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Abstract 

This paper describes a codesign case study where a com- 
puter graphics application is examined with the intention 
to speed up its execution. The application is specijied as 
a C program, and is characterized by the lack of a simple 
compute-intensive kernel. The hardwarehoftware parti- 
tioning is based on information obtained from sofrware 
pro@ing and the resulting design is validated through co- 
simulation. A locally developed interface model, Merlin, is 
used as the basis fo r  eo-simulation. The achieved speed-up 
is estimated based on an analysis of pmjile information. 

1 Introduction 

Codesign, i.e., the combined development of hardware 
and software, can be roughly classified as follows: 

CO-development of both hardware and software from 
a specification which does not favor either implemen- 
tation strategy. 

Hardware design of instruction set processors. Aside 
from hardware design, it also involves software anal- 
ysis to optimize the instruction set. 

Speed-up of an existing software application, by port- 
ing parts of the program to hardware. 

This paper describes a case study in the latter category: 
The optimization of an existing computer graphics appli- 
cation written in C. In such applications it is often possible 
to locate a relatively simple computational kernel, which 
can then be ported to hardware [4]. This case study reveals 
a somewhat more complex situation, as the computational 
load is fairly evenly distributed throughout the program. 

In order to analyze the computational load distribution 
of a program, profiling tools are needed for applications of 
a realistic size, i.e., several thousands lines of code. Tradi- 
tional software profiling tools focus on the distribution of 

Figure 1: A sample Topoc image; the cylinder is generated by the 
CSG intersection operator on 8 rotated cubes. 

CPU time. In a codesign environment, it is equally impor- 
tant to be able to analyze the flow of data between different 
parts of an application: In a hardware/software environ- 
ment this will be reflected by physical communication. 

These analysis results are used for hardware/software 
partitioning. In order to assure that the resulting,partitioned 
design is still functionally correct, either verification or 
validation tools are required. These tools must of course be 
able to handle the semantic differences between hardware 
and software representations. 

Validation of the functional correctness of the resulting 
design is, in this case study, done by co-simulation. As 
the input specification is an executable program, it is ad- 
vantageous to maintain an executable design description 
throughout the design flow. Thus, the availability of a co- 
simulation environment is a critical factor in the design 
methodology. 
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There are two different methodologies for CO- 
simulation: 

0 Execution of the software on a simulation of the target 
CPU. 

0 Execution of the software in native code on the simu- 
lation CPU. 

Ecker [3] describes a co-simulation environment based 
on the first methodology, using VHDL to describe both ap- 
plication specific hardware and the target CPU. This results 
in a homogeneous environment, but incurs the performance 
problem of simulating the execution of the software rather 
than having it run in native code on the simulation CPU. 

Others suggest the use of the second methodology. Dun 
and Jadoul[2] uses TCP/IP tci link a Verilog hardware simu- 
lator to a natively executing C: program. Gibson and Ostman 
[5] uses remote procedure calls to interface a VHDL sim- 
ulator with software written in C++; the interface is built 
on C/C++ routines using STYX, a C interface to VHDL. 
The STYX interface is also used by Herstn [7]; in this ap- 
proach, co-simulation is a master-slave simulation in which 
the software acts as the slave:. 

In this paper, a locally developed interface model for 
hardware/software systems is used. This model, called 
Merlin, provides for transaction-based communication be- 
tween a set of equivalent processes, each of which may 
represent hardware or software. Thus, this approach is 
based on the second methodology. 

2 The Design Task 

Computer graphics represents an important class of ap- 
plications for codesign, as these applications are character- 
ized by high computation loads and complex algorithms. 
Each algorithm in a computer graphics application may be 
classified into one of three main categories: 

0 Modeling, i.e., the construction of amathematical rep- 
resentation of some physical objects, the world. 

0 Rendering. These algorithms convert the mathemati- 
cal world model into a geometrical scene description. 

0 Scan conversion, which generates the final bit-map 
image from the geomebrical description. 

Modeling and rendering are characterized by highly 
complex algorithms and medium data rates, whereas scan- 
line conversion is typically simpler but requires much 
higher data rates. 

The application considered in this paper,Topoc, contains 
all three aspects. Topoc builds a 3D world using objects 

described as polyhedra and provides a CSG (Constructive 
Solid Geometry [a]) module to allow complex objects to 
be constructed from simpler polyhedra. A scene is then 
constructed from the world model by operations such as 
hidden-surface removal and shadow casting from point and 
parallel light sources. This scene is then scan converted 
into the final image. During scan conversion shading is 
applied to the surfaces, including surface smoothing and 
transparency. Figure 1 shows a sample image produced by 
Topoc. 

Generating the sample image in figure 1, which is a very 
simple image, takes a few minutes on a workstation (SUN 
SPARC station IPX). Thus, the current implementation is 
far too slow, compared to desirable rendering speeds. The 
design task described in this paper is the performance op- 
timization of Topoc, by moving parts of the application to 
dedicated hardware. 

Performance improvement may also be obtained by se- 
lecting better algorithms, by restructuring the code and the 
data structures, or even by changing the target CPU. How- 
ever, in this paper we will not consider these alternatives: 
The C program is considered the fixed specification for 
Topoc. 

Topoc contains about go00 lines of C code. A study 
of the program reveals that Topoc has no simple compute- 
intensive algorithm kernel, which would form the natural 
basis of a hardware engine. Thus, speed-up may only be 
obtained by a detailed study of the application. 

3 The Design Process 

This section outlines the design process and the follow- 
ing sections then describe each step in detail. 

First a detailed analysis is made, to reveal computational 
bottlenecks; this is used to guide the hardwarekoftware 
partitioning task. The analysis takes two forms; manual 
examination of the data and control structures of the pro- 
gram, and automatic profiling by running the application 
on sample input data. The profiler extracts information on 
the amount of time spent in each function in the program, 
and provides an analysis of the structure of function calls, 
the call-tree. The call-tree and the number of calls of a 
function are then used to evaluate its relative importance 
and the amount of data transfers between functions. 

Before the final partition is decided upon, architectural 
considerations must be taken into account. These consid- 
erations include the type of coprocessor interface and the 
memory configurations for the dedicated hardware. For in- 
stance, the hardware could be driven by the target CPU 
or might be running concurrently with its own instruc- 
tion stream. The memory configuration might be based 
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on shared access to the data store of the target CPU or 
dedicated memory for the hardware unit. 

Once the final partitioned design is decided upon, it must 
be functionally validated. This is done by separating the 
design into ‘hardware’ and software parts, i.e., by forming 
two new C programs from the original program. As these C 
programs represent concurrently executing units, the total 
system can no longer be expressed within the semantics of 
C; to overcome this problem, the Merlin interface model is 
initially used to allow concurrent execution. 

The next step is to transform the C code ‘hardware’ 
description into a real hardware description language, in 
this case VHDL. Merlin now allows co-simulation of the 
hardwarekoftware system. Thus, Merlin is used to validate 
the design during the refinement procedure of the hardware 
description from initial architectural design in VHDL to 
final implementation. 

The final step is to examine the performance improve- 
ment by analyzing the architectural design. 

4 Analysis 

The manual examination reveals that Topoc uses a rel- 
atively small set of data structures to represent geometric 
data, but that these data structures are used in most com- 
putations. The dominant characteristic of the program is a 
large set of highly complicated expressions based on simple 
vector operations. 

In order to determine the computational distribution of 
these vector operations, automatic profiling is employed. 
The main objective of this is to attempt to find localized, 
computationally expensive kernels, suitable for hardware 
implementation. This analysis is based on a cylinder object 
obtained by rotating and merging a cube (see figure 1);’ this 
object is complex enough to achieve realistic information, 
yet simple enough to reduce the overall execution time 
during profiling. 

The profiler provides information on the amount of time 
(in terms of execution on the simulation CPU, not the target 
CPU) spent in each function and the distribution of the time 
among its parent functions. The simulation CPU in the case 
study is a 40MHz SPARC 2 processor. 

At first glance, the main contribution to the execution 
time of Topoc is the file output function, which spends 
48.5% of the total execution time. However, this contri- 
bution is irrelevant for the final design, as this will use a 
true-color frame buffer as the output medium. 

In the following, the profiling information is related to 
the three major computer graphics tasks described in sec- 
tion 2,  giving the percentages of the total execution time 

‘Unlike figure 1, the analyzed scene does not contain any shadows. 

for each task, after correction for the output functions. 

4.1 Modeling 

The CSG operations accounts for 13.9% of the total 
execution time. A careful study of the code reveals that the 
CSG module is very complex and that no computational 
kernels above the level of basic vector operations (e.g., 
vector addition and cross product) can be identified. 

4.2 Rendering 

The shadow generation and hidden surface removal 
functions only consumes 0.4% of the total execution time. 
For the cylinder example this is not surprising, since no 
shadows are generated and relatively few surfaces are hid- 
den. With more complex examples these functions must be 
expected to have greater influence. However, the manual 
examination of the program shows that these algorithms are 
specialized versions of the CSG functions; so their effect on 
the partitioning decision can be expected to be an emphasis 
of the effect from the modeling functions. 

4.3 Scan Conversion 

Scan conversion accounts for 85.0% of the total execu- 
tion time. This is distributed on 11.8% to translate poly- 
hedra into 2-dimensional strips and 88.2% to do the actual 
scan conversion. Thus, the scan conversion may be a sub- 
ject for further consideration. An investigation of the code 
reveals that 52.2% of the time spent in scan conversion is 
spent on basic vector operations. 

4.4 Discussion 

From the analysis it is evident that the vector arithmetic 
accounts for a fair amount of the total execution time, in 
total 34%. As the analysis also shows that there are no 
algorithmic kernels above this level, the decision is now 
made to achieve the desired speed-up through the design of 
a 3D vector arithmetic unit. 

In analogy to Amdahl’s law [6, p. 5861, the total speed- 
up of the application can be written as: 

where stl is the speed-up of the vector arithmetic achieved 
by moving it to hardware and r = 1 - 0.34 is the fraction of 
the execution not affected by the application specific hard- 
ware. Accordingly, the maximum achievable total speed-up 
with a vector arithmetic unit is I S2. Even though this is a 
fairly limited speed-up, the development will be continued 
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based on this architecture, as the main emphasis is on the 
design process and not the design itself. 

It should be noted that these numbers assume that the 
target CPU is the same as the simulation CPU. If the target 
CPU is a less powerful CPU, for instance an MC68EC040,2 
a considerable additional speed-up could be achieved by 
utilizing the FPUs in the vector arithmetic unit for scalar 
operations as well. With the available profiling tools, how- 
ever, it is not possible to analyze this potential speed-up. 

5 Architectural Choices 

The next step is to chocise a suitable architecture for 
the 3D vector arithmetic unit. The choice is based on an 
examination of the communication between the application 
specific hardware and the target CPU. In the following, 
different options for supplying the hardware with data and 
instructions are examined. 

5.1 Instruction Streams 

There are three different ways to supply the instruction 
stream to the dedicated hardware: 

0 Common instruction stream (figure 2a); as the CPU 
and the hardware share the same instruction stream, 
they are inherently synchronized. The main disadvan- 
tage of this model is the reduced instruction bandwidth 
available to the target CPU. Also, i t  should be noted 
that this model requires a CPU which supports copro- 
cessor extensions in its instruction set. 

0 Command driven (figure 2b); in this case the CPU 
feeds instructions to the hardware, increasing the load 
on the CPU. Synchronization is typically achieved by 
using interrupts as completion signals. 

0 Mu1 tiple instruction streams (figure 2c); this allows the 
CPU and the hardware to carry out their tasks fully 
independently. Synchronization is obtained through 
data exchange. This model avoids the performance 
problems of the two former models, but typically re- 
quires more hardware. 

5.2 Data Streams 

The data streams for the hardware may be obtained from 
one of two sources: 

Shared access to CPU memory (figure 3a). 

0 Local memory for the coprocessor (figure 3h). 

'The embedded control version ofthe M68040, without FPU or MMU. 

... I I_ 

Figure 4: Architecture of the coprocessor; data may be a full 3D 
vector or a single element. 

The advantages of the first approach is that the hardware has 
direct access to the data structures of the CPU. On the other 
hand, the second approach avoids bus contention between 
the CPU and the hardware. 

5.3 Choosing the Interface 

The results from the analysis are used to choose between 
the options outlined above. 

Considering the lack of any dominating, localized coni- 
putational kernel in the application, invocation of the dedi- 
cated hardware will occur at comparatively high rates. Con- 
sequently, the architecture must be chosen for efficient in- 
vocation of instructions. On the other hand, as the executed 
instructions are simple (primitive vector operations). there 
is little need for complex instruction sequences or explicit 
synchronization. This leads to a choice of the common 
instruction stream approach. 

From the manual examination of Topoc it turns out that 
all scalar and vector floating point arithmetic can be allo- 
cated on the dedicated hardware; consequently by choosing 
the local memory model, contention between the CPU and 
the hardware can be minimized. 

5.4 The Internals of the Coprocessor 

Now that the interface has been chosen, the final step in 
the high-level architectural design is to choose the register 
model for the coprocessor and its instruction set. These 
choices are based on the decision to place all arithmetic 
operations on the coprocessor, and on the results of the 
profiler. 

The coprocessor design is a load/store architecture with 
a single accumulator register as shown in figure 4. All two 
operand instructions take their input from the accumulator 
and the local store. The access to the local store can be a 
full 3D vector at a time or a single element can be picked 
for scalar operations. 

In addition to the local memory, it is also possible to 
access the data memory of the CPU. 

1.35 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 10:06:26 UTC from IEEE Xplore.  Restrictions apply. 



Instruction 
Store 

Instruction 
Store 

inst. 

CPU 

I: data/inst. 

d 
3D Data 

Store 

Instruction 
Store 

CPU 

a1 b) c) 

Figure 2: Possible configurations for supplying instructions to the dedicated hardware (3D); a) common instruction stream; b) command 
driven; c) multiple instruction streams. 

3D CPU 

Figure 3: Possible configurations for the data streams; a) shared access; b) local memory. 

3D *sync._ 

1 Host 

CPU 3D 

Software 

' - - - - - - - - - - - -_ - - - - - - . . - ,  

Figure 6: Host native execution of the software pact. 

lated, there are two approaches: 

Figure 5: Running the software part on a simulated CPU. 1. Modeling the target CPU in a hardware description 
language, and executing the software on this simulated 

6 Modeling the Resulting Design 
CPU along with the hardware, see figure 5.  

2. Modeling the hardware in a hardware description lan- 

In order to ensure that the proposed coprocessor oper- 
ates correctly in the given application, the entire resulting 
system, hardware and software, must be simulated. 

When a hardwarehoftware system needs to be simu- 

guage, but executing the software directly on the sim- 
ulation CPU (figure 6). 

The first approach has some major advantages: Even 
if the target CPU is a custom design and either is still in 
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development or simply does not support a hardware sim- 
ulation environment, it is still possible to obtain accurate 
simulation results. Also, as everything is modeled within a 
single hardware description language, this approach avoids 
the semantic problems of crossing between hardware and 
software representations. 

The second approach seems much less interesting, as it, 
for instance, does not offer as accurate simulation capability 
as the first one. However, this may not be a problem, 
for several reasons: First, in order to make real use of 
the accuracy of the first approach, a precise model of the 
computing system is required; effects such as cache.misses 
will have a major performance impact on most modern CPU 
systems. Modeling such a CPU system with a sufficient 
degree of fidelity requires a highly detailed model, which 
is expensive to develop and execute. Also, in many cases a 
specific CPU has not been chosen in the early design stages; 
it is only known that a certain block of code is suited for 
software implementation, and perhaps the designer has an 
idea about which class of CPU to use (e.g., workstation, 
large microprocessor or a simall embedded core). In this 
case, the accuracy of a simulated CPU is, of course, useless. 
Finally, running software on a simulated CPU tends to be 
extremely time consuming, compared to native execution 
of a program. As codesign systems often contain quite 
complex software parts, this may well be prohibitive. 

This does leave one major problem with the second ap- 
proach, though: How to deal with the semantic differences 
between hardware and software representations, i.e., the 
differences between code executing natively on a CPU, and 
code (i.e., the hardware part) being simulated in a hardware 
simulator (on the same CPIJ). An easy way to deal with 
this problem is to define a common interface model for 
both environments, and then define the total semantics in 
terms of the events on the interface. 

6.1 The Merlin Interface Model 

In the case study described here, the second approach 
is chosen, and the interfaces are described in terms of the 
Merlin interface model. The Merlin model is an attempt to 
design a unified interface model for codesign: Rather than 
designing separate models for different types of hardware 
interfaces (e.g., bus-based or shared variable) and software 
interfaces (e.g., DMNintenupt based or WC), Merlin aims 
to provide a single, simple model on which the various 
interface abstractions can be built. 

The Merlin model view:; a design as consisting of a 
number of processes; each process may represent either 
hardware or software, and the processes may communicate 
by means of three transactions (see figure 7): 

0 The Attention transaction signals a process of acontrol 

event in the originating process. 

0 The Read transaction allows a process to read a word 
of data from another process. 

0 The Write transaction transfers a data word from the 
originating process to another. 

The exact formulation of this transaction-based interface 
depends on the language used to describe a process, in par- 
ticular on the pragmatics of the language: For an imperative 
(software) language like C, the interface is formulated as 
a set of functions; for a concurrent hardware language like 
VHDL, the interface consists of a set of signals which im- 
plement an asynchronous communication protocol. These 
signals connect the modeled hardware to a component in- 
stance which represent the rest of the system. 

The Merlin interface model is not, however, intended to 
be used directly as the interface model in a given design. 
Rather, an abstraction layer corresponding to the particu- 
lar interface intended for a given design should be placed 
around the Merlin interface. For instance, for a codesign 
development system, a library of common interface types 
(e.g., bus-based interfaces) and specific instantiations might 
be constructed (e.g., VME and ISA busses might be repre- 
sented). 

6.2 Modeling the Coprocessor 

In the present case study, a high-level description of the 
coprocessor interface is desired, as described in the previ- 
ous section. In order to model this, primitive operations in 
the original C program, which corresponds to instructions 
in the coprocessor, are replaced by invocations of Merlin; 
thus, functions corresponding to coprocessor instructions 
are used as the interface abstraction. 

The coprocessor itself is initially modeled as another 
process, written in C. This permits the partitioning of the 
design to be examined and allows validation of the rewrites 
of the application code. This description is then rewritten 
in VHDL, in order to more closely represent the chosen 
architecture. 

A prototype simulation environment running under the 
Unix operating system has been constructed for the Merlin 
interface model. This system allows a number of software 
processes (running as native code) and a number of hard- 
ware processes (simulated using the commercial VHDL 
simulator Synopsys) to be run concurrently. Using this 
system, functional validation of the proposed coprocessor 
design is carried out. 

As the final target CPU and system has not yet been 
chosen (and thus neither has the low-level design of the 
coprocessor), it is not possible to give reliable figures for 
the achieved speed-up. It is, however, possible to estimate 
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Figure 7: The Merlin interface model: All communication is based on the three transaction types Attention, Read and Write. 

Figure 8: Encapsulating the Merlin interface, here by a VME bus layer and an Remote Procedure Call layer. 

the speed-up based on the profiling information and the 
coprocessor architecture, as described in the next section. 

The Merlin implementation has the option of logging 
all transactions in the system; coupled with the profiling 
information3 and given information about the timing of 
the target CPU and the low-level coprocessor design, this 
would allow accurate performance figures to be obtained. 
At the moment, though, the necessary tools to calculate this 
timing information have not been developed. 

7 Performance Evaluation 

The profiling information gathered is examined in order 
to estimate the hardware speed-up factor for the vector 
functions, s,. As the target CPU has not been selected 
as yet, the estimation is based on the assumption that the 
target CPU is the same as the simulation CPU; this should 
be a pessimistic assumption, as the target CPU is expected 
to be less powerful. 

If t ,  is the total time spent in the vector functions of 
the original program and t: is the speed with the hardware 

coprocessor, then: 

s , = L  Ctefunc t ,  
tL Ca,=funCn* calf 

where func is the set of vector functions which are now 
implemented as calls to the hardware. t ,  is the time spent 
in vector function a by the original program and n, is the 
number of invocations of the function. c, denotes the num- 
ber of cycles used by the hardware, operating at frequency 
f, in order to execute the vector function i. 

Each vector function is implemented as a set of co- 
processor instructions. These instructions can be classified 
according to estimated cycle count; an estimate of the cycle 
count of each instruction class, 03, is obtained by studying 
the M68040 FF'Us instruction timings. c, can now be es- 
timated by examining the implementation of each vector 
function, counting the number of instructions in each class, 
ma,3 : 

ct = ma,3 ' 0 3  

3 d a s s  
Using the results obtained from the profile, the hardware 

speed-up factor is: 

3The timing information from the profile does not reflect the target 
CPU, but the execution statistics are reliable. 

24.9s 
= 0.29. 1OP6.s . f s, = 85.6.  106/f 
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20 3 0 40 s o  6 0  
frequency imr1 

Figure 9: Total speed-up as a fuinction of coprocessor operating 
frequency. Break-even is achieved at 3.4MHz (s ,  = 1 ) .  

Given su,  Amdahl’s law can be used to obtain the to- 
tal speed-up as a function of the operating frequency of 
the coprocessor, as illustrated in figure 9. At a typical op- 
erating frequency of SOMHz, a speed-up of 1.46 may be 
obtained; it should be noted, though, that as in some in- 
struction sequences the coprocessor requires instructions 
in consecutive cycles, the possible operating frequency is 
limited by the instruction fetch rate of the target CPU. 

8 Conclusions 

This paper presents a codesign development task in com- 
puter graphics. The goal is (to speed up the execution of 
an existing software application by moving parts to hard- 
ware. The application is particularly interesting as it is not 
possible to locate a simple, compute-intensive algorithmic 
kernel. 

The development is carried out as a codesign case study; 
consequently, existing design and analysis tools are used 
wherever possible. 

During the design analysis phase, a traditional software 
profiling tool is used to extract execution information about 
the source program. From the profiling information, it is 
possible to locate the computationally most intensive parts 
of the program. However, the traditional software analysis 
tools do have significant short-comings in a codesign en- 
vironment, as they do not provide information on the data 
flow between algorithmic parts. In the case study, this is re- 
solved by combining the profiling information with manual 
examination of data transfers between blocks of code. 

In order to validate the design after hardwarekoftware 
partitioning, a co-simulation environment is developed 
around the Merlin interface model. Merlin is a simplified 

model which allows a number of processes to communicate; 
these processes may belong to different semantic domains, 
i.e., hardware or software. The communication primitives 
of the Merlin model have been selected to facilitate the 
construction of a library of physical hardware/software in- 
terface types. 

As the main goal of this design is to study the design 
process, only a rudimentary treatment is given to the design 
itself. For instance, the profiler is only run on a single test 
case; for a more realistic design, more complex examples 
should be investigated. Also, it should be noted that the 
estimated achieved speed-up is fairly low; for a realistic de- 
sign other approaches, such as pure software optimization, 
should be investigated. 
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