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ADAPTIVE REGULARIZATION 

L. K. Hansen, C. E. Rasmussen: C. Svarer, and J .  Larsen 
CONNECT, Electronics Institute B349 

Technical University of Denmark, 
DK-2800 Lyngby, Denmark 

email: lkhansen ,ed ,csvarer j larsen@ei. dtu .dk 

Abstract. Regularization, e.g., in the form of weight decay, is im- 
portant for training and optimization of neural network architec- 
tures. In this work we provide a tool based on asymptotic sampling 
theory, for iterative estimation of weight decay parameters. The 
basic idea is to do a gradient descent in the estimated generalization 
error with respect to the regularization parameters. The scheme 
is implemented in our Designer Net framework for network training 
and pruning, i.e., is based on the diagonal Hessian approximation. 
The scheme does not require essential computational overhead in 
addition to what is needed for training and pruning. The viabil- 
ity of the approach is demonstrated in an experiment concerning 
prediction of the chaotic Mackey-Glass series. We find that the 
optimized weight decays are relatively large for densely connected 
networks in the initial pruning phase, while they decrease as prun- 
ing proceeds. 

INTRODUCTION 

Learning based on the conventional feed-forward net may be analyzed with 
statistical methods and the result of such analysis can be applied to model 
optimization [5, 6, 10, 11, 121. We have shown how pruning and regulariza- 
tion can be combined to  design compact networks for time series prediction 
Ill, 121. Our “Designer Net” framework is based on the Optimal Brain Dam- 
age (OBD) method of Le Cun et al. [7] and we use simple weight decay for 
regularization. The benefits from compact architectures are threefold: Their 
generalization ability is better, they carry less computational burden, and 
they are faster to  adapt if the environment changes. Further, we have shown 
how the generalization error of the network may be estimated - without ex- 
tensive cross-validation - using a modification of Akaike’s Final Prediction 
Error (FPE) estimate [l]. The minimal FPE constitutes a useful stopping 
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criterion for pruning. However, our previous work has been conditioned on 
the corrrct setting of several parameters, most prominently the weight de- 
cay parameters. In  this contribution we provide the possibility of adapting 
regularization parameters within the Designer Net framework. 

The results obtained can be viewed as a sampling theory alternative to  the 
Bayesian or Evidence based techniques for adaptive regularization developed 
by MacKay [8, 91. An analytical comparison of these two techniques has 
recently been given in [ a ] .  

LEARNING 

The use of system zdentzficatzon tools for neural net learning has been pi- 
oneered by Moody (see e.g., [lo]) who derived estimators for the average 
generalization error. The main source of uncertainty in the learning process 
is the shortage of training data.  Other important contributions to  uncer- 
tainty are: Lack of fit, noise in the training process, and non-stationarity of 
the data-generating environment. Lack of fit’ was discussed in, e.g., [5], while 
noise in the training process has been discussed in [3]. In this presentation 
we will neglect these three effects. Lack of fit can be minimized by starting 
the pruning process from large enough networks, while noise in the training 
process can be relieved by careful search in weight space. Non-stationarity 
is a hard problem that will be pursued in future work, here we will assume 
stationarity. 

NETWORK ARCHITECTURE AND TRAINING 

The basic network is a t apped  delay line architecture with L input units, nH 
hidden sigmoid units and a single linear output unit. The initial network is 
fully coiinected between layers and implements a non-linear mapping from 
lag spacv x(k) = [ ~ ( k ) ,  ..., ~ ( k -  L + l)], ( L  is the length of the tapped delay 
line), to  the real axis: 

where U = [w, W] is the N-dimensional weight vector and c ( k )  is the predic- 
tion of the target signal y(k) .  The particular family of non-linear mappings 
considered here can be written as: 

) 
n H  

Eh (x(k)) = Wj tanh w i j t ( k  - i - 1) + w,O + WO, (2) 
j=1 ($ 

where n H  is the number of hidden units, Wj are the hidden-to-output weights, 
while w,, connect the input and hidden units. 

‘Lack of fit is also sometimes described as “the teacher does not belong to student 
space” or “incomplete modeling”. 
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A simulator based on batch mode, second order local optimization has 
been developed, as described in Ill, 121. The scheme is based on the diagonal 
approximation of the cost-function Hessian (the second derivative matrix). 
We use the sum of squared errors t o  measure the performance of the current 
network: 

. P  

k = l  

where p is the number of training examples. To ensure numerical stability 
and for assisting the pruning procedure we augment the cost-function with a 
weight decay term: 

where N , ,  NW are the numbers of weights and thresholds in hidden and 
output units, respectively. Further, a,, aw are the weight decay parameters 
of the hidden and output layers, respectively. The objective of the training 
procedure is to optimize the networks ability to  predict near future values of 
a given time series. Hence, the network weights, U, are trained to recognize 
the short time structure of the training set time series. 

PRUNING 

The OBD method proposed by Le Cun et al. [7] was successfully applied to  
reduce large networks for recognition of handwritten digits. The basic idea 
is to estimate the increase in the training error when deleting weights. The 
estimate is formulated in terms of weight saliencies si: 

where ul is a component of U and the sum runs over the set D of weights to be 
deleted. The saliency definition used here takes into account that the weight 
decay terms force the weights t o  depart from the minimum of the training 
set error. As in [7] we approximate the second derivative by the positive 
semi-definite expression: 

a 2 E t r a i n  8.; M -  P k Z 1  2 & ( a ~ u ( x ( k ) ) )  duj ’ (6) 

The major assumptions entering the derivation of OBD are: 1) Terms of 
third and higher orders in the deleted weights can be neglected. 2) The 
off-diagonal terms in the Hessian, a2Etrain /tlu,dul~ , can be neglected. Com- 
putationally, the second order (diagonal) terms, eq. (6), are reused from the 
training scheme. We refrain from operations involving the full Hessian, which 
scales poorly for large networks. The recipe allows for ranking the weights 
according to  saliency. 
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GENERALIZATION 

The generalization error is defined as the average squared error on an example 
from the example distribution function P ( x ,  y).  The examples are assumed 
to be generated by a teacher function of the same form as the model and with 
a set of unknown weights U* and degraded by additive noise: 

where the noise samples ~ ( k )  are independent identically distributed vari- 
ables of unknown variance U’.  Further, we assume that the noise terms are 
independent of the corresponding inputs. The generalization error of a given 
network is by definition the average error on a random example. A more in- 
teresting quantity is the training set average of the generalization error, viz., 
the average over an ensemble of networks in which each network is provided 
with its individual training set. Using the diagonal approximation for the 
Hessian this error (also referred to as the test error) can be estimated as [6]: 

with 

,-. 
Etest = (1 + $) U’ 

where the A’s are the second derivatives already computed in eq. (6): A,, E 
i)’Etral,, /awf3 , A, G a2Etraln law;. The rest term R contains higher or- 
der quantities and terms that do not affect the estimate of the regularization 
parameters, see [5, 61 for further discussion. The estimate is based on lin- 
earization of the networks as regards the fluctuations in the weights resulting 
from different training sets. 

The generalization error estimates were also used for answering the ques- 
tion of how many weights it may be possible to delete in a pruning session in 
[ I l ,  121. We applied Akaike’s FPE estimate [l] of the test error in terms of 
the training error which reads: 

- p + N  
Etest - Etrain,  

P - N  

where p is the number of training samples, and N is the number of parameters 
in the model. The left hand side of eq. (10) is the average generalization error, 
averaged over all possible training sets of size p .  
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The relation expresses the fact that the training and test errors are bi- 
ased estimates of the noise level because each parameter during training has 
“absorbed” noise from the training samples. 

Since we have regularized the training procedure by weight-decay terms 
a,  , crw , hence, suppressed the ability of the (otherwise) ill-determined pa- 
rameters to model noise, we need to modify the standard FPE estimate by 
replacing the total number of parameters with the eflective number of pa- 
rameters, see [IO, 11, 121’: 

P+NeffE , 

P - Neff 
Etest = - train 7 

With the above tool we can obtain a generalization error estimate for each 
pruned network. By selecting the network with the lowest estimated gener- 
alization error we obtain a stopping criterion for pruning. 

Note that the estimated average generalization eq. (9) error is a function 
of the regularization parameters, hence, it is possible to vary these and search 
for minimal test error. In MacKay’s Evidence framework a similar strategy 
was adopted, however, with the purpose of maximizing the so-called Evidence. 
We find it more natural. to  optimize the quantity that is our basic objective, 
namely the test error. It is at  present not clear what the relation between the 
Evidence and the generalization error is. Empirically, they have been found 
to  be related [2, 81. 

We use a simple gradient descent procedure for minimization of the gen- 
eralization error: 

where p is a gradient descent parameter, and n is the iteration index (one 
epoch). The Designer Net approach is based on the diagonal approximation 
to  the Hessian. In terms of the diagonal elements the recursion above reads, 

A similar expression applies for the hidden-to-output weight decay parameter 
QW, in fact an arbitrary set of weight decay parameters can be defined and 
estimated using this recipe3. Expression (13) contains two unknown quanti- 
ties: the teacher weights w:j and the noise variance u2. The teacher weights 
are replaced by the current estimated weights of the network (see [2] for a 

‘In fact the notion of an effective number of parameters is quite delicate see [6]. 
31n the derivative of the test error we have kept the dependence A 2 / ( A  + 2 a / ~ ) ~  (rather 

than l / A )  providing a stabilizing effect similar to the Moore-Penrose pseudo inverse dis- 
cussed in [6]. 
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discussion), while the noise variance is estimated from the training error in 
the saint: approximation as in eq. (11): 

EXPERIMENTS 

We illlistrate the virtues of the adaptive regularization schrnie on two time 
series forecasting problems. The first experiment explores the functional de- 
pendence of t,he derivative of the estimated test error cf. equation (13). The 
forecasting problem is the sunspot benchmark involving estimation of the 
yearly sunspot activity from the past twelve years activity (see, e.g., [11] for 
a detailed description of the benchmark). To simplify we consider a linear 
model for which the parameters are uniquely determined when using the least 
squares cost function. The sunspot benchmark involves three data sets: A 
training set and two test sets. In figure 1 we show the weight decay depen- 
dence of the two test errors and of the derivative of the esfimated test error. 
Note that both test sets have shallow minima at values just below ct = 0.1, 
and that the derivative of the estimated test error passes t,hrough zero at a 
compatible value. Also note that the particular functional form of the deriva- 
tive implies that  the iterative scheme will converge to the zero point of the 
gradient. hence, provide near-optimal regularization with improved general- 
izat,iori errors. To further illustrate the role of adaptive regularization in the 
Designer Net framework we present tentative results on a standard problem 
of nonlinear dynamics, viz. the Mackey-Glass chaotic time series. This fore- 
casting problem was previously studied in [12]. The Mackey-Glass attractor 
is a noli-linear chaotic system described by the following equation: 

d z ( t )  Z ( t  - r )  
~ dt = -Wt) + a 1 + Z ( t  - T ) l o  (15)  

where t,he constant.s are a = 0.2, b = 0.1 and T = 17. The series is resampled 
with sampling period 1 according to standard practice. We aim at identifying 
the underlying dynaniic model, from this chaotic time series. The network 
configuration is L = 16, n H  = 10, with a total of 181 parameters, and we train 
t,o implement a six step ahead prediction. That  is, x(k) = [ ~ ( k  - 6),  ~ ( k  - 

12) ,  .. . , ~ ( k  - 6 L ) ]  and y(k) = ~ ( k ) .  
The, errors are computed as: 

where pset is the number of examples in the da ta  (train or test) set in question, 
and is the total variance of y(k) on the training and test set,. 
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Figure 1: The role of weight decay regularization for a linear model on the sunspot 
benchmark series. The two upper figures show the errors (see [Ill for a definition) 
on test sets both having shallow minima just below a weight decay of 0.1, while the 
bottom figure shows the derivative of the estimated test error as function of weight 
decay. Note that a gradient descent procedure will converge to the zero point. 
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There are several ways of implementing the adaptation scheme; here we 
initially set the weight decays to  fixed values aw = aw = 0.005 for 100 
epochs. then the network is trained with simultaneous adaptation of weight 
decay for 8000 epochs using eq. (13) with p = 0.1. After the initial training 
phase, further pruning and adaptation took place with pruning of 2% of the 
remaining weights per retraining round (400 epochs). In line with [la] it is 
seen that  the stop criterion is able to  select the optimal network. In figure 2 
the normalized training errors, test errors cf. eq. (16),  and the corresponding 
FPE error (after the initial training phase) are sketched for a training set 
size of 500 examples and the test set comprises 8500 examples. In [la] we 

Mackey-Glass time series 

- Learn error 1 72e 
- - Test error 3 8 3 4  

FPE estimate 2 0 0 8  

0 7  

0.6- 
W 
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0.5 - 

2 
0.4- 

0.3- 

0.2 - 

\ 

\ 

I I 
P20 100 80 60 

Parameters in neural network 

I 

3 20 

Figure 2 :  The  evolution of training and test errors during pruning for the Mackey- 
Glass time series for a training set of size 500. The  FPE estimate of the test error 
is based on eq. ( 1 1 ) .  The vertical line indicates the network for which the estimated 
test error is minimal. 

compared the performances of pruned networks with those of fully connected 
nets, a linear model, and with a K-nearest-neighbor linear model. It was 
noted that the performance of the networks is similar to  the nearest neighbor 
estimate. While the two weight decays previously were set manually we here 
adapt them according to  equation (13). In figure 3 the development of the 
two weight decays is depicted as pruning proceeds. Note that the adaptive 
regularization scheme “chooses” relatively high regularization for the large 
network as should be expected. These networks have superfluous resources 
that could potentially harm generalization through overfitting. Eventually, a t  
the end of the pruning session the test error estimates are rather biased (the 
network is underfitting) and the adaptive scheme does not provide reliable 
estimates. We have observed that the scheme in it present form has some 
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Figure 3: The evolution of weight decays during pruning for the Mackey-Glass time 
series. The vertical line indicates the network for which the estimated test error is 
minimal. 

dependence on initialization of weights and weight decays; this is a topic for 
current research. The very low value of the input-to-hidden weight decay 
for the small networks is also in line with our earlier observations, namely 
that one can retrain the optimal architecture without weight decay and get 
slightly improved generalization [ll, 121. 

CONCLUSION 

A scheme has been derived for adaptation of weight decay parameters. The 
scheme is based on asymptotic sampling theory. Two examples were given to  
illustrate the virtues of such adaptation. First, we showed that  the functional 
form of the derivative of the estimated test error will provide convergence to 
near-optimal values for a linear model on the sunspot benchmark. Secondly, 
it was shown how the Designer Net framework can be applied with adaptive 
regularization, hence, relieving, manual tuning of these important parameters. 
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