and the number of calls of a
function are then used to evaluate its relative importance
and the amount of data transfers between functions.

Before the final partition is decided upon, architectural
considerations must be taken into account. These consid-
erations include the type of coprocessor interface and the
memory configurations for the dedicated hardware. For in-
stance, the hardware could be driven by the target CPU
or might be running concurrently with its own instruc-
tion stream. The memory configuration might be based

133

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

on shared access to the data store of the target CPU or
dedicated memory for the hardware unit.

Once the final partitioned design is decided upon, it must
be functionally validated. This is done by separating the
design into ‘hardware’ and software parts, i.e., by forming
two new C programs from the original program. As these C
programs represent concurrently executing units, the total
system can no longer be expressed within the semantics of
C; to overcome this problem, the Merlin interface model is
initially used to allow concurrent execution.

The next step is to transform the C code ‘hardware’
description into a real hardware description language, in
this case VHDL. Merlin now allows co-simulation of the
hardwarekoftware system. Thus, Merlin is used to validate
the design during the refinement procedure of the hardware
description from initial architectural design in VHDL to
final implementation.

The final step is to examine the performance improve-
ment by analyzing the architectural design.

4 Analysis

The manual examination reveals that Topoc uses a rel-
atively small set of data structures to represent geometric
data, but that these data structures are used in most com-
putations. The dominant characteristic of the program is a
large set of highly complicated expressions based on simple
vector operations.

In order to determine the computational distribution of
these vector operations, automatic profiling is employed.
The main objective of this is to attempt to find localized,
computationally expensive kernels, suitable for hardware
implementation. This analysis is based on a cylinder object
obtained by rotating and merging a cube (see figure 1);’ this
object is complex enough to achieve realistic information,
yet simple enough to reduce the overall execution time
during profiling.

The profiler provides information on the amount of time
(in terms of execution on the simulation CPU, not the target
CPU) spent in each function and the distribution of the time
among its parent functions. The simulation CPU in the case
study is a 40MHz SPARC 2 processor.

At first glance, the main contribution to the execution
time of Topoc is the file output function, which spends
48.5% of the total execution time. However, this contri-
bution is irrelevant for the final design, as this will use a
true-color frame buffer as the output medium.

In the following, the profiling information is related to
the three major computer graphics tasks described in sec-
tion 2, giving the percentages of the total execution time

‘Unlike figure 1, the analyzed scene does not contain any shadows.

for each task, after correction for the output functions.

4.1 Modeling

The CSG operations accounts for 13.9% of the total
execution time. A careful study of the code reveals that the
CSG module is very complex and that no computational
kernels above the level of basic vector operations (e.g.,
vector addition and cross product) can be identified.

4.2 Rendering

The shadow generation and hidden surface removal
functions only consumes 0.4% of the total execution time.
For the cylinder example this is not surprising, since no
shadows are generated and relatively few surfaces are hid-
den. With more complex examples these functions must be
expected to have greater influence. However, the manual
examination of the program shows that these algorithms are
specialized versions of the CSG functions; so their effect on
the partitioning decision can be expected to be an emphasis
of the effect from the modeling functions.

4.3 Scan Conversion

Scan conversion accounts for 85.0% of the total execu-
tion time. This is distributed on 11.8% to translate poly-
hedra into 2-dimensional strips and 88.2% to do the actual
scan conversion. Thus, the scan conversion may be a sub-
ject for further consideration. An investigation of the code
reveals that 52.2% of the time spent in scan conversion is
spent on basic vector operations.

4.4 Discussion

From the analysis it is evident that the vector arithmetic
accounts for a fair amount of the total execution time, in
total 34%. As the analysis also shows that there are no
algorithmic kernels above this level, the decision is now
made to achieve the desired speed-up through the design of
a 3D vector arithmetic unit.

In analogy to Amdahl’s law [6, p. 5861, the total speed-
up of the application can be written as:

where stl is the speed-up of the vector arithmetic achieved
by moving it to hardware and r = 1 - 0.34 is the fraction of
the execution not affected by the application specific hard-
ware. Accordingly, the maximum achievable total speed-up
with a vector arithmetic unit is I S2. Even though this is a
fairly limited speed-up, the development will be continued

134

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

based on this architecture, as the main emphasis is on the
design process and not the design itself.

It should be noted that these numbers assume that the
target CPU is the same as the simulation CPU. If the target
CPU is a less powerful CPU, for instance an MC68EC040,2
a considerable additional speed-up could be achieved by
utilizing the FPUs in the vector arithmetic unit for scalar
operations as well. With the available profiling tools, how-
ever, it is not possible to analyze this potential speed-up.

5 Architectural Choices

The next step is to chocise a suitable architecture for
the 3D vector arithmetic unit. The choice is based on an
examination of the communication between the application
specific hardware and the target CPU. In the following,
different options for supplying the hardware with data and
instructions are examined.

5.1 Instruction Streams

There are three different ways to supply the instruction
stream to the dedicated hardware:

0 Common instruction stream (figure 2a); as the CPU
and the hardware share the same instruction stream,
they are inherently synchronized. The main disadvan-
tage of this model is the reduced instruction bandwidth
available to the target CPU. Also, i t should be noted
that this model requires a CPU which supports copro-
cessor extensions in its instruction set.

0 Command driven (figure 2b); in this case the CPU
feeds instructions to the hardware, increasing the load
on the CPU. Synchronization is typically achieved by
using interrupts as completion signals.

0 Mu1 tiple instruction streams (figure 2c); this allows the
CPU and the hardware to carry out their tasks fully
independently. Synchronization is obtained through
data exchange. This model avoids the performance
problems of the two former models, but typically re-
quires more hardware.

5.2 Data Streams

The data streams for the hardware may be obtained from
one of two sources:

Shared access to CPU memory (figure 3a).

0 Local memory for the coprocessor (figure 3h).

'The embedded control version ofthe M68040, without FPU or MMU.

... I I_

Figure 4: Architecture of the coprocessor; data may be a full 3D
vector or a single element.

The advantages of the first approach is that the hardware has
direct access to the data structures of the CPU. On the other
hand, the second approach avoids bus contention between
the CPU and the hardware.

5.3 Choosing the Interface

The results from the analysis are used to choose between
the options outlined above.

Considering the lack of any dominating, localized coni-
putational kernel in the application, invocation of the dedi-
cated hardware will occur at comparatively high rates. Con-
sequently, the architecture must be chosen for efficient in-
vocation of instructions. On the other hand, as the executed
instructions are simple (primitive vector operations). there
is little need for complex instruction sequences or explicit
synchronization. This leads to a choice of the common
instruction stream approach.

From the manual examination of Topoc it turns out that
all scalar and vector floating point arithmetic can be allo-
cated on the dedicated hardware; consequently by choosing
the local memory model, contention between the CPU and
the hardware can be minimized.

5.4 The Internals of the Coprocessor

Now that the interface has been chosen, the final step in
the high-level architectural design is to choose the register
model for the coprocessor and its instruction set. These
choices are based on the decision to place all arithmetic
operations on the coprocessor, and on the results of the
profiler.

The coprocessor design is a load/store architecture with
a single accumulator register as shown in figure 4. All two
operand instructions take their input from the accumulator
and the local store. The access to the local store can be a
full 3D vector at a time or a single element can be picked
for scalar operations.

In addition to the local memory, it is also possible to
access the data memory of the CPU.

1.35

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

Instruction
Store

Instruction
Store

inst.

CPU

I: data/inst.

d
3D Data

Store

Instruction
Store

CPU

a1 b) c)

Figure 2: Possible configurations for supplying instructions to the dedicated hardware (3D); a) common instruction stream; b) command
driven; c) multiple instruction streams.

3D CPU

Figure 3: Possible configurations for the data streams; a) shared access; b) local memory.

3D *sync._

1 Host

CPU 3D

Software

' - - - - - - - - - - - -_ - - - - - - . . - ,

Figure 6: Host native execution of the software pact.

lated, there are two approaches:

Figure 5: Running the software part on a simulated CPU. 1. Modeling the target CPU in a hardware description
language, and executing the software on this simulated

6 Modeling the Resulting Design
CPU along with the hardware, see figure 5.

2. Modeling the hardware in a hardware description lan-

In order to ensure that the proposed coprocessor oper-
ates correctly in the given application, the entire resulting
system, hardware and software, must be simulated.

When a hardwarehoftware system needs to be simu-

guage, but executing the software directly on the sim-
ulation CPU (figure 6).

The first approach has some major advantages: Even
if the target CPU is a custom design and either is still in

136

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

development or simply does not support a hardware sim-
ulation environment, it is still possible to obtain accurate
simulation results. Also, as everything is modeled within a
single hardware description language, this approach avoids
the semantic problems of crossing between hardware and
software representations.

The second approach seems much less interesting, as it,
for instance, does not offer as accurate simulation capability
as the first one. However, this may not be a problem,
for several reasons: First, in order to make real use of
the accuracy of the first approach, a precise model of the
computing system is required; effects such as cache.misses
will have a major performance impact on most modern CPU
systems. Modeling such a CPU system with a sufficient
degree of fidelity requires a highly detailed model, which
is expensive to develop and execute. Also, in many cases a
specific CPU has not been chosen in the early design stages;
it is only known that a certain block of code is suited for
software implementation, and perhaps the designer has an
idea about which class of CPU to use (e.g., workstation,
large microprocessor or a simall embedded core). In this
case, the accuracy of a simulated CPU is, of course, useless.
Finally, running software on a simulated CPU tends to be
extremely time consuming, compared to native execution
of a program. As codesign systems often contain quite
complex software parts, this may well be prohibitive.

This does leave one major problem with the second ap-
proach, though: How to deal with the semantic differences
between hardware and software representations, i.e., the
differences between code executing natively on a CPU, and
code (i.e., the hardware part) being simulated in a hardware
simulator (on the same CPIJ). An easy way to deal with
this problem is to define a common interface model for
both environments, and then define the total semantics in
terms of the events on the interface.

6.1 The Merlin Interface Model

In the case study described here, the second approach
is chosen, and the interfaces are described in terms of the
Merlin interface model. The Merlin model is an attempt to
design a unified interface model for codesign: Rather than
designing separate models for different types of hardware
interfaces (e.g., bus-based or shared variable) and software
interfaces (e.g., DMNintenupt based or WC), Merlin aims
to provide a single, simple model on which the various
interface abstractions can be built.

The Merlin model view:; a design as consisting of a
number of processes; each process may represent either
hardware or software, and the processes may communicate
by means of three transactions (see figure 7):

0 The Attention transaction signals a process of acontrol

event in the originating process.

0 The Read transaction allows a process to read a word
of data from another process.

0 The Write transaction transfers a data word from the
originating process to another.

The exact formulation of this transaction-based interface
depends on the language used to describe a process, in par-
ticular on the pragmatics of the language: For an imperative
(software) language like C, the interface is formulated as
a set of functions; for a concurrent hardware language like
VHDL, the interface consists of a set of signals which im-
plement an asynchronous communication protocol. These
signals connect the modeled hardware to a component in-
stance which represent the rest of the system.

The Merlin interface model is not, however, intended to
be used directly as the interface model in a given design.
Rather, an abstraction layer corresponding to the particu-
lar interface intended for a given design should be placed
around the Merlin interface. For instance, for a codesign
development system, a library of common interface types
(e.g., bus-based interfaces) and specific instantiations might
be constructed (e.g., VME and ISA busses might be repre-
sented).

6.2 Modeling the Coprocessor

In the present case study, a high-level description of the
coprocessor interface is desired, as described in the previ-
ous section. In order to model this, primitive operations in
the original C program, which corresponds to instructions
in the coprocessor, are replaced by invocations of Merlin;
thus, functions corresponding to coprocessor instructions
are used as the interface abstraction.

The coprocessor itself is initially modeled as another
process, written in C. This permits the partitioning of the
design to be examined and allows validation of the rewrites
of the application code. This description is then rewritten
in VHDL, in order to more closely represent the chosen
architecture.

A prototype simulation environment running under the
Unix operating system has been constructed for the Merlin
interface model. This system allows a number of software
processes (running as native code) and a number of hard-
ware processes (simulated using the commercial VHDL
simulator Synopsys) to be run concurrently. Using this
system, functional validation of the proposed coprocessor
design is carried out.

As the final target CPU and system has not yet been
chosen (and thus neither has the low-level design of the
coprocessor), it is not possible to give reliable figures for
the achieved speed-up. It is, however, possible to estimate

137

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

Figure 7: The Merlin interface model: All communication is based on the three transaction types Attention, Read and Write.

Figure 8: Encapsulating the Merlin interface, here by a VME bus layer and an Remote Procedure Call layer.

the speed-up based on the profiling information and the
coprocessor architecture, as described in the next section.

The Merlin implementation has the option of logging
all transactions in the system; coupled with the profiling
information3 and given information about the timing of
the target CPU and the low-level coprocessor design, this
would allow accurate performance figures to be obtained.
At the moment, though, the necessary tools to calculate this
timing information have not been developed.

7 Performance Evaluation

The profiling information gathered is examined in order
to estimate the hardware speed-up factor for the vector
functions, s,. As the target CPU has not been selected
as yet, the estimation is based on the assumption that the
target CPU is the same as the simulation CPU; this should
be a pessimistic assumption, as the target CPU is expected
to be less powerful.

If t , is the total time spent in the vector functions of
the original program and t: is the speed with the hardware

coprocessor, then:

s , = L Ctefunc t ,
tL Ca,=funCn* calf

where func is the set of vector functions which are now
implemented as calls to the hardware. t , is the time spent
in vector function a by the original program and n, is the
number of invocations of the function. c, denotes the num-
ber of cycles used by the hardware, operating at frequency
f, in order to execute the vector function i.

Each vector function is implemented as a set of co-
processor instructions. These instructions can be classified
according to estimated cycle count; an estimate of the cycle
count of each instruction class, 03, is obtained by studying
the M68040 FF'Us instruction timings. c, can now be es-
timated by examining the implementation of each vector
function, counting the number of instructions in each class,
ma,3 :

ct = ma,3 ' 0 3

3 d a s s
Using the results obtained from the profile, the hardware

speed-up factor is:

3The timing information from the profile does not reflect the target
CPU, but the execution statistics are reliable.

24.9s
= 0.29. 1OP6.s . f s, = 85.6. 106/f

138

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

20 3 0 40 s o 6 0
frequency imr1

Figure 9: Total speed-up as a fuinction of coprocessor operating
frequency. Break-even is achieved at 3.4MHz (s , = 1) .

Given su, Amdahl’s law can be used to obtain the to-
tal speed-up as a function of the operating frequency of
the coprocessor, as illustrated in figure 9. At a typical op-
erating frequency of SOMHz, a speed-up of 1.46 may be
obtained; it should be noted, though, that as in some in-
struction sequences the coprocessor requires instructions
in consecutive cycles, the possible operating frequency is
limited by the instruction fetch rate of the target CPU.

8 Conclusions

This paper presents a codesign development task in com-
puter graphics. The goal is (to speed up the execution of
an existing software application by moving parts to hard-
ware. The application is particularly interesting as it is not
possible to locate a simple, compute-intensive algorithmic
kernel.

The development is carried out as a codesign case study;
consequently, existing design and analysis tools are used
wherever possible.

During the design analysis phase, a traditional software
profiling tool is used to extract execution information about
the source program. From the profiling information, it is
possible to locate the computationally most intensive parts
of the program. However, the traditional software analysis
tools do have significant short-comings in a codesign en-
vironment, as they do not provide information on the data
flow between algorithmic parts. In the case study, this is re-
solved by combining the profiling information with manual
examination of data transfers between blocks of code.

In order to validate the design after hardwarekoftware
partitioning, a co-simulation environment is developed
around the Merlin interface model. Merlin is a simplified

model which allows a number of processes to communicate;
these processes may belong to different semantic domains,
i.e., hardware or software. The communication primitives
of the Merlin model have been selected to facilitate the
construction of a library of physical hardware/software in-
terface types.

As the main goal of this design is to study the design
process, only a rudimentary treatment is given to the design
itself. For instance, the profiler is only run on a single test
case; for a more realistic design, more complex examples
should be investigated. Also, it should be noted that the
estimated achieved speed-up is fairly low; for a realistic de-
sign other approaches, such as pure software optimization,
should be investigated.

9 Acknowledgments

Thanks should go to Carsten Christensen for his work
on this case study [11. This research has been sponsored by
the Danish Technical Research Council.

References

[I] Carsten Christensen. Coprocessor design from software im-
plementation. Master’s thesis, Department of Computer Sci-
ence, Technical University of Denmark, February 1994.

[2] Johan Van Dun and Luc Jadoul. Hds/H Cosim: a cosimulation
prototype applied in the formal design of telecom PBA’s. In
Second IFIP International Workshop on Hardware/Software
Codesign, CodesKASHE’93, May 1993.

[3] W. Ekker. HW/SW co-specification using VHDL. In Second
IFIP International Workshop on HardwardSoftware Code-
sign, CodedCASHE’93, May 1993.

141 R. Emst, J. Henkel, and T. Benner. Hardware-software code-
sign of embedded controllers based on hardware-extraction.
In Intemational Workshop on Hardware-Sofiware Codesign,
Estes Park, Colorado, 1992.

[5] Per Gibson and Frederik Ostman. Early integration in in-
dustrial practice. In Second IFIP Intemational Workshop on
Hardware/Software Codesign, CodesKASHE’93, May 1993.

[6] John P. Hayes. Computer Architecture and Organization.
McGraw-Hill, 1988.

[7] Rudolf HersCn. Charon - a co-simulation application. In
Second IFIP International Workshop on HardwardSofrwnre
Codesign, CodesKASHE ’93, May 1993.

[8] David H. Laidlaw, W. Benjamin Trumbore, and John F.
Hughes. Constructive solid geometry for polyhedral objects.
In Computer Graphics. ACM SIGGRAPH, August 1986.

139

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore. Restrictions apply.

