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Abstract 

In this paper optimal experiment design is investi- 
gated for stochastic dynamic systems where the prior 
partial information about the system is given as a 
probability distribution function in the system pa- 
rameters. The concept of information is related to 
entropy reduction in the system through Lindley’s 
measure of average information, and the relationship 
between the choice of information related criteria and 
some estimators (MAP and MLE) is established. A 
continuous time physical model of the heat dynamics 
of a building is considered and the results show that 
performing an optimal experiment corresponding to 
a MAP estimation results in a considerable reduction 
of the experimental length. Besides, it is established 
that the physical knowledge of the system enables us 
to design experiments, with the goal of maximizing 
information about the physical parameters of inter- 
est. 

1. Introduction 

The term ’grey-box’ is inspired by the use of ’black- 
box’ in connection with identification of systems 
where any knowledge of the system under consider- 
ation from other sources than measured data is not 
taken into account. In contrast, the grey-box identifi- 
cation is based upon the belief that partial knowledge 
about the actual system obtained from other sources 
in a beneficial manner can improve the result of the 
modeling procedure. Hence the partia.1 information 
can influence the representation of the system, the 
design of experiments or the validation of the result- 
ing model, just to mention a few of the points during 
the total modeling procedure where extra information 
might prove to be useful. 
A basic reason for the interest in promoting the grey- 

box identification area is a desire to collect and sys- 
tematize much of the procedures that earlier have 
been used to incorporate external knowledge, then of- 
ten termed, e.g. physical modeling or mere intuition. 
The basic questions are then e.g. how the external 
knowledge is represented, how it is included in the 
modeling procedure as a whole or in a part of this 
procedure or what are the main advantages or disad- 
vantages of the grey-box approach. 
In recent years, some efforts have been reported to 
answer the questions around the grey-box modeling 
approach] see [l], [a], [3], and [4]. These references 
view different aspects of the same problem of incor- 
porating partial prior knowledge in the identification 
and modeling procedure. 
This paper focuses on the experiment design problem, 
i.e. on a part of the total grey-box modeling issue. 
This is a part where the partial knowledge may prove 
to be important, since it may help to design infornia- 
tive experiments with the goal of e.g. reducing the 
experiment time or decreasing the use of external ex- 
citation. However, this is also a very crucial issue, 
since the design is solely based on prior knowledge. 
The approach to the problem is statistically based. 
The concept of information is quantified using Lind- 
ley’s measure of information, and the partial informa- 
tion is represented in a Bayesian framework as a prior 
distribution of the parameters that are to be esti- 
mated. This formulation of partial prior information 
is well suited to our adopted information crit>erion in 
the sense that the parameters are regarded as random 
variables. This also means that the prior information 
is embedded in a well founded procedure. Hence, it is 
possible within this procedure to discuss those quali- 
ties of the partial information that really are impor- 
tant, and to see also the limitations of the grey-box 
approach. It is also shown that this approach to ex- 
periment design leads to a more fundamental ques- 
tion about the whole experimental strategy, e.g. the 
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choice of estimators. The same approach to the prob- 
lem has been pursued in [5], [6], [7]. Finally, and 
equally important, this can be used to develop meth- 
ods that for a given system can show where to try 
to obtain partial information in order to improve the 
total modeling and identification procedure. 
The methods are applied to a physical model of heat 
dynamics of a building, where exploring the physical 
knowledge of the system is indispensable in order to 
estimate some physical parametric constants. It is 
then investigated how this collection of prior knowl- 
edge and partial prior information enables us to de- 
sign efficient informative experiments. 

2. Experiment Design For Grey-Box Models 

The basic concept behind the design of optimal exper- 
iments is to maximize a function which is a measure 
of the ”goodness” of those experiments. 
In a traditional approach, one may regard a suitable 
sca1a.r function of Fisher’s information matrix as the 
criterion. This is related to maximization of the pos- 
terior precision of the unknown parameters, where the 
posterior precision is merely obtained by performing 
measurements during the experiment and processing 
the data statistically. However, the purely statistical 
processing of data is in many cases not compatible 
with the physical reality [4]. 
In this paper, MAP estimator is introduced as a 
grey-box estimator. However, the grey-box approach 
can also be used in connection with other estima- 
tors where partia.1 prior information about the value 
of the estimates does not exist or is ignored in the 
estimation procedure, e.g. in connection with (un- 
c,onstrained) ML estimator. The latter approach has 
been thoroughly discussed in [8]. 
It is well known that if Y is a set of i.i.d. random vari- 
ables the covariance of any unbiased efficient estima- 
tor of the unknown parameter /3 will asymptotically 
reach the lower bound of the Cramer-Rao inequality 
given by the inverse of Fisher’s information matrix 
[9]. However, in finite experiment time, the posterior 
precision will be dependent upon the choice of the ef- 
ficient estimator. 
Fisher’s information matrix is defined as 

where p(Y IP) is the probability density function of 
the random variable Y,  given P. The following the- 
orem establishes a relation between the posterior co- 
variance of the parameters and Fisher’s information 
matrix when a MAP estimator is used. 

Theorem 2.1 Assume that the  prior information 
about system parameters is embodied an a Gaussian 

distribution with covariance Also assume that 
a MAP estimator is used to estamate the unknown pa- 
rameters based on sampled observations for a model 
brought into the regression form 

Yt = VTP + E t  

where { E t }  is a sequence of Gaussian distributed ran- 
d o m  variables with known covariance, uncorrelated 
with {pt}. 
Then the posterior covariance matrix Cpost  is given 
b y  

or equivalently 

(3) 

where MF is Fisher’s information matrix, & f ~  th,e 
average information matrix, and N the  length of ex- 
periment. 
PROOF: See [7] 

The theorem is stated under very restrictive assump- 
tions, e.g. that the output should be written as a 
linear regression in parameters. However, it can be 
shown that the theorem is true in more general cases. 
For a formal proof see [6]. 
The MAP estimator is asymptotically efficient, since 
the posterior covariance matrix approaches the lower 
bound of the Cramer-Rao inequality for N - m, see 

If the posterior information is obtained applying a 
ML estimator, Cpre should be set equal to 00 since 
ML and MAP estimators coincide in case the prior 
distribution of parameters is non-informative [IO]. 

(3). 

3. Information Theoretic Approach 

In this section, the concept of informa.tion is related 
to Lindley’s measure of information. The information 
related criterion is shown to depend upon the choice 
of estimator. 

Definition 3.1 The entropy of a ran.dom variable S 
having probability density function p ( X )  is defined to 
be 
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Definition 3.2 Lindley’s measure of the average 
(ii~i.oiiiit of information provided b y  an experiment E 
.with data !j and param.eter.5 P is defined to be 

Theorem 3.1 With the same assumptions as in 
Theorem 2.1, maximizing Lindley’s measure of the 
average amount of information, J’(E), is equivalent to 
solving the optimization problem 

(4) 
inin, J 
J = -Ep[logdet{C;,.!e + M F } ]  

PROOF: We regard the estimation as a means b y  
which further iiiformation about the system param- 
eters is provided. Recalling that MAP is the mode of 
the posterior distribution, the maximum amount of 
information with respect to Lindley’s measure is ob- 
tained b y  M A P  for each experiment. 
Since the prior distribution of the parameters and the 
distribution of observations given P is Gaussian and 
the covariance of the residuals is known, the posterior 
distribztion of the parameters will also be Gaussian, 
Let’s denote the posterior mean and covariance b y  P 
and Cpost .  From (2) we have 

From Definition 3.2 

A s  all the other terms obviously are constant, we only 
focus on the last two terms 

The other term can be written as 

wh.ere np is the number of parameters. 
N o w  using (2)  establishes the theorem. 

In many practical applications, an approximation of 
the mean value in (4) is computed by setting the pa- 
rameters equal to their prior mean values. This ap- 
proximation simplifies the study considerably. Thus 
depending on the estimation method or the choice of 
a Bayesian or non-Bayesian criterion, the following 
criteria would be of interest: 

These criteria demonstrate different levels of includ- 
ing partial prior information about parameter values. 
Optimization with respect to J1 results in designs 
which are strongly dependent upon the prior infor- 
mation. The dependence is even more pronounced in 
J z .  Therefore, it might be beneficial to perform a sen- 
sitivity analysis, i.e. to determine the sensitivity of 
the design to changes in parameters, when using these 
criteria. An alternative approach could be choosing 
Bayesian design criteria like .I3 and 54. 
Table 1 summarizes the relation between the choice of 
estimators and the optimization criterion, expressed 
in both a Bayesian and non-Bayesian form. 

Table 1: Summary of the optiinality criteria. 

Non-Bayesian 

4. Frequency Domain Design 

Consider a linear discrete t8ime system of the form 

where { u t }  and { y t }  are the input and output se- 
quences, respectively, and { c t }  is a. sequence of i.i.d. 
Gaussian random variables having zero mean value 
and covariance C. G l ( q )  and Gz(q) are b n s f e r  func- 
tions where q is the forward shift operator. For sim- 
plicity, restrict attention to a single input, single out- 
put case with Gz(oo) = 1. 
Assume that 
1) The experiment time is large. 
2) The input { u t }  is restricted to the class of signals, 
admitting a spectral representation with spectral dis- 
tribution function F ( w ) ,  w E [-T, T ] .  
3) The constraint is taken to be the allowable input 
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power. 
Defining < as 

$ d F ( w )  w = o u w  = 7r 
de(w) = { d F ( w )  w E]O,7r[ (7) 

the power restriction of the input signal can be stated 
by 

It can be shown that the set of all average informa- 
tion matrices is the convex hull of the average in- 
formation matrices corresponding to single frequency 
designs [lo]. Based on this fact, the following theorem 
can be proved. 

Theorem 4.1 For the design criteria J1 ,  J2, 53, and 
54 given in (5), optimal designs exist comprising not 
more than sinusoidal components, where nzp 
is the number of parameters. 
PROOF: See [lo] f o r  a proof in the non-Bayesian case 
and [5, S] for a proof in the Bayesian case. 

Knowing that a finite number of sinusoidal compo- 
nents suffice to reach optimality, numerical optimiza- 
tion algorithms can be easily applied to find the 
frequencies corresponding to  the optimal input si- 
nusoidal components and their corresponding power 
shares. 
For instance corresponding to the criterion 54, one 
can formulate the optimization problem 

m212cI1,. ..,an ,w * ,...,On f ( a l , . . . , a n , W l , . . . , W n )  

2ffi = 1 
i=l 

0 5  ai 51 i =  1, ..., n 
W I  5 wj s w ,  i =  1, . . . ,  n 

where the cost function is 

f(ffl,...,(Yfl,Wl,...,Wfl) = 
n 

(9) 

f i p ( w i )  is the average information matrix corre- 
sponding to single input frequency wi ,  and W I  and 
w, are our initial guess of lower and upper bounds 
of the optimal design frequencies. n is the maximum 
number of sinusoidal components which suffice for op- 
timality. In many cases n is less than the number 

which is predicted by Theorem (4.1). The 
methods of including the prior knowledge by consid- 
ering Bayesian criteria are thoroughly investigated in 

[6] and [5]. 
The technique can be extended to continuous time 
models with minor modifications: replace the forward 
shift operator with differentiation operator, and the 
frequency range [0,7r] with [0, +a]. 
In the following, the application of MAP estimation 
and its corresponding optimal experiment based on a 
physical model of the heat dynamics of a building are 
illustrated. 

5. Application 

This application shows how the optimal design de- 
pends upon the choice of the estimators and the prior 
information about the system parameters. It also il- 
lustrates that the physical knowledge of the system 
enables us to design experiments which are informa- 
tive about the physical parameters of interest. 
Throughout the example, the non-Bayesian criteria 
are considered. The Bayesian versions of the criteria 
can be investigated as well. However, previous ex- 
periments on the model show that the optimal input 
spectrum exhibits small sensitivity to perturbations 
in parameter values. Hence, a Bayesian study will 
in this case only contribute to computational com- 
plexity. Besides, there are some other interesting as- 
pects of experimental design that can be studied, even 
within a non-Bayesian framework, e.g. a study of ex- 
perimental design using MAP estimators, and these 
aspects are outlined in the application as follows. 
The following set of stochastic differential equations, 
which originates from physical considerations, pro- 
vides a model of heat dynamics of a building [l 11 . 

[ % ] =  
+[e R a  Ci 

+ [ %$# 

0 
1 
Ci 
- 

1 
with the following parameters 
o R i  The resistance between the room air and the large 
heat accumulating medium. 
OR, The resistance between inner walls and the am- 
bient air. 
oCi The capacity of the small heat accumulating 
medium (inner part of the walls). 
oC, The capacity of the large heat accumulating 
medium (due to concrete flags placed on the floor). 
The indoor temperature is measured, and both pro- 
cess and measurement noise terms are considered. 
*Ti The temperature of the small heat accumulating 
medium (indoor temperature). 
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*T, The temperature of the large heat accumulating 
medium. 
*A, Effective window area. 
op,  The part of solar radiation which reaches the 
building. 
oT, The ambient air temperature. 
o Q h  Heat supplied by heater (controlled input). 
oQs Heat supplied by solar radiation. 
01u,,,(t), wi(t) Elements of a vector Wiener process. 
Assume that the vector 

0.9 - 
0.8 - 
0.7 - 
0.6 - 
0.5 - 
0.4 - 
0.3 - 
0.2 - 
0.1 - 
0.0 I I I I I 

r R; i 

Wk 

is chosen as the parameter vector, i.e. the goal of 
the experiment is to gain information about the ele- 
ments of ,f3. In other words, the problem of designing 
the optimal experiments can be formulated as follows. 
Find a.n input signal, expressed as a function of time 
or specified by its power spectrum, that maximizes 
information about p, or a sub-set of p, according to 
some suitable information measure, when the means 
by which the behavior of the system can be observed 
is recording the indoor temperature (corrupted with 
noise) as the system's response to excitations in the 
indoor heat Bow supplied by the heater. 
In [lo], methods to derive the information matrix are 
presented, and in [5] these methods are extended and 
applied to the model of heat transfer in a building, 
where the model is non-linear in parameters. Exper- 
iments are suggested which minimize the posterior 
uncertainty in the elements of p. 
For some typical values of the thermal parameters: 

I IZR,  = 0.4788(OC/RW) 
mR, = 29.38(OC/IcW) 
mc, = 1.183(KWh/OC) 
I ~ Z C ,  = 3.987(Ii'Wh/OC) 

(12) 

and some typical values of variances of process and 
measurement noise terms, an optimal power distribu- 
tion shown in Fig. 1 is obtained. The design is based 
on the criterion J1. The figure shows that the optimal 
power distribution has components both in low and 
high frequencies, and it corresponds to a slow and a 
fast dynamics in the system. The slow dynamics is 
due to the large capacitor C,, and the fast dynamics 
is due to the small capacitor Ci. 
Now the role of adding prior information is studied 
by considering different prior uncertainties and using 
the design criterion related to the MAP estimator. 
By large uncertainty in Ci, we mean that the prior 
variances of the parameters are given by 

and by large uncertainty in C,, they are given by 

(14) 
ai i  = 1 0 - ~  a;a = 1 0 - ~  
a;: = 10-6 a& = 10-1 

Considering J 2  and the prior variances given by (13), 
the optimal power distribution is shown in Fig. 2. 

0.4 
0.3 
0.2 
0.1 
0.0 1 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 

Figure 1: Optimal power distribution for building mod- 
eling, criterion 51. 

It is interesting to note that the optimal input is in- 
formative about the most uncertain capacity, since 
it shifts power to higher frequencies. When the un- 
certain parameter is the larger capacity, optimizing 
Jz will lead to a design' which solely consists of a DC- 
component, i.e. a drastic shift of power towards lower 
frequencies. In the assessment that follows later, it, is 
illustrated how the designs obtained by optimizing Jz, 
where an extra amount of prior information is added, 
together with using the MAP estimator result in a re- 
duction of the experiment time relative to the design 
obtained by minimizing J1 and using the ML estima- 
tor. However, notice that misguiding results could be 
caused by wrongly or ill-specified prior information. 
For instance, if the smaller capacity is quite different 
from our prior guess, very little information about its 
value is provided by a DC-excitation, and the poste- 
rior estimate of the capacity will shift only slightly 
from the initial wrong value. This flaw can not be 
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assigned only to the experimental design, but more 
generally to a wrong choice of the whole experimen- 
tal strategy, which among others covers the choice of 
an unsuitable estimator and its corresponding exper- 
iment. 
Denoting the optimal design by t* ,  we define P A V  
by 

Prior variances 
( 13) 
( 14) 

as a. measure by which it is possible to compare the 
posterior precisions of different sets of estimates for 
a specific experiment time. This is equivalent to 
comparing the mean volumes of the posterior confi- 
dence ellipsoids for the parameters, where the poste- 
rior knowledge has been gained under different condi- 
tions. Note that, prior to the experiment, this mean 
volume is approximated by setting the parameters 
equal to their prior mean values. The experiments 
can be compared either by comparing the experiment 
lengths for a predefined P A V  or by comparing the 
P A V s  for a predefined experiment time. A study of 
the results in Table 2 and Table 3 show that an op- 
timal experiment corresponding to the criterion 5 2  
together with the MAP estimation shorten N ,  the 
a.ssessed length of experiment, considerably. 

N = 1540h 
P A V  = 18 
P A V  = 18 

P A V  = 2.8 
N = lOOOOh 
N = lOOOOh 

Prior variances N = 1540h PAV = 2.8 
( 13) PAV = 2.8 N = 1540h 

U ( 14) P A V  = 3.6 Not computed 

Table 3: Experimental design results for a building, 
MAP estimator. PAVs are scaled by lo6 .  

n M A P  II 

6. CONCLUSION 

In the paper, different levels of including prior infor- 
nmtion about the system, for experiment design, have 
been discussed. The different levels, which are sum- 
marized in Table 1, include the use of the MAP and 
ML estimators as well as Bayesian and non-Bayesian 
criteria for optimality of the experiment. Besides, it 
is shown that the physical knowledge of the system 
enables us to design experiments which are informa- 
tive about the physical parameters of interest. The 

application of experimental design for grey-box mod- 
els to the heat dynamics of a building illustrates the 
role of the physical knowledge and shows how the 
choice of estimators affects the optimal design. By 
considering the MAP estimator the optimal design 
is dependent upon the prior uncertainty of the pa- 
rameters, and in general the total experiment time 
is significantly shortened. The application demon- 
strates the importance of using grey-box methods for 
experiment design. 
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