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Performance Analysis based on Timing Simulation

Christian D. Nielsen Michael Kishinevsky
Department of Computer Science
Technical University of Denmark
Building 344, Lyngby, DK-2800 �

Abstract — Determining the cycle time and a critical cycle is a
fundamental problem in the analysis of concurrent systems. We
solve this problem using timing simulation of an underlying Signal
Graph (an extension of Marked Graphs). For a Signal Graph
with n vertices and m arcs our algorithm has the polynomial
time complexity O(b2m), where b is the number of vertices with
initially marked in-arcs (typically b�n). The algorithm has a
clear semantic and a low descriptive complexity. We illustrate
the use of the algorithm by applying it to performance analysis
of asynchronous circuits.

I INTRODUCTION

Determining the cycle time and a critical path is a fundamental
problem in the analysis of concurrent systems. The cycle
time of a system is defined as the average time separation
between equivalent events in the system. The sequence of
events determining the cycle time, called the critical cycle,
may be viewed as the bottleneck of the system.

We use a Signal Graph model with arcs labelled with real
numbers to represent the problem. These numbers can be
interpreted as delays between events and for this reason we
call this model Timed Signal Graphs. The Signal Graph model
is an extension of Marked Graphs1 which includes means for
modelling the initial behavior of systems, not only a totally
cyclic behavior. Regardless of this, the algorithm we are
presenting is just as applicable to Marked Graphs and to any
other equivalent model, for example to event rules systems [2].

In [2], the problem of finding the cycle time of a circuit was
reduced to a problem of linear programming with polynomial
complexity. In [7], it is observed that the timing behavior of a
Signal Graph (and similar models) can be studied as an even-
tually periodic behavior of the corresponding max-functions.
The problem tackled in this paper can also be formulated as the
problem of a parametric shortest path [13], or can be reduced
to the minimum mean-weight cycle or minimum cost to time
ratio cycles problems [1, 8, 11]. For a graph withn vertices and
m arcs the best known algorithms run in O(nm + n2 log n)
time [13] orO(T (m+n � log n)) [8], where parameterT is an
upper bound on the length of each path and cycle in a graph.

This paper describes an algorithm that takes a Timed Signal
Graph as input and returns as a result the cycle time and the
critical cycle of the graph. Our algorithm runs inO(b2m) time,
where b is the number of vertices with initially marked in-arcs.
In the worst case when all vertices have initially marked in-arcs
it givesO(n2m). However, typically b� n and the algorithm
demonstrates linear run-time. This algorithm is based on a
simple calculation process called timing simulation and has a
clear semantic and a low descriptive complexity.

We have applied our algorithm to the performance analysis

�This work has been supported by The Danish Technical Research Council.
1Marked Graphs are a subclass of Petri Nets [5]. In such nets every place possesses

exactly one in- and one out-event, and no conflict situations are possible.

of asynchronous circuits. The Signal Graph representation
(and other similar models) may be viewed as a circuit specifi-
cation as in [4, 9, 10, 12], or as an intermediate representation
derived from other descriptional models. For the performance
analysis of a circuit represented as a net-list, we apply the
algorithm described in [9] to extract the Signal Graph.

The remainder of this paper is organized as follows. In
Section II, we give an informal introduction to the algorithm.
In Section III, we summarize the Signal Graph model. In
Section IV, we develop the notion of timing simulation and
derive how the cycle time may be calculated from an infinite
timing simulation. In order to limit the timing simulation to
finite length, we explore the correspondence between the cycle
time and cycles in the Signal Graph (Section V). In Section VI,
we utilize this knowledge to obtain the cycle time from timing
simulations in finite time. In Section VII, we summarize the
algorithm. Finally, Section VIII demonstrates the application
of the algorithm to the performance analysis of asynchronous
circuits and shows some illustrative examples. For the sake of
brevity all propositions in this paper are given without proofs.
They can be found in [3].

II INFORMAL PROBLEM DESCRIPTION

Let us illustrate the problem of finding the cycle time infor-
mally using the circuit shown in Figure 1a. It consists of a
C-element, two NOR-gates and a buffer and has five signals:
one for each gate output (a; b; c; f ) and one for the input node
of the circuit (e). To all the gate inputs, we have assigned a
fixed propagation delay from this input to the output of the
gate.

The graph in Figure 1b, called a Timed Signal Graph, repre-
sents the causal dependencies between the signal transitions of
the circuit. An arrow which is crossed over (with a�) is active
once only, while the dots (�) indicate the particular initializa-
tion of the circuit. All arcs are labelled with the corresponding
gate delays.

The cycle time of a circuit is determined by the longest
simple cycle, called the critical cycle, in the corresponding
graph representation [2]. For example, the critical cycle for

the graph in Figure 1b is: a"
3
! c"

2
! a#

3
! c#

2
! a". The

length of this cycle is 10.
A straightforward approach for finding the critical cycle

and, hence, the cycle time is to search for all cycles and to
choose the longest. Unfortunately, the number of cycles may
be exponential in the number of arcs in the graph.

A timing diagram for our example, shown in Figure 1.c,
can be obtained from the Signal Graph by a calculation pro-
cess called timing simulation. The dashed arrows in the tim-
ing diagram corresponds to the arcs of the graph. For the
acyclic graphs timing simulation is analogous to the PERT-
analysis [6].

The signals e and f change only once during the circuit
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Figure 1: A circuit (a), its Timed Signal Graph (b), timing diagram
(c) and a"-initiated timing diagram (d).

operation. The others, a, b and c oscillate infinitely. We call
the up- and down-going transitions of such oscillating signals
repetitive events.

The time separation between two successive identical events
of a signal is called the occurrence distance between the events.
The occurrence distance between, say, the first and the second
up-going transitions of signal a (a"0 and a"1) is 11. After
an initial period the oscillations on the three repetitive sig-
nals a; b; c stabilize with a fixed occurrence distance between
identical events. The distances between, say, the up-going
transitions for all repetitive signals of the circuit in Figure 1a
are the same (equal to 10) after some initial period. This dis-
tance gives the cycle time of this circuit. In general, for more
complex circuits it is not that simple, though.

From the timing diagram, we can further calculate the av-
erage occurrence distance up to a certain event, which is the
occurrence time of the event divided by the number of times
the event has occurred. The sequence for, say, the up-going
transitions of a is: 2, 13

2
= 6 1

2
, 23

3
= 7 2

3
, 33

4
= 8 1

4
, 43

5
= 8 3

5
,

53

6
= 8 5

6
, : : : The asymptote of this sequence is 10 and equal

to the cycle time of this circuit.
One can conclude that the cycle time of the circuit is equal

to the average occurrence distance for any repetitive event in
an infinite timing simulation. In order to obtain the cycle
time from a finite timing simulation, we face the problem
that there are no simple criteria to establish the asymptote
from a finite part of the sequence. In the general case, the

sequence does not have to be monotonic, but may “oscillate”
asymptotically towards the cycle time. Hence, we must ensure
that the sequence yields the asymptote in a finite number of
steps, and be able to establish an upper bound on the effort.

We note that the average occurrence distances over a finite
simulation depends on the origin (t = 0) of the timing simu-
lation and the initialization of the circuit, but the asymptotic
behavior is independent of these. Therefore, by initiating the
timing simulation in specific events we are able to throw away
the effects of the initial history. If, for example, the timing
simulation is initiated such that everything concurrent with and
before a"0 is assumed to have happened in the past, then we
would obtain this sequence of average occurrence distances
for up-going a-transitions: 10, 10, 10, : : :, which immediately
gives us the cycle time of this circuit, see Figure 1d.

If the timing simulation is initiated in an event which is
part of a critical cycle, like event a" for our example, then the
sequence of collected average occurrences will yield the cycle
time as the maximum average occurrence time within a finite
simulation corresponding to the length of a critical cycle. If,
on the other hand, the event is not part of a critical cycle, like
event b, then all the collected numbers are smaller than the
cycle time.

This opens two questions: How do we ensure to initiate the
timing simulation in an event which is part of a critical cycle?
And how do we bound the length of the timing simulation?

With simple arguments, we see that given a cut set of the
graph, i.e., a set of events that contains at least one event from
any cycle in the Signal Graph, then one of these events will be
part of the critical cycle.Moreover, the number of periods any
cycle can cover, is bound by the size of this cut set. One of
the cut sets for the Signal Graph is given by the set of events
with a bullet on some of their input arcs, called the border
events. This set is not necessarily minimal, but is very simple
to obtain.

In the Signal Graph in Figure 1b, there are two border
events, a" and b". We perform a timing simulation covering
two periods from each of the two border events, and collect
the average occurrence distance after each full period. Starting
with event a" we obtain values: 10

1
= 10; 20

2
= 10, and with

b": 8

1
= 8; 18

2
= 9. The cycle time of the circuit equals the

maximum of this set, � = 10.
With this informal introduction in mind, we describe the

derivation of the algorithm more formally.

III SIGNAL GRAPHS

In this section, we describe the model for our analysis, Signal
Graphs (following [9]), and its extension to Timed Signal
Graphs.

A Basic definitions and properties

A Signal Graph is a tuple hA; I;!;M;Oi, whereA is a set of
events , I � A is a set of initial events, and!� (A�A) is the
precedence relation between events. A pair of events which
belongs to the relation,we call an arc. M :!�! f0; 1; 2; : : :g
is an initial marking function which assigns an initial number
of tokens (the initial activity) to the arcs of a Signal Graph.
O is a set of disengageable arcs, i.e. arcs which influence the
execution a finite number of times only. We further distinguish
the events in the Signal Graph, which are repetitive. They
belong to the set Ar � A.

Example 1: The Signal Graph for the circuit in Figure 1a is
shown in Figure 2a. Ar = fa"; b"; c"; a#; b#; c#g, I = fe#g
and A = Ar [ I [ ff#g. /
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Figure 2: Signal Graph (a), unfolding (b) and Timed Signal Graph
(c).

The execution model of a Signal Graph is similar to that
of Marked Graphs. An event is enabled and can occur, when
all its in-arcs (arcs from direct predecessors) have a positive
activity. The result of such an occurrence is that the activity
of all in-arcs are reduced by one, while the activity of all
out-arcs are increased by one. For example, if the two arcs,
e! g and f ! g, exist in the Signal Graph, then event g can
occur after both events, e and f , has occurred only. In other
words: Signal Graphs allow one to represent the behavior of
concurrent systems with AND-causality, i.e., any event can
occur after all of its predecessors have occurred. Neither OR-
causality, nor non-deterministic choice is considered.

A Signal Graph is bounded, if in any execution the activity
of the arcs in the Signal Graph are bounded by an upper limit.
If this upper bound is equal to one, a Signal Graph is called
safe. An event e is reachable, iff e appears in some feasible
sequence of events. A Signal Graph is live, iff all events are
reachable. In an acyclic Signal Graph, event e precedes event
f , e) f , iff in every feasible sequence containing f , event e
is present before f . Further, the events e and f of an acyclic
Signal Graph are concurrent, e k f , iff they are both reachable
and e 6) f and f 6) e. The notions of precedence and
concurrency may be extended to cyclic Signal Graphs through
their unfolding, which is discussed in the next section.

We restrict ourselves to Signal Graphs which obey the fol-
lowing properties:

� Connected (i.e. the underlying directed graph is strongly
connected) and bounded.

� Initially-safe, i.e., the initial marking function, M, is
boolean: M :!�! f0; 1g. Note, that this does not
imply that the graph is safe. Any initially-non-safe graph
can be transformed into an equivalent initially-safe one.

� Any unreachable events are considered to be redundant
and the analysis is performed on the live subset of the
Signal Graph only.

� There are no repetitive events before disengageable arcs.
This is one of the properties of well-formedness [9].

Neither of the three latter restrictions does limit the descrip-
tional power of Signal Graphs.

B Unfolding of Signal Graphs

In general, a Signal Graph contains both a non-repetitive and a
cyclic part. A Signal Graph unfolding [9] is an acyclic process
in which all events are non-repeated and correspond to single
instantiations of events in the original Signal Graph.

An unfolding can be divided into periods. The first pe-
riod contains the first instantiations of all events in the Signal
Graph, the second period the second instantiations of the re-
peated events, etc. We will denote the i’th instantiation of an
event, e 2 Ar, with ei; i � 0.

All cyclic Signal Graph processes are quasi-periodic, which
means that in the unfolding after a finite number of periods all
succeeding periods will follow a fixed graph pattern.
Example 2: Figure 2b shows the two first periods of the
unfolding of the Signal Graph from Figure 2a. /

C Timed Signal Graphs

In order to perform timing analysis, we expand the definition
of a Signal Graph to include timing information. Each of
the arcs in a Timed Signal Graph is labelled with a delay,
� 2 [0;+1). In the interpretation of Timed Signal Graphs
we add delays to the execution. In the timing domain, AND-
causality of Signal Graphs corresponds to the MAX execution
model. For example, if there are two timed arcs, e

�eg
! g and

f
�fg
! g, in the Timed Signal Graph, and e and f have occurred

at the moments of time, te and tf , then g occurs at the moment
tg = maxfte+�eg ; tf+�fgg. Further interpretation of Timed
Signal Graphs will be given by the timing simulation function
in the next section.
IV TIMING SIMULATION

In this section, we introduce the notions of timing simulation
and event-initiated timing simulation, and then define the cycle
time of a system.

A Timing simulation of a Signal Graph

We wish to be able to determine the occurrence time of an
event in an execution of the Signal Graph. For this we use the
timing simulation of an unfolded Timed Signal Graph, which
is defined as

t(f) =

�
0 if f 2 Iu
maxft(e) + � j e

�
! fg otherwise

;

where Iu is the set of initial events of the unfolding. It consists
of the events from I plus the repetitive events which have
initially active in-arcs only.
Example 3: The initial part of the timing simulation of the
Timed Signal Graph introduced in Figure 2c is shown in the
following table:

event e#0 f#0 a"0 b"0 c"0 a#0 b#0 c#0 a"1 b"1 c"1 : : :

t(event) 0 3 2 4 6 8 7 11 13 12 16 : : :

The occurrence time of, say, a#0 is calculated as:
t(a#0) = max(�e#a" + �a"c"; �e#f# + �f#b" + �b"c") + �c"a# = 8.

/

B Event-initiated timing simulation

In Section II, we demonstrated the use of initiating the timing
simulation in specific events. Let us define the event-initiated
timing simulation as

tg(f) =

(
0 if f = g or g 6) f

maxft(e) + � j (e = g _ g ) e) ^ e
�
! fg

otherwise
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The intuition behind this definition is as follows: theg-initiated
timing simulation is free of past-history caused by all events
preceding and concurrent with g. These events are assigned
the occurrence time zero, and all out-arcs for events concurrent
to g are neglected. In general, this does not correspond to a
simple linear shift of the timing simulation for all events with
g as a predecessor, as the relative timing between the initiating
event and events concurrent to it has potentially been changed.

Example 4: Assume that we wish to perform a b"0-initiated
timing simulation for the unfolding of the Timed Signal Graph
from Figure 2c. The reachability set without b"0 is:
fe j b"0 6) eg = ff#0; e#0; a"0g, therefore tb"0(e#

0)

= tb"0(f#
0) = tb"0(a"

0) = 0. The reachability set from b"0

is: fe j b"0 ) eg = fb"0; c"0; a#0; b#0; c#0; a"1; b"1; c"1; : : :g.
The initial part of the b"0-initiated timing simulation is given
by the following table:

event b"0 c"0 a#0 b#0 c#0 a"1 b"1 c"1 : : :

tb"0(event) 0 2 4 3 7 9 8 12 : : :

/
The following proposition demonstrates the close relation

between the timing simulation and the longest path between
two events in a Signal Graph.

Proposition 1: If event e0 precedes event ek, i.e. e0 )

ek, then there exist at least one path of events, (e0; : : : ; ek),
connected pairwise with arcs, ei

�
! ei+1, such thatPk�1

i=0 �eiei+1
= te0(ek).

Further, there are no paths for which the sum is larger than
te0(ek). �

We will in the following use a special “cyclic” case of this
proposition with e0 = ei and ek = ej , which demonstrates
a useful duality between an event-initiated timing simulation
and the longest path between two instantiations of the same
event, ei and ej , the so-called unfolded cycles described in
Section V.
C Average occurrence distance
From the timing simulation we can define the average occur-
rence distance of an event, e 2 Ar, after i periods as follows:

�(ei) = t(ei)=(i+ 1).
For event-initiated timing simulations with the initial event
being repetitive, we are especially interested in the average
occurrence distance of subsequent instantiations of the initiat-
ing event:

For j > i � 0 : �ei(e
j) = tei(e

j)=(j � i)

D Cycle time of a system

If we observe the occurrence times for consecutive instantia-
tions of some repetitive event in a timing simulation, then after
a finite initial period the event will occur following a fixed re-
peated pattern in time. This pattern is finite, but can cover
several instantiations of the event, corresponding to several
periods of the unfolding. The infinite repetition of this finite
pattern cause the effect of the initial part to become arbitrary
small when the timing simulation becomes long enough.

We define the cycle time of an event as the average oc-
currence distance of instantiations of the event for an infinite
timing simulation: �e = limi!1 �(ei).

Proposition 2: All repetitive events in a connected and
bounded Timed Signal Graph have the same cycle time:

8e; f 2 Ar : �e = �f �

Therefore, we can define the cycle time of a Timed Signal
Graph to be equal to the cycle time of any of the repetitive
events:

8e 2 Ar : � = limi!1 �(ei).

E Using the infinite timing simulation to calculate the cycle
time

The aim of this section is to prove that the cycle time can be
calculated by the maximum operation.

Any arc between instantiations of repetitive events in a pe-
riod of unfolding, Pi, will also be present between instanti-
ations in all succeeding periods, Pi+k. This, we can utilize
to show that a kind of a “triangular inequality” rule for the
occurrence time of event instantiations is valid (see Figure 3).
This implies the following proposition:

Proposition 3: For an ei-initiated timing simulation, the oc-
currence time of a later instantiation of an event,tei(ek), k > i,
is larger than or equal to the sum of any combination of occur-
rence times for instantiations with occurrence indices between
i and k and a total occurrence period equal to k � i:
8e 2 Ar;8i � 0;8k > i :

tei(e
k) � maxftei(e

j) + tei(e
i+k�j) j i < j < kg �

ei ej ei+k�j ek

0 tei(e
j) tei(e

i+k�j) tei(e
k)

Figure 3: “Triangular inequality”: tei(e
i+k�j) = tej (e

k) �

tei(e
k)� tei(e

j).

With the help of Proposition 3, we show that the cycle time
of a Signal Graph is equal to the maximum average occur-
rence distance between successive instantiations of the initiat-
ing event in event-initiated timing simulations performed for
all repetitive events:

Proposition 4: The cycle time of a circuit is given by:
8e 2 Ar;8i � 0;8j > i :

� = maxftei(e
j)=(j � i)g = maxf�ei(e

j)g �

Proposition 4 give us a way to find the cycle time of a
Signal Graph. For each of the repetitive events in the Timed
Signal Graph we perform a timing simulation and calculate the
average occurrence distance for each new occurrence of the
initiating event. The cycle time will be given by the maximum
of all these occurrence distances. The problem is, that the
search space is infinitely large. For all events in the unfolding,
we need to simulate infinitely long to ensure, we have found
the maximum average occurrence distance. We need some
criteria to limit the search space.

V THE CYCLE TIME AND GRAPH CYCLES

In this section, we discuss the correspondence between cy-
cle time and the cycles in the graph. This will give us the
knowledge necessary to obtain the cycle time from timing
simulations in a finite number of steps.

A Cycles in Signal Graphs

In a Timed Signal Graph with repetitive events there exist
cycles. A cycle is a closed path formed by the set of events,
C = fe0; e1; : : : en�1g � Ar, n > 0, connected by the set of
arcs: fei ! e(i+1)modnj0 � i < ng.
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The length of the cycle is given by:

C =

n�1X
i=0

�eie(i+1)mod n

The cycle is simple if no event in it occur more than once.
In the unfolded Signal Graph, a cycle is represented by

an equivalent unfolded cycle, which is a path between two
instantiations e0 and en of the same event formed by the set
of events, Cu = fe0; e1; : : : ; eng � Au, and the set of arcs
connecting the events: fei ! ei+1 j 0 � i < ng. The
unfolded cycle is simple if it contains one instantiation of the
same event only.

We will in the following represent a cycle (or an unfolded
cycle) by the set of participating events, C (or Cu), and let the
connecting arcs be implied. We denote the set of all simple
cycles C and the (infinite) set of all unfolded simple cycles Cu.

As a direct consequence of Proposition 1 we can formulate
the following “cyclic” case of that proposition:

The length of the longest unfolded cycle between two in-
stantiations of the same event, ei and ej , i < j, is equal to the
event-initiated timing simulation tei(e

j).
To each of the cycles we associate a parameter, called the

occurrence period of the cycle, denoted by ", equal to the
number of Signal Graph periods the unfolded cycle covers.
Let us assume that Cu = fai; : : : ; ajg, j > i, then " = j � i.

From the length of a cycle and its occurrence period we
define the effective length of the cycle as C=", i.e. the length
of the cycle per period it covers.

Example 5: The Timed Signal Graph in Figure 2c contains
four simple cycles, C = fC1; C2; C3; C4g:
C1 = fa"; c"; a#; c#g, C2 = fa"; c"; b#; c#g, C3 =
fb"; c"; a#; c#g, and C4 = fb"; c"; b#; c#g. The length of the
first cycle is: C1 = 10, while the length of the fourth cycle
C4 = 6. The unfolded cycles equivalent to C1 are given by:
C1;i = fa"i; c"i; a#i; c#i; a"i+1g for i � 0. All the cycles
have an occurrence period equal to one. /

B The cycle time and simple cycles

As there is a duality between event-initiated timing simulations
and unfolded cycles (Proposition 1), the cycle time can be
found both as the limit of the average occurrence distance of
any event (by definition) and as the longest effective length of
all unfolded cycles (follows from Proposition 4). In the next
proposition, we show that it is necessary to consider simple
cycles only.

Proposition 5: The effective length of any unfolded non-
simple cycle is no greater than the largest of the effective
lengths of the simple cycles from which it has been combined:

C=" � maxfCi="i j Ci � Cg �

It follows directly from this and Propositions 1 and 4 that
the cycle time of the circuit, can be found by checking all
simple cycles in the Signal Graph:

� = max

�
Ci

"i

����Ci � C

�
;

The cycles, for which the maximum is actually reached are
called critical cycles.

Example 6: The cycle time of the Timed Signal Graph in
Figure 2c is given by:

�ex1 = max

�
C1

"1
;
C2

"2
;
C3

"3
;
C4

"4

�
("i = 1)

= max f10; 8; 8; 6g = 10

/
However, the number of cycles in a graph may be expo-

nential in the number of arcs in the graph. Consequently, an
algorithm searching for and checking all cycles has potentially
exponential execution time. Instead, we use our knowledge
about critical cycles to find a halt criteria for the timing simula-
tions discussed in Section IV. We discuss this in the following
section.
VI USING THE FINITE TIMING SIMULATION TO OBTAIN THE

CYCLE TIME

We show in this section that for finding the cycle time,

� a few of the repetitive events need to be considered only,
and these events can be easily selected from the Signal
Graph;

� a simple criterion to bound the length of the timing sim-
ulation does exist.

A Cut sets
A set of events is a cut set if at least one event from any cycle
in the Signal Graph are represented in the set.

For our purposes a very convenient cut set is the border
set which is the set of events with an initialization mark on
any of the input arcs. This set is by definition a cut set for a
live Signal Graph: For a Signal Graph to be live, all cycles
contain an initial mark [5]. The set is called the “border set”
because in the unfolding the instantiations of the events in the
set establishes a border between the periods of the unfolding.
All arcs with an initial marking cross the border between two
periods.

A cut set is called a minimum cut set if it contains the fewest
possible elements.

Example 7: In the Signal Graph from Example 1, fa"; b"g is
the border set. Other cut sets exist, e.g. fc"g or fa#; b#g. fc"g
and fc#g are minimum cut sets; the rest are not minimum. /

B Limiting the timing simulations

Instead of checking all cycles in the Signal Graph, we use
event-initiated timing simulations to find the cycle time and
the corresponding longest cycle(s).

We establish an upper bound on the number of periods a
simple unfolded cycle can cover in the Timed Signal Graph.

Proposition 6: The maximum number of unfolded Signal
Graph periods a simple cycle can cover, the maximum occur-
rence period of any cycle, "max, is bound by the size of a
minimum cut set. �

All cycles in the Signal Graph do by definition include at
least one member from any cut set. We can therefore limit the
timing simulations to be initiated from members of a cut set in-
stead of all events in the Signal Graph. In our implementation
of the algorithm, we have chosen not to search for a minimum
cut set, as this is a complex optimization task. Instead we
use as a cut set the border set which is given directly with the
Signal Graph.

We present two key propositions, which form the base for
the algorithm for performance analysis. They are used to find
the cycle time of the Timed Signal Graph, and sort out which
members of a given cut set belongs to a critical cycle.
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Proposition 7: Let event e belong to a critical cycle, and k
be the number of events in a minimum cut set. Then the cycle
time of a Timed Signal Graph can be found as:

� = max f�e0(e
i) j 0 < i � kg: �

Proposition 8: If an event, e, is not part of a critical cy-
cle, all average occurrence distances calculated for any of the
succeeding instantiations of e will be smaller than the cycle
time.

8n : max f�e0(e
i) j 0 < i � ng < �

�
In spite of Proposition 8, it is still true that

limi!1 �e0(e
i) = � for events, e, which are not part of a

critical cycle. That is, these events demonstrate asymptotic
behavior with the cycle time as an asymptote. They will,
however, never reach this asymptotic value. Figure 4 shows
a typical example of the asymptotic behavior of �e0(ei) for
events on a critical cycle and events off a critical cycle.

adelta   (a  )i
adelta   (a  )i

Event a is on a critical cycle Event a is not on a critical cycle

The cycle time The cycle time

PeriodsPeriods

Figure 4: Asymptotic behavior of �e0(e
i) for events on a critical

cycle (a) and events off a critical cycle (b).

When the border events belonging to a critical cycle have
been found, we can use Proposition 1 to “backtrack” the timing
simulation that yielded the critical cycle in order to obtain all
events in the critical cycle.

VII THE ALGORITHM

In order to find the cycle time, we need to perform a timing
simulation from any event which is part of a critical cycle
(Proposition 7). All cycles in the Signal Graph do by definition
include at least one member from the set of “border events” (as
a particular case of a cut set). Therefore, we can perform an
event-initiated timing simulation for each of the b events from
the border set, and be sure that among these, there is an event
belonging to the critical cycle. Also, due to Proposition 7, it is
sufficient to perform each timing simulation for b instantiations
of the initiating border event. The cycle time is found as the
maximum of the b2 average occurrence distances which were
collected during the timing simulations. We use Propositions 7
and 8 to select which border events are part of a critical cycle.

The skeleton of the algorithm

1. Create the Timed Signal Graph.

2. Identify the “border events”.

3. For each of the b border events do:

� Perform a timing simulation corresponding to b pe-
riods of the Timed Signal Graph starting in the bor-
der event.

� For each new occurrence of the initiating event of
the current timing simulation, calculate the corre-
sponding average occurrence distance.

4. The largest average occurrence distance corresponds to
the cycle time of the circuit.

5. “Backtrack” the corresponding critical cycle(s) from bor-
der events yielding the cycle time.

Let us estimate the complexity of the algorithm. Assume
that m is the number of arcs in the Timed Signal Graph. The
complexity of performing one timing simulation is dictated by
the number of arcs in the graph unfolded into b periods, which
is less than or equal to b � m. Since we need to perform a
timing simulation for each of the border events, the overall
complexity is estimated to be O(b2 � m). Note, that the
number of border events b is typically � m, such that the
algorithm will often demonstrate linear complexity from the
size of the Timed Signal Graph specification.

VIII APPLICATION TO CIRCUIT ANALYSIS

In this section, we are looking at a specific application of the
performance analysis algorithm: the analysis of asynchronous
circuits. Given a net-list for a circuit and an initial state, we
are able to determine the expected performance for the circuit.

A Signal Graphs and circuits

Our focus has been on a special class of asynchronous circuits,
the distributive circuits, which operates correctly independent
of any variation of delays in circuit elements. The distributiv-
ity property is sufficient (but not necessary) to guarantee the
speed-independence of a circuit behavior.

It has been shown that any correct Signal Graph can be im-
plemented as a distributive circuit, and any distributive circuit
can be represented with a Signal Graph [9].

In order for a Signal Graph to be implementable as a cir-
cuit, we need a couple of additional conditions specific for the
behavior of signal transitions:
Switch-over correctness: In any sequence of signal changes
the up-going and down-going transitions of a signal must al-
ternate.
No auto-concurrency: There must be no concurrent changes
of the same signal.
A Signal Graph may contain several events corresponding to
the same signal (multiple events), e.g., there may be several
occurrences of a". We will consider each of these occurrences
as separate events with different names, e.g. a1", a2", etc.
Note, that delays for the same signal can vary from one event
to another, and delays associated with different in-arcs of the
same event can differ as well. This allow us to deal with in-
dividual input-output characteristics of a transistor-level gate
implementation.

B Derivation and analysis of a Signal Graph

In [9] an efficient algorithm is presented that, given a circuit
and an initial state, verifies that the circuit is distributive, and
extracts a Signal Graph specifying the circuit behavior.

If the circuit is distributive, the algorithm produces the com-
plete Signal Graph; otherwise it finds the states, where a viola-
tion of distributivity occurs, and produces the initial part of the
Signal Graph which precedes this violation. This algorithm
is implemented in the system TRASPEC, which is part of the
FORCAGE 3.0 CAD tool for asynchronous circuits.

Our cycle time algorithm is running under UNIX. The analy-
sis of, for example, a Signal Graph with 66 events and 112 arcs,
which describes the gate level behavior of an asynchronous
stack with constant response time, takes 74 CPU milliseconds
on a DEC 5000.
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C C-element oscillator
We obtain the cycle time for the circuit specified by its Timed
Signal Graph in Figure 2c through timing simulation.

The border set is fa"; b"g, i.e., we perform the event initiated
timing simulations over two periods. As a minimum cut set
consists of one element (e.g. fc"g), one period is needed only.

event a"0 b"0 c"0 a#0 b#0 c#0 a"1 b"1 … c#1 a"2 b"2

ta"0(event) 0 0 3 5 4 8 10 9 … 18 20 19
�a"0(a"

i) – – – – – – 10 – … – 10 –
tb"0(event) 0 0 2 4 3 7 9 8 … 17 19 18
�b"0(b"

i) – – – – – – – 8 … – – 9

The cycle time is given by:
� = maxf�a"0(a"

1); �a"0(a"
2); �b"0(b"

1); �b"0(b"
2)g = 10.

The critical cycle is: a"! c"! b#! c#! a"
To illustrate the behavior of timing simulations initiated

in an event which is not on a critical cycle, we observe the
average occurrence distances obtained by the infinite b"0-
initiated timing simulation: maxf�b"0(b"

i) j i > 0g =

maxf8; 9; 9 1
3
; 9 1

2
; 9 3

5
; : : :g � limi!1 �b"0(b"

i) = 10

D Muller ring

In the following example, we analyze a circuit where the crit-
ical cycle covers more than one period of the unfolded Timed
Signal Graph. The circuit is a Muller pipeline with five C-
elements, where the two ends of the pipeline are connected
to form a ring. The ring is initialized such that it contains
one “data token”, represented by a signal value equal to 1. A
diagram of the circuit together with the corresponding Signal
Graph is shown in Figure 5. Initially the output of the last
C-element is high, while the others are low. We assume the
delay of both the C-elements and the inverters to be equal to
1, i.e., all arcs in the Timed Signal Graph are assigned the
delay 1.

a c d e

ia ib ic id ie

ia ib ic id ie

a b c d e

bib

a b

id

dc

ia

e
ic ie

Initial state: {a, b, c, d, e} = {0, 0, 0, 0, 1}

Figure 5: Diagram and Signal Graph for Muller ring with five
elements.

The Signal Graph contains four border events: a", b", c" and
e#. For each of the border events,we perform an event-initiated
timing simulation covering four periods of the unfolding. Af-
ter each period, we calculate and collect the average occur-
rence distance. As the circuit is symmetric for the four border
events, the four timing simulations yield the same result. In
the following table, we show the results from the a"-initiated
timing simulation. To illustrate the periodic behavior of the
occurrence distances, we have extended the timing simulation
to cover ten periods instead of the required four:

i 1 2 3 4 5 6 7 8 9 10
ta"0(a"

i) 6 13 20 26 33 40 46 53 60 66
�a"0(a"

i) 6 7 7 6 7 7 6 7 7 6
�a"0(a"

i) 6 6.5 6.67 6.5 6.6 6.67 6.57 6.63 6.67 6.6

The cycle time of the circuit is found to be:
�ring5 = maxf�a"0(a"

i) j 0 < i � 4g = 20

3
(� 6:67).

IX CONCLUSION

We have presented an efficient algorithm for determining the
cycle time of a circuit from its Timed Signal Graph representa-
tion. The main characteristic of the algorithm is that it is based
on the conceptually very simple frameworks of the unfolding
of the Timed Signal Graph and timing simulations.

Our work has been focussed on circuit analysis. We view
the Timed Signal Graph as being a circuit specification or,
alternatively, as being a behavioral representation of an exist-
ing circuit. To this end we apply as a preliminary step the
algorithm described in [9] to extract the Signal Graph from a
circuit description. The applications may, however, be gener-
alized for the analysis of other concurrent systems which can
be represented by an event model similar to the Signal Graph
representation.
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